Skip to main content

A Real-Time and Energy-Efficient Embedded System for Intelligent ADAS with RNN-Based Deep Risk Prediction using Stereo Camera

  • Conference paper
  • First Online:
  • 4362 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10528))

Abstract

The advanced driver assistance system (ADAS) has been actively researched to enable adaptive cruise control and collision avoidance, however, conventional ADAS is not capable of more advanced functions due to the absence of intelligent decision making algorithms such as behavior analysis. Moreover, most algorithms in automotive applications are accelerated by GPUs where its power consumption exceeds the power requirement for practical usage. In this paper, we present a deep risk prediction algorithm, which predicts risky objects prior to collision by behavior prediction. Also, a real-time embedded system with high energy efficiency is proposed to provide practical application of our algorithm to the intelligent ADAS, consuming only ~1 W in average. For validation, we build the risky urban scene stereo (RUSS) database including 50 stereo video sequences captured under various risky road situations. The system is tested with various databases including the RUSS, and it can maximally achieve 30 frames/s throughput with 720p stereo images with 98.1% of risk prediction accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mao, X., et al.: Hierarchical CNN for traffic sign recognition. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 130–135, June 2016

    Google Scholar 

  2. Weber, M., Wolf, P., Zollner, J.M.: DeepTLR: a single deep convolutional network for detection and classification of traffic lights. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 342–348, June 2016

    Google Scholar 

  3. Yu, L., et al.: A monocular vision based pedestrian detection system for intelligent vehicles. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 524–259, June 2008

    Google Scholar 

  4. Fan, Q., Brown, L., Smith, J.: A closer look at faster R-CNN for vehicle detection. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 124–129, June 2016

    Google Scholar 

  5. Lange, S., et al.: Online vehicle detection using deep neural networks and lidar based preselected image patches. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 954–959, June 2016

    Google Scholar 

  6. Liebner, M., Klanner, F., Baumann, M., Ruhhammer, C., Stiller, C.: Velocity-based driver intent inference at urban intersections in the presence of preceding vehicles. IEEE Intell. Transp. Syst. Mag. 5(2), 10–21 (2013)

    Article  Google Scholar 

  7. Kasper, D., et al.: Object-oriented Bayesian networks for detection of lane change maneuvers. IEEE Intell. Transp. Syst. Mag. 4(3), 19–31 (2012)

    Article  MathSciNet  Google Scholar 

  8. Barth, A., Franke, U.: Tracking oncoming and turning vehicles at intersections. In Proceedings of IEEE International Conference on Intelligent Transportation Systems, pp. 861–868, September 2010

    Google Scholar 

  9. Hermes, C., Wohler, C., Schenk, K., Kummert, F.: Long-term vehicle motion prediction. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 652–657, July 2009

    Google Scholar 

  10. Forster, F.: Heterogeneous processors for advanced driver assistance systems. Atz Elektronik Worldwide 9(1), 14–18 (2014)

    Google Scholar 

  11. Stein, F.: The challenge of putting vision algorithms into a car. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 89–94, June 2012

    Google Scholar 

  12. Gehrig, S.K., Eberli, F., Meyer, T.: A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04667-4_14

    Chapter  Google Scholar 

  13. Ernst, I., Hirschmüller, H.: Mutual Information Based Semi-Global Stereo Matching on the GPU. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 228–239. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89639-5_22

    Chapter  Google Scholar 

  14. Gehrig, S.K., Rabe, C.: Real-time semiglobal matching on the CPU. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 85–92, June 2010

    Google Scholar 

  15. Michael, M., et al.: Real-time stereo vision: optimizing semiglobal matching. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 1197–1202, June 2013

    Google Scholar 

  16. Tanabe, J., et al.: A 1.9TOPS and 564GOPS/W heterogeneous multi-core SoC with color-based object classification accelerator for image-recognition applications. In: IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 328–329, February 2015

    Google Scholar 

  17. Tanabe, Y., et al.: A 464GOPS 620GOPS/W heterogeneous multicore SoC for image-recognition applications. In: IEEE ISSCC Digest, pp. 222–223, February 2012

    Google Scholar 

  18. Park, J., et al.: A 646GOPS/W multi-classifier many-core processor with cortex-like architecture for super-resolution recognition. In: IEEE ISSCC Digest, pp. 168–169, February 2013

    Google Scholar 

  19. Juang, C.-F., Lin, C.-T.: An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 6(1), 12–32 (1998)

    Article  Google Scholar 

  20. Giles, C., et al.: Noisy time series prediction using recurrent neural network and grammatical inference. J. Mach. Learn. 44(1), 161–183 (2001)

    Article  MATH  Google Scholar 

  21. Williams, R.J., Peng, J.: An efficient gradient-based algorithm for on line training of recurrent network trajectories. Neural Comput. 2, 490–501 (1990)

    Article  Google Scholar 

  22. Lee, K.J., et al.: A 502GOPS and 0.984mW dual-mode ADAS SoC with RNN-FIS engine for intention prediction in automotive black-box system. In: IEEE ISSCC Digest, pp. 256–257, February 2016

    Google Scholar 

  23. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suit. In: Proceedings of IEEE CVPR, pp. 3354–3361, June 2012

    Google Scholar 

  24. Keller, C., Enzweiler, M., Gavrila, D.M.: A new benchmark for stereo-based pedestrian detection. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 691–696, June 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyuho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lee, K., Choe, G., Bong, K., Kim, C., Kweon, I.S., Yoo, HJ. (2017). A Real-Time and Energy-Efficient Embedded System for Intelligent ADAS with RNN-Based Deep Risk Prediction using Stereo Camera. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68345-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68344-7

  • Online ISBN: 978-3-319-68345-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics