
Semantic Faceted Search
with Aggregation and Recursion?

Evgeny Sherkhonov, Bernardo Cuenca Grau, Evgeny Kharlamov, and
Egor V. Kostylev

University of Oxford
firstname.lastname@cs.ox.ac.uk

Abstract. Faceted search is the de facto approach for exploration of
data in e-commerce: it allows users to construct queries in an intuitive
way without a prior knowledge of formal query languages. This approach
has been recently adapted to the context of RDF. Existing faceted search
systems however do not allow users to construct queries with aggrega-
tion and recursion which poses limitations in practice. In this work we
extend faceted search over RDF with these functionalities and study the
corresponding query language. In particular, we investigate complexity
of the query answering and query containment problems.

1 Introduction

Faceted search is a prominent search and data exploration paradigm in Web
applications, where users can progressively narrow down the search results by
applying filters, called facets [28]. Faceted search has also been proposed in the
Semantic Web context as a suitable paradigm for exploring and querying RDF
graphs, and a number of RDF-based faceted search systems have been developed
in recent years [1, 4, 8, 12,14–17,20,25].

The theoretical underpinnings of faceted search in the Semantic Web con-
text were first studied in [10,23,30] and more recently in [1], where the authors
identified a class of first-order faceted queries providing a balance between ex-
pressivity of the query language and complexity of query answering. On the one
hand, faceted queries naturally capture the core functionality of faceted query
interfaces as implemented in existing systems; on the other hand, in contrast to
arbitrary first-order queries, their restrictions ensure that they can be answered
in polynomial time in the combined size of the input RDF graph and query [1].

Faceted queries as defined in [1], however, do not capture some of the func-
tionality needed for applications. We discuss this missing functionality on an
example of a marketing company recording different kinds of information about
products using an RDF graph. In enterprise data management such graphs are

? Work supported by the Royal Society under a University Research Fellowship and
the EPSRC under an IAA award and the projects DBOnto, MaSI3, ED3, and
VADA(EP/M025268/1).

:Samsung S8

800 900

:Exynos

290 270

:Samsung :Suwon :South Korea

:AsiaSmartphone Processor Company

:HP Elite X3

730

:Snapdragon

300280

:Qualcomm :San Diego :USA

:North America

type

type

type

type

type

type

price price

hasPart producedBy withHQ inCountry

inContinent

price price

price

hasPart producedBy

priceprice

withHQ inCountry

inContinent

Fig. 1. Example RDF graph about products

often the result of data integration, where data from disparate sources are ex-
ported into RDF for sharing and analysis purposes. An excerpt of our example
graph is shown in Figure 1. The graph describes mobile phones such as “Sam-
sung S8” by providing information such as their price as advertised by different
sellers, their parts (e.g., processors), or the country where phones and their parts
were produced. The expert users working for the company would want to exploit
faceted search to enable sophisticated searches such as the following ones:

(S1) find smartphones with price between £500 and £900;

(S2) find companies producing at least ten different models of smartphones; or

(S3) find smartphones with processors produced by North American companies.

To capture search (S1), a faceted search system should support numeric value
ranges; in particular, this requires the underpinning query language to allow
for comparisons between variables and numbers. Search (S2) requires a form of
aggregation since it involves counting the number of smartphone models pro-
duced by each company. Search (S3) is rather cumbersome to perform in a
typical RDF faceted search system, where facets are generated by “following”
the explicit links in the input graph. In particular, one would typically search
for smartphones first, then select the relevant processor (note the direct link be-
tween phones and processors via the hasPart relation), then select relevant cities
and subsequently countries, until eventually reaching the selection for continents.
Furthermore, by the time users are asked to select processors or even cities, they
are unlikely to know whether these are related at all to North America. Thus,
in many applications it is useful for faceted interfaces to provide “shortcuts”
that would allow, for instance, a selection for continent without the need for
first selecting processors, cities, or countries. Supporting such shortcuts requires
a form of reachability (i.e., recursion) in the underpinning query language.

In this paper, we propose an extension of the faceted query language intro-
duced in [1] with numeric comparisons, aggregation and recursion. Similarly to
faceted queries, our extended query language strikes a nice balance between ex-
pressive power and computational properties. On the one hand, it is expressive
enough to capture the typical searches that we have encountered in practical use
cases provided by our industrial partners. On the other hand, we show that query
answering remains tractable in the size of both the input graph and the query
despite the additional expressivity. In addition to query answering, we also study
the query containment and equivalence problems for (extended) faceted queries—
the fundamental problems underpinning static analysis and query optimisation—
which were not considered in prior work. We show that these problems are both
coNP-complete for our extended language, where the coNP lower bound holds
already for core faceted queries without comparisons, aggregation or reachability.
This is in contrast to unrestricted positive existential queries in first-order logic
for which the problems are known to be Πp

2 -complete and thus in the second
level of the polynomial hierarchy. Furthermore, we propose a practical fragment
of our extended query language for which the problems become tractable. Fi-
nally, we have extended the faceted search system SemFacet1 to support numeric
value ranges and aggregation, and we are currently working on extending the
system to further support the aforementioned reachability features.

2 Preliminaries

We assume a vocabulary consisting of pairwise disjoint countably infinite sets
of individuals I, numeric literals NL (which we assume to correspond to the
rational numbers), classes C—that is, unary predicates that range over I, object
properties OP—that is, binary predicates with both arguments ranging over I,
and datatype properties DP—that is, binary predicates with the first argument
ranging over I and the second over NL. We also consider a countably infinite
set V of variables, which is pairwise disjoint with all the aforementioned sets.

A fact is an expression of the form A(c) with A ∈ C and c ∈ I, P (c1, c2)
with P ∈ OP and c1, c2 ∈ I, or D(c, n) with D ∈ DP, c ∈ I and n ∈ NL. In the
context of this paper, we define an RDF graph as a finite set of facts. The active
domain ADom(G) of an RDF graph G is the set of all its individuals and numeric
literals. Note that our formalisation captures RDF datasets corresponding to sets
of OWL 2 DL assertions—that is, the datasets that can be seamlessly used in
conjunction with OWL 2 DL ontologies.

A relational atom is an expression of the form A(x) with A ∈ C and x ∈ V or
R(x1, x2) with R ∈ OP∪DP and x1, x2 ∈ V. An equality atom is an expression
of the form x = a, where x ∈ V and a ∈ I ∪NL.

A positive existential query Q(x̄) is a first-order logic formula with free vari-
ables x̄, denoted fvar(Q), built from relational and equality atoms using disjunc-
tion ∨, conjunction ∧, and existential quantification ∃. We assume all positive

1 https://www.cs.ox.ac.uk/isg/tools/SemFacet/

https://www.cs.ox.ac.uk/isg/tools/SemFacet/

existential queries to be rectified—that is, without different quantifications of
the same variable, and denote PEQ the set of all such queries. A positive exis-
tential query is a conjunctive query if it is ∨-free. We denote CQ the set of all
conjunctive queries. A query Q is monadic if it has exactly one free variable.

We next define the semantics of PEQ. Let G be an RDF graph. A valuation
over variables x̄ is a mapping ν : x̄ → ADom(G). For ν a valuation over x̄ and
variables ȳ ⊆ x̄, we denote ν|ȳ the restriction of ν to ȳ. Let Q ∈ PEQ, and ν be
a valuation over fvar(Q). Then, G satisfies Q under ν, denoted G, ν |= Q, if

– Q is an atom R(x̄) and R(ν(x̄)) ∈ G;
– Q is an atom x = a and ν(x) = a;
– Q = Q1 ∧Q2, G, ν|fvar(Q1) |= Q1, and G, ν|fvar(Q2) |= Q2;
– Q = Q1 ∨Q2 and either G, ν|fvar(Q1) |= Q1 or G, ν|fvar(Q2) |= Q2; or
– Q = ∃y.Q′ and G, ν ∪ {y 7→ c} |= Q′ for some c ∈ I ∪NL.

The semantics [Q]G of a query Q(x̄) (in PEQ or its extension) over an RDF
graph G is the following set of tuples of elements in I ∪NL:

{ν(x̄) | G, ν |= Q and ν is a valuation over x̄}.

The query answering problem is to compute [Q]G given Q and G.
A query Q is contained in a query Q′, written Q ⊆ Q′ if [Q]G ⊆ [Q′]G holds

for every RDF graph G. They are equivalent, written Q ≡ Q′, if [Q]G = [Q′]G for
every G. The query containment problem is to determine, given queries Q and
Q′ as input, whether Q ⊆ Q′. The query equivalence problem is to determine
whether Q ≡ Q′. Note that these problems are easily reducible to each other for
all query languages considered in this paper: Q ≡ Q′ if and only if Q ⊆ Q′ and
Q′ ⊆ Q, while Q ⊆ Q′ if and only if Q ∧Q′ ≡ Q.

When talking about complexity of algorithms, we assume the usual binary
representation of graphs and queries; in particular, rational numbers are repre-
sented by pairs of an integer and a positive integer in binary, one for the numer-
ator and the other for the denominator. This representation size of a graph G
should be distinguished from the number of facts in G, which is denoted as |G|.

3 Faceted Queries

In this section, we recapitulate the language of faceted queries as proposed in [1]
and justify its main features using the example faceted interface on the left-
hand-side of Figure 2.2 Our treatment is by no means comprehensive, and we
refer the interested reader to the aforementioned papers for additional details.

The front-end of a typical RDF faceted search system provides (1) a search
text box, where users can enter keywords; (2) a faceted interface, which con-
tains facets and their possible values; and (3) a results pane, where the search
results are provided. The keywords entered in the search box are used, on the
one hand, to obtain an initial set of results (using standard information-retrieval

2 The figure is based on the front-end of the SemFacet system.

ANY

Processor

Laptop
SmartPhone

Searchphone

type

hasPart

answer

keywords

facet name

Query:
Return all smartphones

whose processor is
manufactured
by a company

with head quoters in
San Diego or Suwon

Samsung Galaxy S8
Galaxy S8 is a phone that offers an exceptional
experience for any user. The large screen is a real
turning point in flagship phone design and should usher
in the end of large bezels, and the camera and slick
performance work brilliantly under the finger.

San Diego
Suwon

withHQ

producedBy
ANY

ANY

Processor

Laptop
SmartPhone

Searchphone

San Diego
Suwon

type

hasPart

withHQ

producedBy

Reachable facets

answer

maxprice

0 1600

aggregate facets

enter facet

ANY

inContinent

N. America
Asia

Query:
Return all smartphones

with the maximum price within £500—£900
 and whose processor is manufactured

by a North American company

Samsung Galaxy S8
Galaxy S8 is a phone that offers an exceptional
experience for any user. The large screen is a real
turning point in flagship phone design and should usher
in the end of large bezels, and the camera and slick
performance work brilliantly under the finger.

ANY
facet values

500 900

keywords

facet name

Fig. 2. Example faceted query interfaces over RDF data

techniques) and, on the other hand, to construct an initial faceted interface with-
out selected values, which constitutes the starting point for faceted navigation.
The set of values selected by users in the faceted interface are compiled into a
query, which is then issued to a triple store holding the input RDF graph. The
answers to the query are finally depicted in the results pane.

The basic element of a faceted interface is a facet, which consists of a facet
name and a set of values (see Figure 2). The special type facet is used to select
the categories (classes) to which the results must belong. Facets can be con-
junctive or disjunctive, depending on whether the selection of different values
is interpreted disjunctively or conjunctively. For instance, the facet withHQ,
which indicates the headquarters of companies, is disjunctive in the sense that
selecting both Suwon and San Diego as values would result in a query asking
for companies with headquarters in either of the aforementioned cities. In con-
trast to conventional faceted search systems, where the underpinning data has a
simple “flat” structure, systems based on RDF must be able to search through
complex graph data, and as a result facet nesting becomes an important feature.
For instance, the producedBy facet in Figure 2 (left) is nested under the hasPart
facet, which indicates that the values of the facet refer to the companies that
produce phone parts, rather than those producing phones themselves.

The queries obtained as a result of compiling user value selections in a faceted
interface are referred to as faceted queries. We next discuss the intuition behind
such compilation; a formal treatment can be found in [1].

Selections in the special facet type are interpreted as conjunctions (or dis-
junctions) of unary relational atoms over the same variable. Selections on any
other facet yield either a binary relational atom whose second argument is ex-
istentially quantified (if the special value Any is selected), or in a conjunction
(disjunction) of binary relational atoms having as second argument a constant or

a variable belonging to a unary relational atom. Facet nesting involves a “shift”
of variable from the parent facet to the nested facet as well as to the introduction
of fresh existentially quantified variables. As a result, faceted queries can be seen
as positive existential queries satisfying the following restrictions:

(R1) they are monadic since query answers displayed in a system’s results pane
are individual objects, rather than tuples of objects;

(R2) they are tree-shaped since existentially quantified variables introduced by
facet nesting are always fresh; and

(R3) all disjuncts of a disjunctive (sub-)query are also monadic, with the same
free variable shared across all their disjuncts.

For instance, the user selections on the left-hand side of Figure 2 are compiled
into the following faceted query Qex

1 (x) asking for smartphones whose processor
is produced by any company with headquarters in either Suwon or San Diego:

Smartphone(x) ∧ ∃y. (hasPart(x, y) ∧ Processor(y) ∧
(∃z1. (producedBy(y, z1) ∧ ∃w1.withHQ(z1, w1) ∧ (w1 = :Suwon)) ∨

(∃z2. (producedBy(y, z2) ∧ ∃w2.withHQ(z2, w2) ∧ (w2 = :San Diego)))). (1)

Note that query Qex
1 has a single free variable x and hence satisfies restric-

tion (R1). Furthermore, it has no cyclic dependencies between its variables and
hence satisfies restriction (R2). Finally, the disjuncts in the only disjunctive sub-
query of Qex

1 share their only free variable y, and hence the query satisfies (R3).
Restrictions (R1)–(R3) are formalised in the following definitions.

Definition 1. The graph of Q ∈ PEQ is the directed labeled graph such that

– its nodes are the variables mentioned in Q;
– its edges are the pairs (x1, x2) with relational atoms P (x1, x2) in Q; and
– the label of (x1, x2) is the set of all properties P with P (x1, x2) in Q.

A monadic query Q(x) ∈ PEQ is tree-shaped if its graph is a directed tree rooted
at x and the label of each edge is a singleton.

Definition 2. A (core) faceted query Q is a monadic, tree-shaped query in PEQ
satisfying the following additional property: if Q1 ∨Q2 is a sub-query of Q, then
fvar(Q1) = fvar(Q2) = {x} for some variable x. We denote with FQ and CFQ
the classes of all faceted queries and all conjunctive faceted queries, respectively.

The restrictions in this definition are sufficient for an existence of a polynomial-
time query answering algorithm [1].

4 Extended Faceted Queries

In this section, we present our extension of core faceted queries. We consider
as a running example the faceted interface depicted on the right-hand-side of

Figure 2. Intuitively, the user selections in the figure represent a search for all
smartphones with maximum price amongst all sellers comprised between £500
and £900, and whose processor has been manufactured by a North American
company. The interface on the right-hand side of the figure extends that on the
left-hand side with two additional elements:

– an aggregate facet consisting of a selection for an aggregate and a numeric
range slider, and which establishes the relevant restriction on the maximum
smartphone price;

– a special facet with a search box which allows users to search for “reachable”
facets, thus providing a shortcut for the relevant continent selection.

To capture such new elements, we extend the query language in Section 4
with three new types of atoms, namely (i) comparison atoms, extending equal-
ity atoms and capture numeric comparisons between a variable and a numeric
literal; (ii) aggregate atoms, capturing aggregation; and (iii) reachability atoms,
representing a limited form of recursion sufficient to capture the shortcuts.

We start by defining comparison atoms and their semantics.

Definition 3. A comparison atom is an expression of the form x op a, where
x ∈ V, op ∈ {=,≤,≥, <,>}, and a ∈ I ∪NL if op is = and a ∈ NL otherwise.
An RDF graph G satisfies a comparison atom x op a under a valuation ν over
x, written G, ν |= x op a, if and only if ν(x) op a holds under the conventional
built-in meaning of comparison predicates (assuming that ν(x) op a is false if
ν(x) /∈ NL and op is not =).

Note that each equality atom is a comparison atom by definition.
For instance, the following query uses comparison atoms to ask for all smart-

phones with price range between £500 and £900:

Qex
2 (x) = Smartphone(x) ∧ ∃y. (price(x, y) ∧ (y ≥ 500) ∧ (y ≤ 900)).

Aggregate atoms in our language provide a restricted form of aggregation over
what is available in standard query languages such as SPARQL 1.1 [13, 18]. An
important restriction is that the value computed by the corresponding aggregate
function is immediately compared to a constant and thus the atom is evaluated
to either true or false in any given graph and valuation. This is in contrast
to SPARQL 1.1, where the value computed by an aggregate function can be
assigned to a variable which can then occur in other parts of the query. Another
restriction is that grouping is always performed over the first argument of an
object or datatype property and, as a result, the collection of values over which
the aggregate function is evaluated cannot contain duplicates and thus can be
seen as a set rather than a multiset.

Definition 4. An aggregate function is a function f : 2I∪NL → NL∪ {undef},
where undef is a special symbol. We concentrate on several specific aggregate
functions, defined as follows, for S ⊆ I ∪NL:

– count(S) is the cardinality of S;
– min(S) is the minimum in S if S ⊆ NL and S 6= ∅, and it is undef otherwise;
– max(S) is the maximum in S if S ⊆ NL and S 6= ∅, and undef otherwise;
– sum(S) is the sum of literals in S if S ⊆ NL, and it is undef otherwise;
– avg(S) is sum(S)/count(S) if sum(S) 6= undef and count(S) /∈ {0, undef},

and it is undef otherwise.

An aggregate atom is an expression of the form Agg(x,R, f)opn, where f is one
of the aforementioned aggregate functions, R is a property that is datatype if
f 6= count, x is a variable, op ∈ {=,≤,≥, <,>}, and n ∈ NL. An RDF graph G
satisfies an aggregate atom Agg(x,R, f) op n under a valuation ν over x, written
G, ν |= Agg(x,R, f) op n, if and only if f({a | R(ν(x), a) ∈ G}) op n (assuming
that all comparison operators return false if the first argument is undef).

For instance, the following query relies on aggregate atoms to ask for smart-
phones with average price across all sellers greater than £500:

Qex
3 (x) = Smartphone(x) ∧ (Agg(x, price, avg) ≥ 500).

We next define reachability atoms, capturing the shortcuts in navigation.

Definition 5. A reachability atom is an expression of the form Next(x1, x2) or
Next+(x1, x2) with x1, x2 ∈ V. An RDF graph G satisfies a reachability atom α
under a valuation ν, denoted G, ν |= α, if

– α = Next(x1, x2) and there is a property R such that G, ν |= R(x1, x2); or
– α = Next+(x1, x2) and there exist a1, . . . , an, n ≥ 1, in I ∪ NL such that
ν(x1) = a1, ν(x2) = an, and, for each i = 1, . . . , n − 1, there is a property
Ri such that Ri(a

i, ai+1) ∈ G.

Our example search on the right-hand side of Figure 2 can be captured by
the following faceted query Qex

4 (x), involving aggregate and reachability atoms:

Smartphone(x) ∧ (Agg(x, price,max) ≥ 500) ∧ (Agg(x, price,max) ≤ 900) ∧
∃y. (hasPart(x, y) ∧ Processor(y) ∧ ∃z.(producedBy(y, z) ∧
∃v. Next+(z, v) ∧ ∃u. inContinent(v, u) ∧ (u = :North America))).

The languages of positive existential queries and faceted queries are extended
in the obvious way by allowing for the new types of atoms (i.e., comparison,
aggregate and reachability) in addition to relational atoms.

Definition 6. Extended positive existential queries are defined in the same
way as positive existential queries, except that they allow for not only rela-
tional and equality, but also (arbitrary) comparison, aggregate, and reachabil-
ity atoms as building blocks. Extended faceted queries are also defined in the
same way as core faceted queries; in this case, the graph of the query takes
into account binary relational atoms and reachability atoms (but not compar-
ison or aggregate ones). We denote with L[O], for L ∈ {PEQ,CQ,FQ,CFQ}
and O ⊆ {Comp,Agg,Next,Next+} the language obtained by extending L with
atoms specified in O as follows: comparison if Comp ∈ O, aggregate if Agg ∈ O,
Next if Next ∈ O, and Next+ if Next+ ∈ O.

It is known that core faceted queries are expressible in the standard RDF
query language SPARQL [1]. Similarly, extended faceted queries allow for a
direct translation to the current version of this language, SPARQL 1.1 [13, 18].
In particular, it has aggregation functionality, which captures aggregate atoms
in faceted queries, and property paths, which capture reachability atoms.

5 Answering Extended Faceted Queries

In [1] it was shown that core faceted queries (i.e., faceted queries without com-
parison, aggregate, and reachability atoms) can be answered in polynomial time.
This is in contrast to unrestricted positive existential (or even conjunctive)
queries, where evaluation problem is well-known to be NP-complete.

Tractability of core faceted query answering relies on two key observations [1].
First, answering monadic tree-shaped conjunctive queries is a well-known tract-
able problem; thus, the only possible source of intractability is the presence of
disjunction. Second, disjunctive subqueries in a faceted query can be answered
in a bottom-up fashion: to compute the answers to Q1(x) ∨Q2(x) it suffices to
answer Q1(x) and Q2(x) independently and “store” the answers as new unary
relational facts in the input RDF graph using a fresh class CQ1∨Q2

uniquely
associated to Q1(x) ∨ Q2(x). The polynomial time algorithm in [1] stems from
a direct application of these observations, and relies on an oracle for answering
monadic tree-shaped conjunctive queries.

In this section, we study the problem of answering extended faceted queries
over RDF graphs. Specifically, we propose a polynomial time query answering
algorithm that generalises that in [1] to account for the additional features of
the query language. We proceed in the following two steps.

1. In the first step we show that comparison and aggregate atoms can be en-
coded away by a polynomial time rewriting of the input query and RDF
graph; the correctness of this rewriting is independent from the special prop-
erties of faceted queries, and thus it equivalently transforms any query in
PEQ[Comp,Agg,Next,Next+] into PEQ[Next,Next+].

2. In the second step we show that, analogously to core faceted queries, any
query in FQ[Next,Next+] can be efficiently answered in a bottom-up fashion
while “storing” the results of disjunctive subqueries in the RDF graph. In
contrast to the algorithm in [1], which relies on an oracle for answering
monadic tree-shaped conjunctive queries, our extended algorithm relies on
the existence of a polynomial time procedure for answering a special type of
conjunctive regular path queries (CRPQs) [2].

In the intermediate steps of the algorithms in this and the following sec-
tions we operate with graphs and queries that allow for generalised predicates:
a heterogeneous class is a unary predicate that ranges over I ∪NL, and a het-
erogeneous property is a binary predicate with the first argument ranging over I
and the second over I ∪NL. For brevity, we assume that such graphs are RDF
graphs and such queries belong to the corresponding languages (e.g., FQ).

For the first step, consider a query Q(x) in PEQ[Comp,Agg,Next,Next+]
and an RDF graph G. For every comparison or aggregate atom α in Q, we intro-
duce a fresh heterogeneous class Cα. Let Q̃ be the query in PEQ[Next,Next+]
obtained from Q by replacing each comparison or aggregate atom α with the free
variable x by Cα(x). Note that if Q is in FQ[Comp,Agg,Next,Next+], then Q̃
is in FQ[Next,Next+]. Let also G̃ be the union of G and the following graphs:

{Cx op a(a′) | x op a is atom in Q, a′ ∈ ADom(G), and a′ op a},
{CAgg(x,R,f) opn(a) | Agg(x,R, f) op n is atom in Q, a ∈ ADom(G), and

G, {x 7→ a} |= Agg(x,R, f) op n}.

The following lemma establishes the correctness of the transformation.

Lemma 1. Given a query Q in PEQ[Comp,Agg,Next,Next+] and an RDF
graph G, query Q̃ and RDF graph G̃ can be computed in polynomial time in the
sizes of binary representations of Q and G. Moreover, [Q]G = [Q̃]G̃.

Note that, in particular, the number N of atoms in Q̃ is the same as in Q,
and |G̃| ≤ |G|+N · |ADom(G)|.

Having Lemma 1 at hand, it is enough to define a polynomial-time procedure
for answering queries in FQ[Next,Next+], which we do in the second step. To
this end, we first note that tree-shaped queries in CQ[Next,Next+] can be di-
rectly translated into strongly acyclic CRPQs, which can be answered in linear
time both in the size of the query and the RDF graph [2].

Lemma 2. Computing [Q]G for a monadic tree-shaped query Q in the class
CQ[Next,Next+] and a generalised RDF graph G can be done in O(n · m),
where n and m are the sizes of binary representations of Q and G, respectively.

We next present Algorithm 1, which computes [Q]G for a query Q(x) ∈
FQ[Comp,Agg,Next,Next+] and an RDF graph G. First, the algorithm elimi-
nates comparison and aggregation atoms on the basis of Lemma 1. Then, anal-
ogously to the algorithm in [1], it iterates, in a bottom-up manner, over all
disjunctive subqueries of Q: each disjunctive-free subquery is dealt with using
the procedure Answer-saCRPQ for answering strongly acyclic CRPQs on the
basis of Lemma 2, while the disjunctive subquery is replaced with the atom
CQ1∨Q2

(x) in Q (for CQ1∨Q2
a fresh heterogeneous class), and the graph is ex-

tended by atoms CQ1∨Q2
(a) for all a returned by the call to Answer-saCRPQ.

The correctness of Algorithm 1 leads to our main result in this section.

Theorem 1. Query answering in FQ[Comp,Agg,Next,Next+] can be solved
in polynomial time.

6 Query Containment and Equivalence

In this section we consider the containment and equivalence problems for faceted
queries. These are fundamental problems for static analysis and query optimisa-
tion and, to the best of our knowledge, have not been considered in prior work
on faceted search in the Semantic Web context.

Algorithm 1: Answer-FQ[Comp,Agg,Next,Next+]

INPUT : Q a query in FQ[Comp,Agg,Next,Next+], G an RDF graph
OUTPUT: [Q]G

1 Q := Q̃ and G := G̃
2 while Q has a disjunctive subquery do
3 pick a subquery Q1(x) ∨Q2(x) in Q with Q1 and Q2 disjunction-free
4 for each 1 ≤ i ≤ 2 do
5 Ansi := Answer-saCRPQ(Qi, G)
6 replace Q1(x) ∨Q2(x) in Q with CQ1∨Q2(x) for heterogeneous class CQ1∨Q2

7 G := G ∪ {CQ1∨Q2(a) | a ∈ Ans1 ∪Ans2}
8 return Answer-saCRPQ(Q,G)

We concentrate on containment: as argued in Section 2, containment and
equivalence are polynomially inter-reducible. We start by showing that con-
tainment is coNP-complete for FQ[Comp,Agg,Next,Next+], and the hardness
holds even for FQ and for CFQ[Next,Next+]. Then, we establish tractability
of containment for practically important subclasses of faceted queries, namely
CFQ[Comp,Agg,Next] and CFQ[Comp,Agg,Next+]. Finally, we show that the
requirement on disjunction in the definition of faceted queries has a significant
impact on complexity: containment of monadic tree-shaped PEQ (without any
additional restriction on disjunctive subformulas) is Πp

2 -complete, and hence as
hard as containment for unrestricted PEQ.

First we show a coNP upper bound for FQ[Comp,Agg,Next,Next+]. We
start with several definitions.

Let Q and Q′ be FQ[Comp,Agg,Next,Next+] queries, and let N and N+

be fresh heterogeneous properties. We first show how to eliminate reachability
atoms and fractional numbers from Q and Q′. Consider all the numeric literals
a1, . . . , an in the comparison and aggregate atoms of Q and Q′ except aggregate
atoms over count, as well as integers b1, . . . , bn that are numerators of rational
numbers obtained from a1, . . . , an by bringing them to the smallest common
denominator. Denote Q̃ and Q̃′ the queries in FQ[Comp,Agg] obtained from Q
and Q′, respectively, by replacing

1. each ai in comparison and non-count aggregate atoms by bi; and
2. each atom Next(x1, x2) by N(x1, x2) and each Next+(x1, x2) by N+(x1, x2).

The size of binary representation of Q̃ and Q̃′ is polynomial in the size of Q and
Q′, and Q̃ and Q̃′ can be constructed efficiently, in polynomial time. As we will
see later, containment of Q in Q′ can be reduced to containment of Q̃ in Q̃′.

A generalised RDF graph G is a set of facts enriched, for each constant c ∈ I,

– by a non-negative integer Val(c,R, count) for each R ∈ OP ∪DP, and
– by rational numbers Val(c,D, f) for all f ∈ {min,max, sum} and all D ∈ DP.

Graph G is realisable if there is an RDF graph G′ such that all facts of G are
also in G′, and f({a | R(c, a) ∈ G′}) = Val(c,R, f) for all Val(c,R, f) in G.

The semantics [Q]G of a query Q(x̄) over a generalised RDF graph G is de-
fined in the same way as over a usual one, except that, when evaluating aggregate

atoms, aggregation values are not computed on the facts, but taken from the cor-
responding Val(c,R, f) (assuming Val(c,R, avg) = Val(c,R, sum)/Val(c,R, count)
for uniformity).

Intuitively, the generalised RDF graphG represents (a part of) the usual RDF
graph G′ witnessing its realisability: numbers Val(c,R, f) describe the values of
aggregates f for c and R in G′ in a concise way. Note, however, that the size of a
binary representation of G may be exponentially smaller than that of G′, because
for some constants c and properties R graph G may store only the number of
R-successors of c in binary instead of listing them one by one (of course, some
parts of G′ may also be not represented in G at all). If fact, as we will see soon, in
search for a witness for non-containment, we can restrict ourselves to generalised
graphs with polynomially-sized binary representation, while the corresponding
witnessing usual graph may be necessarily exponential. But before formalising
this, we show how to modify the graph to deal correctly with reachability.

A generalised RDF graph G is reachability-closed if

– N(a1, a2) ∈ G if and only if R(a1, a2) ∈ G for some R 6∈ {N,N+}; and
– N+(a1, a2) ∈ G if and only if there is a directed path from a1 to a2 in G via

properties different from N and N+.

Lemma 3. Given queries Q and Q′ in FQ[Comp,Agg,Next,Next+], Q 6⊆ Q′

if and only if there exists a realisable generalised reachability-closed RDF graph
G′ with binary representation of polynomial size in the sizes of representations
of Q and Q′ such that [Q̃]G′ 6⊆ [Q̃′]G′ .

The final key observation is that Theorem 1, which ensures that the query
evaluation is feasible, applies to generalised graphs with minor modifications of
justifying Algorithm 1, while realisability can also be easily checked.

Lemma 4. Containment is in coNP for FQ[Comp,Agg,Next,Next+].

We now move on to the coNP lower bound which, as we show next, holds
already for rather restricted languages.

Lemma 5. Containment is coNP-hard for both FQ and CFQ[Next,Next+].

Proof (Sketch). We start with a reduction of 3SAT to the complement of the
containment for FQ. Let ϕ be a propositional formula in 3CNF over m variables
ui, i = 1, . . . ,m, with n clauses γj = `1j ∨ `2j ∨ `3j , j = 1, . . . , n. For each i =

1, . . . ,m, let Ti and Fi be classes, and, for each j = 1, . . . , n, let Qj(x) = V 1
j (x)∨

V 2
j (x) ∨ V 3

j (x), where V kj , for k = 1, 2, 3, is Ti if `kj = ui and Fi if `kj = ¬ui.
Consider the following queries in FQ:

Q(x) =

m∧
i=1

(
Ti(x) ∨ Fi(x)

)
∧

n∧
j=1

Qj(x) and Q′(x) =

m∨
i=1

(Ti(x) ∧ Fi(x)).

Intuitively, Q encodes the fact that for every i = 1, . . . ,m either ui or ¬ui
must be true and that every clause γj , 1 ≤ j ≤ n, must be true as well. Negation

of Q′ encodes the fact that ui and ¬ui cannot be true at the same time. We
claim that ϕ is satisfiable if and only if Q 6⊆ Q′.

The coNP-hardness for CFQ[Next,Next+] can be proved in a similar way
as the hardness of containment of tree patterns over trees in [22]. ut

Lemmas 4 and 5 give us the following theorem.

Theorem 2. Containment is coNP-complete for any query language between
FQ and FQ[Comp,Agg,Next,Next+] as well as for any query language between
CFQ[Next,Next+] and FQ[Comp,Agg,Next,Next+].

This theorem leaves open the question what faceted queries have tractable
containment. Next we show that it is true for conjunctive faceted queries that
use either only Next or only Next+. We start with some definitions.

Consider a query Q in CFQ[Comp,Agg,Next] or in CFQ[Comp,Agg,Next+].
A variable x in Q is domain-inconsistent if Q has an atom of the form C(x) with
C ∈ C, R(x, y) with R ∈ OP ∪DP ∪ {Next, Next+}, P (x′, x) with P ∈ OP,
x op a with a ∈ I, or Agg(x,R, f) op n, as well as an atom of the form D(x′, x)
with D ∈ DP or x op n with n ∈ NL. Intuitively, domain-consistency ensures
that no variable is required to match both a constant and a numeric literal.

