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Abstract. An increasing number of use cases require a timely extrac-
tion of non-trivial knowledge from semantically annotated data streams,
especially on the Web and for the Internet of Things (IoT). Often, this
extraction requires expressive reasoning, which is challenging to com-
pute on large streams. We propose Laser, a new reasoner that supports
a pragmatic, non-trivial fragment of the logic LARS which extends An-
swer Set Programming (ASP) for streams. At its core, Laser implements
a novel evaluation procedure which annotates formulae to avoid the re-
computation of duplicates at multiple time points. This procedure, com-
bined with a judicious implementation of the LARS operators, is respon-
sible for significantly better runtimes than the ones of other state-of-the-
art systems like C-SPARQL and CQELS, or an implementation of LARS
which runs on the ASP solver Clingo. This enables the application of ex-
pressive logic-based reasoning to large streams and opens the door to a
wider range of stream reasoning use cases.

1 Introduction

The Web and the emerging Internet of Things (IoT) are highly dynamic en-
vironments where streams of data are valuable sources of knowledge for many
use cases, like traffic monitoring, crowd control, security, or autonomous vehicle
control. In this context, reasoning can be applied to extract implicit knowledge
from the stream. For instance, reasoning can be applied to detect anomalies in
the flow of information, and provide clear explanations that can guide a prompt
understanding of the situation.

Problem. Reasoning on data streams should be done in a timely manner [I0/20].
This task is challenging for several reasons: First, expressive reasoning that sup-
ports features for a fine-grained control of temporal information may come with
an unfavourable computational complexity. This clashes with the requirement
of a reactive system that shall work in a highly dynamic environment. Second,
the continuous flow of incoming data calls for incremental evaluation techniques
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that go beyond repeated querying and re-computation. Third, there is no con-
sensus on the formal semantics for the processing of streams which hinders a
meaningful and fair comparison between stream reasoners.

Despite recent substantial progress in the development of stream reasoners,
to the best of our knowledge there is still no reasoning system that addresses
all three challenges. Some systems can handle large streams but do not support
expressive temporal reasoning features [BII8J3IT6]. Other approaches focus on the
formal semantics but do not provide implementations [13]. Finally, some systems
implemented only a particular rule set and cannot be easily generalized [T5126].

Contribution. We tackle the above challenges with the following contributions.
e We present Laser, a novel stream reasoning system based the recent rule-based
framework LARS [§], which extends Answer Set Programming (ASP) for stream
reasoning. Programs are sets of rules which are constructed on formulae that
contain window operators and temporal operators. Thereby, Laser has a fully
declarative semantics amenable for formal comparison.

e To address the trade-off between expressiveness and data throughput, we em-
ploy a tractable fragment of LARS that ensures uniqueness of models. Thus, in
addition to typical operators and window functions, Laser also supports opera-
tors such as O, which enforces the validity over intervals of time points, and @,
which is useful to state or retrieve specific time points at which atoms hold.

e We provide a novel evaluation technique which annotates formulae with two
time markers. When a grounding of a formula ¢ is derived, it is annotated
with an interval [, h] from a consideration time ¢ to a horizon time h, during
which ¢ is guaranteed to hold. By efficiently propagating and removing these
annotations, we obtain an incremental model update that may avoid many un-
necessary re-computations. Also, these annotations enable us to implement a
technique similar to the Semi-Naive Evaluation (SNE) of Datalog programs [I]
to reduce duplicate derivations.

e We present an empirical comparison of the performance of Laser against
the state-of-the-art engines, i.e., C-SPARQL [5] and CQELS [I8] using micro-
benchmarks and a more complex program. We also compare Laser with an open
source implementation of LARS which is based on the ASP solver Clingo to test
operators not supported by the other engines.

Our empirical results are encouraging as they show that Laser outperforms
the other systems, especially with large windows where our incremental approach
is beneficial. This allows the application of expressive logic-based reasoning to
large streams and to a wider range of use cases. To the best of our knowledge, no
comparable stream reasoning system that combines similar expressiveness with
efficient computation exists to date.

2 Theoretical Background: LARS

As formal foundation, we use the logic-based framework LARS [§]. We focus
on a pragmatic fragment called Plain LARS first mentioned in [7]. We assume



the reader is familiar with basic notions, in particular those of logic program-
ming. Throughout, we distinguish extensional atoms A% for input and inten-
sional atoms AT for derivations. By A = A€ U A%, we denote the set of atoms.
Basic arithmetic operations and comparisons are assumed to be given in form of
designated extensional predicates, but written with infix notation as usual. We
use upper case letters X,Y, Z to denote variables, lower case letters x,y,... are
for constants, and p, a, b, g for predicates for atoms.

Definition 1 (Stream). A stream S = (T,v) consists of a timeline T, which
is a closed interval in N, and an evaluation function v : N — 24. The elements
t €T are called time points.

Intuitively, a stream S associates with each time point a set of atoms. We call .S
a data stream, if it contains only extensional atoms. To cope with the amount of
data, one usually considers only recent atoms. Let S = (T, v) and S' = (T7,v')
be two streams s.t. S C S, ie., TV C T and v'(¢') C v(¢') for all ' € T'. Then S’
is called a window of S.

Definition 2 (Window function). Any (computable) function w that returns,
given a stream S = (T,v) and a time point t € N, a window S" of S, is called a
window function.

In this work, we focus on two prominent sliding windows that select recent
atoms based on time, respectively counting. A sliding time-based window selects
all atoms appearing in the last n time points.

Definition 3 (Sliding Time-based Window). Let S = (T,v) be a stream,
t €T =[t1,t2] and let n € N, n > 0. Then the sliding time-based window func-
tion 7, (for size n) is 7, (S, t) = (T",v|1/), where T' = [t',t] and t’ = max{t1,t —n}.

Similarly, a sliding tuple-based window selects the last n tuples. We define the
tuple size |S| of stream S = (T,v) as [{(a,t) |t € T,a € v(t)}].

Definition 4 (Sliding Tuple-based Window). Let S = (T,v) be a stream,
t €T =[t1,t2] and let n € N, n > 1. The sliding tuple-based window function
#n, (for size n) is

4/ ) — 1/ <
#n(57 t) _ Tt/ ¢ (S, t) Zf |Tt t (S, t)| n,
S else,
where t' = max({u € T | |7e—u(S,t)| = n} U {t1}) and S’ = ([t',t],v’) has tuple
size |S'| = n such that v'(u) = v(u) for allu € [t +1,t] and v'(¢') C v(t').

We refer to these windows simply by time windows, resp. tuple windows. Note
that for time windows, we allow size n = 0, which selects all atoms at the current
time point, while the tuple window must select at least one atom, hence n > 1.

Note that we associate with each time point a set of atoms. Thus, for the
tuple-based window, if [/, ¢] is the smallest timeline in which n atoms are found,
then in general one might have to delete arbitrary atoms at time point ¢’ such
that exactly n remain [t/ ¢].
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Fig. 1. A time (resp. tuple) window of size 3 at ¢t = 41

Example 1. Consider a data stream D = (T,vp) as shown in Fig. I} where
T = [35,42] and vp = {36 — {a(z1,y)},38 — {a(z2,v),b(y, 2)},40 — {a(zs3,v)}}.
The indicated time window of size 3 has timeline [38,41] and only contains the
last three atoms. Thus, the window is also the tuple window of size 3 at 40.
Notably, [38,41] is also the temporal extent of the tuple window of size 2, for
which there are two options, dropping either a(z2,y) or b(y, z) at time 38.

Although Def. [4] introduces nondeterminism, one may assume a deterministic
function based on the implementation at hand. Here, we assume data is arriving
in a strict order from which a natural deterministic tuple window follows.

Window operators B*. A window function w can be accessed in rules by
window operators. That is to say, an expression H*« has the effect that «
is evaluated on the “snapshot” of the data stream delivered by its associated
window function w. Within the selected snapshot, LARS allows to control the
temporal semantics with further modalities, as will be explained below.

2.1 Plain LARS Programs

Plain LARS programs as in [7] extend normal logic programs. We restrict here
to positive programs, i.e., without negation.

Syntax. We define the set AT of extended atoms by the grammar
a|Qia | BYQa | BYCa | BYOa,

where a € A and t € N is a time point. The expressions of form @;a are called
@-atoms. Furthermore, if x € {@Q;, O, 0}, xa is a quantified atom and BY xa a
window atom. We write H" instead of ™ for the window operator using a time
window function, and B#" uses the tuple window of size n.

A rule r is of the form a < fi,..., By, where H(r) = « is the head and
B(r) = {B1,...,Bn} is the body of r. The head « is of form a or @Q;a, where
a € A%, and each j3; is an extended atom. A (positive plain) program P is a set
of rules. We say an extended atom § occurs in a program P if 3 € {H(r)} U B(r)
for some rule r € P.

Example 2 (cont’d). The rule r = ¢(X,Y, Z) + B3<Ca(X,Y), B#30H(Y, Z)
expresses a query with a join over predicates a and b in the standard snapshot
semantics: If for some variable substitutions for X,Y, Z, a(X,Y") holds some time
during the last 3 time points and b(Y, Z) at some time point in the window of
the last 3 tuples, then ¢(X,Y, Z) is must be inferred.



We identify rules a < (1,..., 3, with implications 81 A -+ A B, — «, thus
obtaining by them and their subexpressions the set F of formulae.

Semantics. We first define the semantics of ground programs, i.e., programs
without variables, based on a structure M = (S, W,B), where S = (T,v) is
a stream, W a set of window functions, and B a static set of atoms called
background data. Throughout, we use W = {7,,, #n | n € N}. We define when
extended atoms S (and its subformulae) hold in a structure M at a given time
point ¢t € T as follows. Let a € A and ¢ be a quantified atom. Then,

M, tlka iff acw(t)orachB,

M,tlFCa  iff M,t I+ a for some t' € T,

M,tlF0Oa iff M,tIFaforallt’'eT,

M,tIFQpa if M,t'IFaandt €T,

M,tl-8Yp iff M’ tlF e, where M' = (w(S,t), W, B).

For a data stream D = (T, vp), any stream [ = (T, v) 2 D that coincides with D
on A€ is an interpretation stream for D, and a structure M = (I, W, B) an in-
terpretation for D. Satisfaction by M at ¢t € T is as follows: For a rule r of form
o+ Bi,..., Bn, we first define M, ¢ = B(r) iff M,t Ik §; for all ¢ € {1,...,n}.
Then, M,t = r iff M,tIFa or M,t = B(r); M is a model of program P (for D)
at time ¢, denoted M,t = P, if Mt |=r for all r € P; and M is minimal, if in
addition no model M' = (S’ W, B) # M of P exists s.t. S’ = (T,v’) and v’ C v.

Definition 5 (Answer Stream). An interpretation stream I is an answer
stream of program P for the data stream D C I at time t, if M = (I, W, B)
is a minimal model of the reduct PM* = {r € P | M,t = B(r)}.

Note that using tuple windows over intensional data seems neither useful nor
intuitive. For instance, program P = {a < B#1Ob} is inconsistent for a data
stream D at time t, where the last atom is b, occurring at time ¢t—1: by deriving a
for time ¢, suddenly a would be the last tuple.

Proposition 1. Let P be a positive plain LARS program that employs only
time windows, and tuple window operators only over extensional atoms. Then, P
always has a unique answer stream.

Non-ground programs. We obtain the semantics for non-ground programs in
a straightforward way by considering rules with variables as schematic descrip-
tions of respective ground instantiations. Substitutions o are defined as usual.

Example 3 (cont’d). Consider the ground program P obtained from rule r
of Ex. 2| by replacing variables with constants from the data stream D in Ex.

T1: q(xlvyvz) « EE|3<>a(9c1,y),Eﬂ#3<>b(y,z)
T2 q(xg,y,z) — EEBOG(.TQ’y),EB#BOb(y,Z)
r3: q(I37y,Z) «— Bﬂgoa(x&y)a E#BOb(y7Z)



At time ¢ = 41, the time window B3 and the tuple window B#3 are identical, as
indicated in Fig. 1] and contain atoms a(z2,y), b(y, z), and a(z3, y). Consider rule
r1. Window atom H2<a(wy,y) does no hold, since there is not a time point t
in the selected window such that a(zi,y) holds at t. However, the remaining
window atoms in P all holds, hence the body of rules ro and r3 hold. Thus, a
model of P (for D at time 41) must include ¢(z2,y, ) and ¢(z3,y, z). We obtain
the answer stream D U (T, {41 — {q(z2, vy, 2), q(x3,y,2)}}).

Definition 6 (Output). Let I = (T, v) be the answer stream of program P (for
a data stream D) at time t. Then, the output (of P for D at t) is defined by
v(t) N AL, i.e., the intensional atoms that hold at t.

Given a data stream D = (T, v), where T = [t1,t,], we obtain an output stream
S = (T, v) by the output at consecutive outputs, i.e., for each ¢’ € T, v(¢') is the
output for (77,v|7), where T" = [t1,t']. Thus, an output stream is the formal
description of the sequence of temporary valid derivations based on a sequence
of answer streams over a timeline. Our goal is to compute it efficiently.

Example 4 (cont’d). Continuing Example [3, the output of P for D at 41
is {q(z2,y, 2),q(x3,y,2)}. The output stream S = (T,v) is given by v = {t —
{q(‘r17y72)7 q(‘r27y72) | t= 38739}U{t = {q(x%ya Z),q($3,y7 Z)} | t= 40741742}

3 Incremental Evaluation of LARS Programs

In this section, we describe the efficient output stream computation of Laser. The
incremental procedure consists in continuously grounding and then annotating
formulae with two time points that indicate when and for how long formulae hold.
We thus address two important sources of inefficiency: grounding (including time
variables) and model computation.

Our work deliberately focuses on exploiting purely sliding windows. The
longer a (potential) step size [8], the less incremental reasoning can be applied.
In the extreme case of a tumbling window (i.e., where the window size equals
the step size) there is nothing that can be evaluated incrementally. However, as
long as the two subsequent windows share some data, the incremental algorithm
can be beneficial. We now give the intuition of our approach in an Example.

Example 5 (cont’d). Consider again the stream of Fig. [} and assume that
we are at t = 36, where a(z1,y) appears as first atom in the stream. In rule
r = q(X,Y,Z) + B3a(X,Y),B#30b(Y, Z), the atom matches the window
atom o = B30a(X,Y), and we obtain a substitution o = {X — z1,Y — y}
under which a(X,Y") holds at time 36. However, for «, we can use o for the next
3 time points due to the size of the window and operator ©. That is, we start
considering o at time 36 and we have a guarantee that the grounding ao (written
postfix) holds until time point 39, which we call the horizon time. We thus write
a0 (36,39) for the annotated ground formula, which states that m3<a(xy,y) holds
at all evaluation t € [36,39], i.e., at ¢ € [37,39], the neither the grounding nor
the truth of A3Ca(x1,y) needs to be re-derived.



Definition 7. Let aw € F be a formula, and c,h € N such that ¢ < h, and o
a substitution. Then, ao denotes the formula which replaces variables in a by
constants due to o; ao.p) is called an annotated formula, c is called the con-
sideration time and h the horizon time, and the interval [c, h] the annotation.

As illustrated in Ex. [5] the intended meaning of an annotated formula aoy p) is
that formula ao holds throughout the interval [c, h]. Annotations might overlap.

Example 6. Consider an atom a(y) streams at time points 5 and 8. Then,
for the formula o = B¢a(X), we get the substitution o = {X ~ y} and an
annotation a; = [5,14] at ¢ = 5, and then ay = [8,17] at ¢ = 8. That is to say,
ao = H2<a(y) holds at all time points [5, 14] due to annotation a; and at time
points [8,17] due to ag, and for each ¢ € [8,14] it suffices to retrieve one of these
annotations to conclude that ao holds at ¢.

We note that the tuple window can be processed dually by additionally introduc-
ing a consideration count cy and a horizon count hy, i.e., an annotated formula
Q0(c, n,) would indicate that ao holds when the number of atoms received so far
is between cyx and hy. In essence, the following mechanisms work analogously
for time- and tuple-based annotations. We thus limit our presentation to the
time-based case for the sake of simplification.

The consideration time allows us to implement a technique similar to semi-
naive evaluation (SNE) (see, e.g., VLog [25], RDFox [23], Datalog [I]) which
increases efficiency by preventing duplicate derivations. Conceptually, SNE is a
method which simply imposes that at least one formula that instantiates the
body should be derived during or after the previous execution of the rule, oth-
erwise the rule would surely derive a duplicate derivation. Based on the horizon
time, on the other hand, we can quickly determine which formulae should be
maintained in the working memory and which ones can be erased because they
no longer hold. We delete an annotated formula aoy. ), as soon as the current
time ¢ exceeds h. This way of incrementally adding new groundings and immedi-
ately removing outdated is more efficient than processing all possible groundings.
In particular, it is more efficient to maintain duplicates with temporal overlaps
as in Ex. [f] than looking up existing groundings and merging their intervals.

Algorithm 1. We report in Alg. [1] the main reasoning algorithm performed by
the system. Sets Iy,...,I, contain the annotated formulae at times tq,...,%,;
So, Iy are convenience sets necessary for the very first iteration. At the beginning
of each time point ¢; we first collect in line [3| all facts from the input stream.
Each atom a € v(t;) is annotated with [¢;,¢;], i.e., its validity will expire to hold
already at the next time point. In line 4} we expire previous conclusions based
on horizon times, i.e., among annotated intensional atoms a[. ;) only those are
retained where t; < h. Note that we do not delete atoms from the data stream.

In lines the algorithm performs a fixed-point computation as usual
where all rules are executed until nothing else can be derived (line . Lines
[[1]describe the physical execution of the rules and the materialization of the new
derivations. First, line [§] collects all annotated groundings for extended atoms



Algorithm 1: Evaluation Eval. INPUT: Data stream D=(T,vp), where
T = [t1,t,]); program P. OUTPUT: Output stream of P for D.

1 So, Ip < 0; (set of ground formulae)

2 for t; € (t1,...,tn) do

3 Si +— S;i—1 U {a[iwti] ‘ a &€ UD(ti) };

4 I; < S; U{a[u,h] | Q[e,n] € Li—i ANt < h};

5 while True do

6 I+ I;;

7 for a + B1,...,0n € P do

8 for j € {l,...,n} do I, < I, U grd(B;, I, t1,t;);

9 X < {Q0pmaz(er,....en) min(hy,..ohn)] | BOler hals -+ BTlen ) € T
10 ACly...,Cn Sti/\v?;l(Cj:ti)};
11 I+~ I, UXU {aa[ti,ti] | @Ua(o @] {U — ti})[t“h] S Ii};
12 end
13 if I, = I break;
14 end
15 v(t;) ={a € AT | ajen) € Ii A e < t; < h}; (can be streamed out if needed)
16 end
17 return S = (T, v)

from the body of the considered rule. We discuss the details of this underlying
function grd later (see Alg. . In line |§|we then consider any substitution for the
body that currently holds (¢q, ..., ¢, < t;). In order to produce a new derivation,
we additionally require at least one formula was not considered in previous time
points (V_, (¢; = ;).

The last condition implements a weak version of SNE, which we call sSNE.
In fact, it only avoids duplicates between time points and not within the same
time point. In order to capture also this last source of duplicates, we would need
to add an additional internal counter to track multiple executions of the same
rule. We decided not to implement this to limit the space overhead.

Matching substitutions in line[J]then are assigned to the head, where variables
which are not used can be dropped as usual. Notice that consideration/horizon
time for the ground head atom is given by intersection of all consideration/hori-
zon times of the body atoms, i.e., the guarantee for the derivations is in the
longest interval for which the body is guaranteed to hold. If the head is of form
@pa and holds now, i.e., at t;, we also add an entry for « to I; (line . After
the fixed-point computation has terminated (line , we can either stream the
output at t;, i.e., v'(¢t;) (line , or store it for a later output of the answer
stream S after processing the entire timeline (line [17)).

Algorithm The goal of function grd is to annotate and return all ground
formulae which hold now or in the future. Depending on the input formula «,
the algorithm might perform some recursive calls to retrieve annotated ground
subformulae. In particular, this function determines the interval [c, h] from a
consideration time ¢ to a horizon time h during which a grounding holds. It is



Algorithm 2: Function grd. INPUT: Formula «, database I, beginning
time point ¢, end time point t.. OUTPUT: Annotated groundings for a.

1 switch a do

2 case p(x): return {ao. ) | aon € I}

3 case B"B: S « grd(B,I,max(0,t. —n),te);

4 return S U {aoc min(ctn,h)] | BOle,n] € ST

5 case OfB: S < grd(B,1,ty,tc); return S U {ao( o0) | BOlc,n) € S}
6 case O8: S« grd(B,1I,ty, te);

7 return S U {aa[te,te] | 50[61,111]7 ey 50’[%7;1”] €SN

8 ¢i < cit1,hi 2 cip1 VI <i<nA

9 Clgtb/\teghn}}

10 case QuB: S« grd(B,I,tp,te);

11 return S U {ao ) | @oe,n € T}U
12 {Q0(e00) | BOen) € SAuE [e,h] Au € [ty,te] No' = g U{U = u}}
13 end

precisely this annotation which allows us to perform an incremental computation
and avoid the re-calculation of the entire inference at any time point.

Function grd works by a case distinction on the form of the input formula
«, similarly as the entailment relation of the LARS semantics (Section . We
explain the first three cases directly based on an example.

Example 7 (cont’d). Asin Ex.@ assume o = B?Ca(X) and input atom a(y)
at time 5. Towards annotated groundings of «, we first obtain the substitution
o = {X +— y} which can be guaranteed only for time point ¢ = 5 for atom
a(X), ie., a(X)ops 5 = a(y)s,5)- Based on this, we eventually want to compute
aos,14). This is done in two steps. First, the subformula § = ¢a(X) is agnostic
about the timeline, and its grounding So gets an annotation [5, o). The intuition
behind setting the horizon time to oo at this point is that <8 will always hold as
soon 3 holds once. The restriction to a specific timeline is then carried out when
B075,00] is handled in case Y3, which limits the horizon to min(c+ n,00) = 14;
any horizon time h received for 8 that is smaller than 14 would remain.

Thus, the conceptual approach of Alg. [2]is to obtain the intervals when a subfor-
mula holds and adjust the temporal guarantee either by extending or restricting
the annotation. Since the operator O evaluates intervals, we have to include the
boundaries of the window. That is, if a formula H"Op(x) must be grounded, we
call grd in Alg. [I|for the entire timeline [t1,;], where ¢; is the current evaluation
time. Thus, we get t, = t1,t. = t; initially. However, in order for Op(x) to hold
under a substitution o within the window of the last n time points, p(x)c must
hold at every time point [t — n,t]. Thus, the recursive call for H" S limits the
timeline to [te — n,te]. Then, the case Of seeks to find a sequence of ordered,
overlapping annotations [c1, k1], ..., [cn, hy] that subsumes the considered inter-
val [tp,te]. In this case, OB holds at t., but it cannot be guaranteed to hold
longer. Thus, when aoy;,_ ;] is returned to the case for B", the horizon time will
not be extended.
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Example 8 (cont’d). Consider o/ = H?0a(X). Assume that in the timeline
[0,7] at time points t = 5,6,7, we received the input a(y), hence B2*Oa(y)
has to hold at ¢ = 7. When we call (in Alg. grd(a/,1,0,7), where I =
{a(¥) 5,5, a(y)6,6): a(y) 7.7}, the case for B2 will call grd(Oa(X),1,5,7). The
sequence of groundings as listed in I subsumes [5,7], i.e., the scope given by
ty = 5 and t, = 7, and thus the case for O returns Oa(y)(7,7). The annotation
remains for o, i.e., grd(a’,1,0,7) = {H?0a(y)r,7}- Note when at time 8 atom
a(y) does not hold, neither does H?0a(y). Hence, in contrast to <, the horizon
time is not extended for O.

With respect to the temporal aspect, the case for @ works similarly as the one
for ©, since both operators amount to existential quantification within the time-
line. In addition <, the @-operator also includes in the time point substitution
U + u where the subformula 3 holds (line [I2). In Line we additionally take
from I the explicit derivations for @-atoms derived so far.

Proposition 2. For every data stream D and program P, Alg. 1| terminates.

Proof. Algorithm [1| contains four loops. The for-loop starting in line 2 ranges
over finitely many time points. To see that the inner while-loop (starting at
line 5) always terminates, we argue that I; = I eventually holds: Initially, the
identity is given in line 6. Next, a finite (and fixed) number of rules is iterated
in line 7. For the considered rule head, new groundings X will be derived based
on I; and then added to I;. For every iteration in the while-loop, each rule is
considered only once, and there each body is considered only once in the for-loop
in line 8. It remains to argue that I; cannot grow indefinitely, i.e., that in some
iteration, no new groundings for body elements are derivable anymore (and thus
no new rule firings apply). Leaving aside annotations, the case is as usual, i.e.,
the condition follows from the fact that the set of input atoms is finite, and thus
also the set of possible substitutions; assuming usual safety restriction that there
is no recursion through arithmetic expressions or that the set of possible terms
(including numbers) is finite. (A practical assumption is, e.g., to limit numbers to
those in the timeline.) Thus, possible time references are also bounded, and thus
there is a finite number of annotations that can be assigned to any substitution.
Consequently, at some point, no further combination of a substitution o and
annotation [c, h] can be assigned to a formula, hence the condition in I; = T
holds and the while-loop terminates. ]

Theorem 1. Let P be a positive plain LARS program, D be a data stream with
timeline T = [t1,t,]. Then, S is the output stream of P for D iff S = Eval(D, P).

Proof (Sketch). To show that Ewval(D, P) corresponds to the output stream of
P for D, we first observe that Fval always terminates (Proposition . Towards
the correctness, we recall that the output stream (for timeline T' = [t1,t,]) is
defined as the sequence of consecutive outputs for time points t1,...,t,. This is
accounted for by the for-loop from lines 2-16, where line 15 assembles the current
output. We obtain the output stream as follows.
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In the first iteration we have t; = t1. In line 3, S; = Sy is initialized with
the atoms appearing in the data stream at time ¢; (Sp is empty); S; is copied to
I;, since all atoms have the annotation [t1,¢1]. The while-loop starting in line 5
then accounts for the fixed point computation for rule derivations, i.e., we will
add to I; atoms and @-atoms (more precisely, substitutions with annotations
that reflect ground atoms and ground @-atoms) corresponding to heads of rules
which hold. Since we consider positive programs, the order in which rules are
considered is arbitrary, hence we start a for-loop in line 7 for rule traversal.

