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Abstract

Bike sharing systems have rapidly developed around the world, and they are served

as a promising strategy to improve urban traffic congestion and to decrease pollut-

ing gas emissions. So far performance analysis of bike sharing systems always exists

many difficulties and challenges under some more general factors. In this paper, a

more general large-scale bike sharing system is discussed by means of heavy traffic

approximation of multiclass closed queueing networks with non-exponential factors.

Based on this, the fluid scaled equations and the diffusion scaled equations are es-

tablished by means of the numbers of bikes both at the stations and on the roads,

respectively. Furthermore, the scaling processes for the numbers of bikes both at the

stations and on the roads are proved to converge in distribution to a semimartingale

reflecting Brownian motion (SRBM) in a N2-dimensional box, and also the fluid and

diffusion limit theorems are obtained. Furthermore, performance analysis of the bike

sharing system is provided. Thus the results and methodology of this paper provide

new highlight in the study of more general large-scale bike sharing systems.

Keywords: Bike sharing systems, fluid limit, diffusion limit, semimartingale re-

flecting Brownian motion.

1 Introduction

Bike sharing systems have become an important way of urban transportation due to its

accessibility and affordability, and they are widely deployed in more than 600 major cities
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around the world. Bike sharing systems are regarded as promising solutions to reduce

congestion of traffic and parking, automobile exhaust pollution, transportation noise, and

so on. For some survey and development of bike sharing systems, readers may refer to,

DeMaio [10], Shaheen et al. [33], Shu et al. [35], Labadi et al. [23], and Meddin and

DeMaio [28].

Two major operational issues of bike sharing systems are to care for (i) the non-empty:

sufficient bikes parked at each station in order to be able to rent a bike at any time; and

(ii) the non-full: suitable bike parking capacity designed for each station in order to be

able to return a bike in real time. Thus the empty or full stations are called problematic

stations. Up till now, efficient measures are developed in the study of problematic stations,

including time-nonhomogeneous demand forecasting, average bike inventory level, timely

bike repositioning, and probability analysis of problematic stations.

So far queueing models and Markov processes have been applied to characterizing

important steady-state performance of the bike sharing systems. Important prior works

on the bike sharing models include the M/M/1/C queue by Leurent [22] and Schuijbroek

et al. [34]; the time-inhomogeneous M(t)/M(t)/1/C model by Raviv et al. [31] and

Raviv and Kolka [30]; the queueing networks by Kochel et al. [20], Savin et al. [32],

Adelman [1], George and Xia [14, 15] and Li et al. [26]; the fluid models combining

with Markov decision processes by Waserhole and Jost [36, 37]; the mean-field theory by

Fricker et al. [11], Fricker and Gast [12] and Fricker and Tibi [13]; the time-inhomogeneous

M(t)/M(t)/1/K and MAP(t)/MAP(t)/1/K + 2L + 1 queues combining with mean-field

theory by Li et al. [24] and Li and Fan [25].

An important and realistic feature of bike sharing systems is the time-varying arrivals of

bike users and their random travel times. In general, analysis of bike sharing systems with

non-Poisson user arrivals and general travel times are always very difficult and challenging

because more complicated multiclass closed queueing networks are established to deal

with bike sharing systems. See Li et al. [26] for more interpretations. For this, fluid

and diffusion approximations may be an effective and better method in the study of more

general bike sharing systems. This motivates us in this paper to develop fluid and diffusion

limits for more general large-scale bike sharing systems.