For each variable x in Q, let ΣComp(x,Q) be the set of all comparison atoms
in Q where x appears. Then, for any variables x and y, denote x ∼Q y the
fact that ΣComp(x,Q) and ΣComp(y,Q) imply x = y. Finally, for each x and
property R, let ΣAgg(x,R,Q) be the set of constraints

{xf op n | Agg(y,R, f) op n is an aggregate atom in Q and x ∼Q y} ∪
{xmin ≤ xavg, xavg ≤ xmax, xcount × xavg = xsum},

where, for each aggregate function f, xf is a fresh variable. Query Q is consistent
if ΣComp(x,Q) has a solution for any x in Q, ΣAgg(x,R,Q) has a solution for
any x and any R ∈ OP ∪DP, and Q has no domain-inconsistent variable.

Given queries Q(x) and Q′(x) both either in CFQ[Comp,Agg,Next] or in
CFQ[Comp,Agg,Next+], a homomorphism from Q′ to Q is a mapping h from
variables of Q′ to variables of Q such that h(x) = x and, for every relational
atom R(x′1, . . . , x

′
n) ∈ Q′, there exists R(x1, . . . , xn) ∈ Q with h(x′i) ∼Q xi

for every i. Homomorphism h is comparison-preserving if ΣComp(h(x′), Q) im-
plies ΣComp(x

′, Q′) for any variable x′ of Q′. It is aggregation-preserving if
ΣAgg(h(x′), R,Q) implies ΣAgg(x

′, R,Q′) for any variable x′ of Q′ and any R. It
is Next-preserving if, for every atom Next(x′1, x

′
2) in Q′, there is R(x1, x2) ∈ Q

with R ∈ OP ∪ DP ∪ {Next}, h(x′1) ∼Q x1, and h(x′2) ∼Q x2. It is Next+-
preserving if for every Next+(x′1, x

′
2) in Q′ there are R1(y1, z1), . . . , Rn(yn, zn),

n ≥ 1, in Q with all Ri ∈ OP ∪ DP ∪ {Next+}, such that h(x′1) ∼Q y1,
h(x′2) ∼Q zn, and zi ∼Q yi+1 for each i = 1, . . . , n− 1.

Proposition 1. Let Q and Q′ be queries in CFQ[Comp,Agg,N], where N ∈
{Next,Next+}. Then, Q ⊆ Q′ if and only if either Q is not consistent or there
is a comparison-, aggregation- and N -preserving homomorphism from Q′ to Q.

Checking for existence of a comparison-, aggregation- and N -preserving ho-
momorphism for tree-shaped queries can be done in polynomial time using stan-
dard techniques for tree homomorphisms (see, e.g., [22]), while checking for con-
sistency is straightforward. So, we have the following theorem.

Theorem 3. The containment problem both for CFQ[Comp,Agg,Next] and for
CFQ[Comp,Agg,Next+] is in PTime.

We conclude by showing that the requirement on disjunction in the definition
of faceted queries makes a difference, and containment for monadic tree-shaped
PEQ is Πp

2 -complete. The following theorem can be proved by a reduction of
∀∃3SAT; the matching upper complexity bound is inherited from arbitrary PEQ.

Theorem 4. Containment is Πp
2 -hard for monadic tree-shaped PEQ.

7 Related Work

To the best of our knowledge, there is no theoretical study on extensions of
faceted search with numeric value ranges, aggregation, and reachability. On the
system side, we are not aware of any RDF-based faceted search system that cur-
rently supports aggregation (see [29] for a comprehensive survey). Aggregation
in faceted search has so far been considered only in the context of conventional
data models [3, 7], which are not graph-based; in that setting, the focus was
on improved indexing schemes to optimise interface computation and update.
A limited form of recursion is supported by the /facet system [15], where the
transitive closure of transitive properties is precomputed and explicitly stored in
the RDF graph. Finally, numeric value ranges have been implemented in several
systems [12,27] and their implementation is similar to ours in SemFacet.

Query containment is a classical problem in database theory. Containment of
acyclic conjunctive queries is tractable [11,31] which implies tractability of core
conjunctive faceted queries that are tree-shaped and thus acyclic. Containment
for (unions of) conjunctive queries is NP-complete [5]. It is also known that
containment is Πp

2 -complete for PEQ [24], while our results show that hardness
already holds for tree-shaped PEQ.

For CQ it is known that adding comparison atoms changes complexity of con-
tainment from NP-complete to Πp

2 -complete [9, 19,21] and the known proofs of
the lower bound either rely on ternary relations, or they exploit atoms that com-
pare two variables. Our results show that adding comparison atoms of the form
x op a (for a a constant) does not increase the complexity of containment, which
remains in coNP. Moreover, containment for tree-shaped conjunctive queries
with comparison atoms of the form x op a is tractable [26], and thus the con-
tainment is also tractable for core conjunctive faceted queries with comparisons.

When aggregates are added to CQ or PEQ, the complexity of containment
becomes dependent on the supported aggregate functions [6]. Notably, most
complexity upper bounds in the literature are formulated for queries containing
a specific aggregate function only. In contrast, in this paper we allow for arbitrary

combinations of aggregate functions in queries, while at the same time restricting
other aspects of aggregation as discussed in Section 4.