In line 8, we collect substitutions for body formulae (and their subformu-
lae) due to the current database I (data and derivations so far) by means of
grd (Algorithm [2)) which we discuss below. By definition, an element Soy. ) €
grd(B,I,t1,t;) means that formula S (which may be ground or non-ground),
grounded by substitution o, is guaranteed to hold from time ¢ to time h due to
the current database I, given a timeline from t; to ¢;.

Based on the derived evidence for body elements, we check in line 9 whether

the considered rule o < fB1,..., B, fires, i.e., whether there is a substitution o for
Bi,..., B, with annotations [cy, 1], ..., [cn, hn], Tespectively, that can already
be considered (c1,...,¢, < t;). In this case, the head a can be derived; more

precisely, the substitution carries over for the rule head with an annotation
obtained as intersection of the body annotations, i.e., the latest consideration
time and the earliest horizon time. This is largest interval for which the body is
guaranteed to hold. To additional condition \/?Zl(cj = t;) ensures that at least
one of the consideration times c1,...,c, matches the current time point, i.e.,
this is only an optimization step to avoid reconsideration of existing derivations
at later time points. Accordingly, annotated formulae are stored in X.

Next, line 11, these collected inferences are added to I; along with derivations
for @-atoms which start to hold now. Note that the database entry @, ay, p
means that from time point ¢; to time point h, « holds for time point t;, i.e.,
the mapping ¢; — « is guaranteed to hold within [¢;, h]. Formally, M,t' |- Q;,«
(in the according structure M), where t' € [t;, h]. However, at any time point
t' € [t; + 1, h] we do not obtain a guarantee for « to hold at ¢’ (from this entry);
ie, M,t'I-a for t’ € [t; + 1,h] is not implied. We observe that @, ay, ) only
implies M, t; IF «; thus «o is annotated with [t;,¢;]. This concludes the while
loop and we end up with annotated formulae aoy. ) in I; for currently derivable
information based on the fixed point computation. Finally, we get by all currently
derivable atoms the output v(t;) at ¢;, i.e., annotated atoms of form af.p) in I,
where a is intensional and the current time ¢; is within [c, h].

For the remaining iterations of the outer for-loop (t; = ta,...,t,), observe
that Line 3 simply expands the history of the input stream, and line 4 keeps
only those derivations which have not yet expired, i.e., conclusions from previous
iterations that do not need to be recomputed.

It remains to show that grd computes the correct substitutions and formulae
due to the LARS semantics. Let a be a formula, I be the current database and
the timeline be [tp,t.] (which is always [t1,%;]). We want to obtain annotated
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substitutions for a and its subformulae that reflect when an according ground
formula is guaranteed to hold. We do so by a case distinction:

For the case of a predicate p(x), we simply return the elements of the database
obtained so far. In case of a window atom H" 3, we first retrieve recursively the
groundings in a timeline narrowed down as stated by the window, i.e., for the
interval [max(0,t, — n),t.]. The max serves to prevent the extreme case where
the window would reach back beyond the end of the stream. Substitutions o
returned for 3 are applicable for the window formula, which narrows down the
temporal scope of the annotation to [¢, min(c+n, h)], i.e., the consideration time
remains and the horizon time is either carried over (if it is natural number) or
determined at this point due to the window length (if infinite; see cases below).

For case <, we likewise determine the groundings for 8 in the entire consid-
ered (global) interval [t;,t.]. As such, for any grounding oy ) retrievable for 3,
a = <f would hold forever, i.e., never expire. Thus, we assign [c, oo], and only
the window operator as discussed above will then limit the horizon time due to
its length. (Note that a formula of form < occurs only in the scope of a window
operator.)

The case Of is dual, i.e., a grounding So has to hold at all time points in a
considered interval, and no guarantee is obtained for the next time point. This is
reflected in lines 7-9 in Algorithm [2} We look for a substitution o for 8 with con-
secutive (¢; < ¢;+1) and overlapping (h; > ¢;+1) annotations [c1, h1], ..., [cn, hn)
such that the considered interval [tp, t.] is included in their union. Then, we in-
fer that = O holds now (t. = t; of Algorithm , but no further guarantee is
available, hence the annotation [te,t.].

For case @y we again first retrieve groundings Boy. ) for subformula 3.
Then, for all time points u € [e, k], due to the definition of the @-operator,
@, holds for every w is contained in the considered timeline [ty,?.]. That is,
we get for any such u a new substitution ¢’ by adding to ¢ the binding U +— u.
Note that @ is, like <, an existential quantification over the timeline, which
additionally stores the time point. Thus, similarly as in the case for <3, Qy S0’
gets the annotation [¢, 0o] and the outer window operator will limit the scope of
the horizon based on its length.

This concludes the proof sketch. O

Tuple-based windows. As noted earlier, our annotation-based approach based
on consideration time ¢ and horizon time h works analogously from the tuple-
based window by additionally working with a consideration count cy and a
horizon count hy for every ground formula. Each formula can then hold and
expire in only one of these dimensions, or both of them at the same time.

Example 9. Consider again rule r from Ex. [5} When b(y, z) streams in at time
38 as third atom, we obtain an annotated ground formula B#3Ob(y, 2)[34,54] -
That is, when the fourth and fifth atoms stream in, regardless at which time
points, B#3Ob(y, 2) is still guaranteed to hold.

Adding negation. Notably, our approach can be extended for handling nega-
tion as well. In plain LARS as defined in [7], extended atoms 3 from rule bodies
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may occur under negation. We can, however, instead assume negation to oc-
cur directly in front of atoms: Due to the FLP-semantics [I2] of LARS [§],
where “not” can be identified with —, we get the following equivalences for both
w € {Tn, #n}: - BY Ca(x) = BYO-a(x) and - B Oa(x) = BYO-a(x). The
case is more subtle for @, since @;—a(x) implies that a(x) is false. However, due
to the definition of @, =@;a(x) can also hold if ¢ is not contained in the consid-
ered timeline. Thus, the equivalence — HY Q;a(x) = H¥Q;—a(x) (necessarily)
holds only if the timeline contains t. This assumption is safe when we assume
that the timeline always covers all considered time points.

Our approach extends naturally to a variant of plain LARS where negation
appears only in front of atoms: In addition to the base case p(x) in Line [2] in
Alg. 2| we must add a case for a negative literal £ = —p(x). Using standard
conventions, we then have to consider all possible substitutions o for variables
in x that occur positively in the same rule 7, such that p(x)o does not hold.

We obtain a fragment that is significantly more expressive, but results in
having multiple answer streams in general: note that plain LARS essentially
subsumes normal logic programs, and the program a < notb; b < nota has
two answer sets {a} and {b}. Analogously, we get multiple answer streams by
allowing such loops through negation. To retain both unique model semantics
and tractability, we propose restricting to stratified negation, i.e., allowing nega-
tion but no loops through negation. Then, we can add to Alg. [1] an additional
for-loop around lines to compute the answer stream stratum by stratum
bottom up as usual. In fact, our implementation makes use of this extension.

4 Evaluation

We evaluate the performance of Lase7E| on two dimensions: First, we mea-
sure the impact of our incremental procedures on several operators by micro-
benchmarking the system on special single-rule programs. Second, we compare
the performance against the state of the art on more realistic programs.

Streams. Unfortunately, we could not use some well-known stream reason-
ing benchmarks (e.g., SRBench [27], CSRBench [I1] LSBench [19], and City-
Bench [2]) because (i) we need to manually change the window sizes and the
speed of stream in order to benchmark our incremental approach, but this is
not often supported in these benchmarks; (ii) in order to be effective, a micro-
benchmark needs to introduce as little overhead as possible; (iii) we needed to
make sure that all reasoners return the same results for a fair comparison, and
this was easier with a custom data generator that we wrote for this purpose.

State-of-the-art. In line with current literature, we selected C-SPARQL [5],
and CQELS [18] as our main competitors. For LARS operators that are not
supported by these engines, we compare Laser with Ticker [9], another recent
engine for (non-stratified) plain LARS programsﬁ Ticker comes with two reason-
ing modes, a fully incremental one, and another one that uses an ASP encoding

3 https://github.com/karmaresearch/Laser
4 https://github.com/hbeck/ticker
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Fig. 2. (a) Avg runtime of ¢ (b) and of O on multiple window sizes and stream rates.

which is then evaluated by the ASP solver Clingo [14]. The incremental reason-
ing mode was not available at the time of this evaluation. Thus, our evaluation
against Ticker concerns only the reasoning mode which is based on Clingo.

Data generation. Unfortunately, each engine has its own routines for reading
the input. As a result, we were compelled to develop custom data generators
to guarantee fairness. A key problem is that CQELS processes every new data
item immediately after the arrival in contrast to Laser and C-SPARQL that
process them in batches. Hence, to control the number of triples that stream
into CQELS, and make sure that all engines receive equal number of triples at
every time point, we configured each data generator to issue a triple at calculated
intervals. For this same reason, we report the evaluation results as the average
runtime per input triple and not runtime per time point.

Experimental platform. The experiments were performed on a machine with
32-core Intel(R) Xeon(R) 2.60GHz and 256G of memory. We used Java 1.8 for
C-SPARQL and CQELS and PyPy 5.8 for Laser. We set the initial Java heap
size to 20G and increase the maximum heap size to 80G to minimize potential
negative effects of JVM garbage collection. For Ticker we used Clingo 5.1.0.

Window-Diamond. The standard snapshot semantics employed in C-SPARQL
and CQELS selects recent data and then abstracts away the timestamps. In
LARS, this amounts to using < to existentially quantify within a window. Here,
we evaluate how efficiently each engine can evaluate this case.

We use the rule ¢(A4, B) + B"Op(A, B), where a predicate of form r(A, B)
corresponds to a triple (A, r, B). The window size and the stream rate (i.e. the
number of atoms streaming in the system at every time point) are the experiment
parameters. We create a number of artificial streams which produces a series of
unique atoms with predicate p at different rates; we vary window sizes from 1sec
to 80secs and the stream rate from 200 to 800 triples per second (t/s).

Fig. a) reports the average runtime per input triple for each engine. The
figure shows that Laser is faster than the other engines. Furthermore, we observe
that average runtime of Laser grows significantly slower with the window size as
well as with the stream rate. Here, incremental reasoning clearly is beneficial.
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Fig. 3. (a) Avg. runtimes when the rule requires a data join (b) Avg. runtimes with
multiple rules.

Window-Box. The Box operator is not available in C-SPARQL and CQELS.
The semantics of O (as well as @) may be encoded using explicit timestamps
in additional triples but the languages themselves do not directly support it.
Therefore, we evaluate the performance of Laser against Ticker. Similar to the
experiments with O, we employ the rule ¢(A, B) < BE"Op(A, B). The experi-
mental settings are similar to the previous experiment and results are reported in
Fig. (b), showing that Laser was orders of magnitude faster than Ticker. Notice
that with O we cannot extend the horizon time, therefore the incremental eval-
uation cannot be exploited. Thus, the performance gain stems from maintaining
existing substitutions instead of full recomputations.

Data joins. We now focus on a rule which requires a data join. The computation
evaluates the rule (A, C) < B"Op(A, B),H*Op(B, C) with different window
sizes/stream rates. This program adds the crucial operation of performing a join.
From the results reported in Fig. a), we observe the following:

(i) Laser is significantly faster that CQELS and C-SPARQL with all configu-
rations of window and stream sizes. (ii) The difference becomes bigger for larger
window sizes for which the benefit of incremental evaluation increases.

We profiled the execution of Laser with the larger windows and stream sizes
and discovered that only about half of the time is spent on the join while half
is needed to return the results. We also performed an experiment where we
deactivated sSNE and did a normal join instead. We observed that sSNE is
slightly slower than the normal join with small window sizes, but as the size of
windows and stream rate increase, sSSNE is significantly faster. In the best case,
the activation of SSNE produced a runtime which was 10 times lower.

Evaluating multiple rules. We now evaluate the performance of Laser in a
situation where the program contains multiple rules. In C-SPARQL or CQELS,
this translates to a scenario where there are multiple standing queries. To do
so, we run a series of experiments where we changed the number of rules and
the window sizes (stream rate was constant at 200 t/s). To that end, we utilize
the same rule that we used in the data join benchmark with the same data
generator. Fig. [3[(b) presents the average runtime (per triple). We see that also
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r1: Qp steam(V) + B"Qrtemp(V), V > 100 r¢ : mormal + B"OisLiquid

ro 1 Qp liguid(V) « B"Qrtemp(V), V> 1, V <100 7r7: freeze + notalarm,notnormal

r3 : QrisSteam « H" Qr steam(V) rs : veryHot(T) + B" Qr steam(V),V > 150
r4 : QrisLiquid < B" Qr liguid(V) rg : veryCold(T) < B" Qrliqguid(V),V =1

rs ¢ alarm < B"0isSteam

Fig. 4. Program for a cooling system monitoring.

H Ticker W Laser

pTime (ms)

Fig. 5. Average execution time per atom of Lars program in Fig [

in this case Laser outperforms both C-SPARQL and CQELS, except in the very
last case where all systems did not finish on time.

Cooling use case. So far we have evaluated the performance using analytic
benchmarks. Now, we measure the performance of Laser with a program that
deals with a cooling system. The program of Fig. [d] determines based on a water
temperature stream whether the system is working under normal conditions, or
it is too hot and produces steam, or is too cold and the water is freezing.

The system also reports temperature readings that are either too high or too
low. Note that both @ (especially in the rule head) and O go beyond standard
stream reasoning features. It is not possible to directly translate this program
into C-SPARQL or CQELS queries, so we can only compare the performance of
Laser with Ticker. In this case, the data generator produces a sequence of random
temperature readings. Like before, we gradually increased the window size and
stream rate. The results, shown in Fig. |5 indicate that Laser is considerably
faster than Ticker and can maintain a good response time (< 100usec) even
when the readings come with high frequency (800 t/s).

5 Related Work and Conclusion

Related Work. The vision of stream reasoning was proposed by Della Valle
et al. in [I0]. Since then, numerous publications have studied different aspects of
stream reasoning such as: extending SPARQL for stream querying [4/18], build-
ing stream reasoners [AI82T], scalable stream reasoning [I5], and ASP models
for stream reasoning [I3]. However, due to lack of standardized formalism for
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RDF stream processing, each of these engines provide a different set of features,
and results are hard to compare. A survey of these techniques is available at [20].
Our work differs in the sense that it is based on LARS [g], one of the first formal
semantics for stream reasoning with window operators.

An area closely related to stream processing is incremental reasoning, which
has been the subject of a large volume of research [22026]. In this context, [0]
describes a technique to add expiration time to RDF triples to drop them when
the are no longer valid. Nonetheless, this approach does not support expressive
operations such as O and @ that our engine supports. In a similar way, [17]
proposes another incremental algorithm for processing streams which again boils
down to efficiently identifying expired information. We showed that our approach
outperforms their work. Next, [7] proposes a technique to incrementally update
an answer stream of a so-called s-stratified plain LARS program by extending
truth maintenance techniques. While [7] focuses on multiple models, we aim at
highly efficient reasoning for use cases that guarantee single models. Similarly,
the incremental reasoning mode of Ticker [9] focuses on model maintenance but
not on high performance. Stream reasoning based on ASP was also explored in
a probabilistic context [24] which however did not employ windows.

Conclusion. We presented Laser, a new stream reasoner that is built on the
rule-based framework LARS. Laser distinguishes itself by supporting expressive
reasoning without giving up efficient computation. Our implementation, freely
available, has competitive performance with the current state-of-the-art. This
indicates that expressive reasoning is possible also on highly dynamic streams of
data. Future work can be done on several fronts: Practically, our techniques ex-
tend naturally to further windows operators such as tumbling windows or tuple-
based windows with pre-filtering. From a theoretical perspective, the question
arises which variations or more involved syntactic fragments of LARS may be
considered that are compatible with the presented annotation-based incremen-
tal evaluation. Moreover, our support of stratified negation is prototypical and
can be made more efficient. More generally, investigations on the system-related
research question of reducing the runtimes even further are important to tackle
the increasing number and volumes of streams that are emerging from the Web.
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