A number of languages with recursive navigational features have been consid-
ered in the context of graph databases, including regular path queries (RPQs)
and conjunctive regular path queries (CRPQs). These languages are very ex-
pressive and, as a result, containment becomes computationally expensive: it
is ExpSpace-complete for CRPQs, where the lower bound already holds for
acyclic CRPQs [2]. In contrast, the form of recursion provided by our query lan-
guage is rather limited, and does not result in a complexity jump when added to
faceted queries. Conjunctive faceted queries also resemble XML tree patterns,
where the descendant axis in tree patterns is akin to our reachability atoms in-
terpreted over XML trees. Containment of tree patterns is coNP-complete [22],
and we used a similar idea to establish a coNP lower bound for conjunctive
faceted queries with reachability atoms.

8 Conclusion and Future Work

In this paper we have extended existing faceted query languages with new fea-
tures important in applications. We have shown that, despite the additional ex-
pressivity, query answering remains tractable in the combined size of the input
query and RDF graph. We have also studied the query containment problem and
established complexity bounds for a number of practically relevant fragments of
our query language. From a practical point of view, we have extended the faceted
search system SemFacet to support numeric value ranges and aggregation, and
are currently working on extending it to also support reachability.

We see many directions for future work. From a theoretical perspective, we
are planning to study extensions of faceted queries with additional features sug-
gested by practical use cases, and in particular with a form of negation. Further-
more, we are also planning to study the computational properties of extended
faceted queries in the presence of an ontology. From a practical perspective, we
are working closely with our collaborators at EDF Energy on the development of
a Semantic Search tool combining SemFacet and their in-house visualisation tool
SemVue. The initial results of this collaboration have been very encouraging.

References

1. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuška, Š., Zheleznyakov, D.:
Faceted search over RDF-based knowledge graphs. J. Web Semantics 37 (2016)

2. Barceló, P.: Querying graph databases. In: Proc. of PODS (2013)
3. Ben-Yitzhak, O., Golbandi, N., Har’El, N., Lempel, R., Neumann, A., Ofek-

Koifman, S., Sheinwald, D., Shekita, E., Sznajder, B., Yogev, S.: Beyond basic
faceted search. In: Proc. of WSDM (2008)

4. Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Prudhommeaux, E., m.c.
schraefel: Tabulator Redux: Browsing and writing linked data. In: LDOW (2008)

5. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theor.
Comput. Sci. 239(2) (2000)

6. Cohen, S.: Containment of aggregate queries. SIGMOD Rec. 34(1) (Mar 2005)
7. Dash, D., Rao, J., Megiddo, N., Ailamaki, A., Lohman, G.: Dynamic faceted search

for discovery-driven analysis. In: Proc. of CIKM (2008)
8. Fafalios, P., Tzitzikas, Y.: X-ENS: Semantic enrichment of Web search results at

real-time. In: Proc. of SIGIR (2013)
9. Farré, C., Nutt, W., Teniente, E., Urṕı, T.: Containment of conjunctive queries

over databases with null values. In: Proc. of ICDT (2007)
10. Ferré, S., Hermann, A.: Semantic search: Reconciling expressive querying and ex-

ploratory search. In: Proc. of ISWC (2011)
11. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.

J. ACM 48(3) (2001)
12. Hahn, R., Bizer, C., Sahnwaldt, C., Herta, C., Robinson, S., Bürgle, M., Düwiger,

H., Scheel, U.: Faceted wikipedia search. In: Proc. of BIS (2010)
13. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation,

W3C (Mar 2013)
14. Heim, P., Ziegler, J., Lohmann, S.: gFacet: A browser for the Web of Data. In:

Proc. of IMC-SSW (2008)
15. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for hetero-

geneous Semantic Web repositories. In: Proc. of ISWC (2006)
16. Huynh, D., Mazzocchi, S., Karger, D.R.: Piggy Bank: Experience the Semantic

Web inside your web browser. J. Web Sem. 5(1) (2007)
17. Huynh, D.F., Karger, D.R.: Parallax and companion: Set-based browsing for the

Data Web. www.davidhuynh.net (2013)
18. Kaminski, M., Kostylev, E.V., Cuenca Grau, B.: Semantics and expressive power

of subqueries and aggregates in SPARQL 1.1. In: Proc. of WWW (2016)
19. Klug, A.C.: On conjunctive queries containing inequalities. J. ACM 35(1) (1988)
20. Kobilarov, G., Dickinson, I.: Humboldt: Exploring Linked Data. In: LDOW (2008)
21. van der Meyden, R.: The complexity of querying indefinite data about linearly

ordered domains. J. Comput. Syst. Sci. 54(1) (1997)
22. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J. of

the ACM 51(1) (2004)
23. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In:

Proc. of ISWC (2006)
24. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the

union and difference operators. J. ACM 27(4) (1980)
25. m.c. schraefel, Smith, D.A., Owens, A., Russell, A., Harris, C., Wilson, M.L.: The

evolving mSpace platform: Leveraging the Semantic Web on the trail of the Memex.
In: Proc. of Hypertext (2005)

26. Sherkhonov, E., Marx, M.: Containment of acyclic conjunctive queries with negated
atoms or arithmetic comparisons. Information Processing Letters 120 (2017)

27. Soylu, A., Giese, M., Schlatte, R., Jiménez-Ruiz, E., Kharlamov, E., Özçep,
Ö.L., Neuenstadt, C., Brandt, S.: Querying industrial stream-temporal data: An
ontology-based visual approach. J. AISE 9(1) (2017)

28. Tunkelang, D.: Faceted Search. Synthesis Lectures on Information Concepts, Re-
trieval, and Services, Morgan & Claypool Publishers (2009)

29. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets:
A survey. J. Intell. Inf. Syst. (2017)

30. Wagner, A., Ladwig, G., Tran, T.: Browsing-oriented semantic faceted search. In:
Proc. of DEXA (2011)

31. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. of VLDB (1981)

www.davidhuynh.net

	Semantic Faceted Search with Aggregation and Recursion