Fluid and diffusion approximations are usually applied to analysis of more general

large-scale complicated queueing networks, which possibly originate in some practical sys-

tems including communication networks, manufacturing systems, transportation networks
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and so forth. See excellent monographs by, for example, Harrison [16], Chen and Yao [4],

Whitt [38]. For the bike sharing system, further useful information is introduced as fol-

lows. (a) For heavy traffic approximation of closed queueing networks, readers may refer

to, such as, Harrison et al. [19] for a closed queueing network with homogeneous customer

population and infinite buffer. Chen and Mandelbaum [3] for a closed Jackson network,

Harrison and Williams [18] for a multiclass closed network with two single-server stations

and a fixed customer population. Kumar [21] for a two-server closed networks in heavy

traffic. (b) For heavy traffic approximation of queueing networks with finite buffers, im-

portant examples include, Dai and Dai [6] obtained the SRBM of queue-length process

relying on a uniform oscillation result for solutions to a family of Skorohod problems. Dai

[8] modeled the queueing networks with finite buffers under a communication blocking

scheme, showed that the properly normalized queue length process converges weakly to a

reflected Brownian motion in a rectangular box, and presented a general implementation

via finite element method to compute the stationary distribution of SRBM. Furthermore,

Dai [9] analyzed a multiclass queueing networks with finite buffers and a feedforward rout-

ing structure under a blocking scheme, and showed a pseudo-heavy-traffic limit theorem

which stated that the limit process of queue length is a reflecting Brownian motion. (c)

There are some available results on heavy traffic approximation of multiclass queueing

networks, readers may refer to, for instance, Harrison and Nguyen [17], Dai [5], Bramson

[2], Meyn [29] and Majewski [27].

Contributions of this paper: The main contributions of this paper are threefold.

The first contribution is to propose a more general large-scale bike sharing system having

renewal arrival processes of bike users and general travel times, and to establish a multiclass

closed queueing network from the practical factors of the bike-sharing system where bikes

are abstracted as virtual customers, while both stations and roads are regarded as virtual

nodes or servers. Note that the virtual customers (i.e. bikes) at stations are of single class;

while the virtual customers (i.e. bikes) on roads are of two different classes due to two

classes of different bike travel or return times. The second contribution is to set up the

queue-length processes of the multiclass closed queueing network through observing both

some bikes parked at stations and the other bikes ridded on roads. Such analysis gives the

fluid scaled equations and the diffusion scaled equations by means of the numbers of bikes

both at the stations and on the roads. The third contribution is to prove that the scaling

processes, corresponding to the numbers of bikes both at the stations (having one class of
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virtual customers) and on the roads (having two classes of virtual customers), converge in

distribution to a semimartingale reflecting Brownian motion, and the fluid and diffusion

limit theorems are obtained in some simple versions. Based on this, performance analysis

of the bike sharing system is also given. Therefore, the results and methodology given

in this paper provide new highlight on the study of more general large-scale bike sharing

systems.

Organization of this paper: The structure of this paper is organized as follows.

In Section 2, we describe a more general large-scale bike sharing system with N different

stations and with N(N−1) different roads, while this system has renewal arrival processes

of bike users and general travel times on the roads. In Section 3, we establish a multiclass

closed queueing network from practical factors of the bike-sharing system where bikes are

abstracted as virtual customers, while both stations and roads are regarded as virtual

nodes or servers. In Section 4, we set up the queue-length processes of the multiclass

closed queueing network by means of the numbers of bikes both at the stations and on

the roads, and establish the fluid scaled equations and the diffusion scaled equations. In

Sections 5 and 6, we prove that the scaling processes of the bike sharing system converge in

distribution to a semimartingale reflecting Brownian motion under heavy traffic conditions,

and obtain the fluid limit theorem and the diffusion limit theorem, respectively. In Sections

7, we give performance analysis of the bike sharing system by means of the fluid and

diffusion limits. Finally, some concluding remarks are described in Section 8.

Useful notation: We now introduce the notation used in the paper. For positive

integer n, the n-dimensional Euclidean space is denoted by Rn and the n-dimensional

positive orthant is denoted by Rn
+ = {x ∈ Rn : xi ≥ 0}. We definite DRn [0, T ] as the

path space of all functions f : [0, T ] → Rn which are right continuous and have left limits.

Define δj,k = 1 if j = k, else, δj,k = 0. For a set K, let |K| denote its cardinality. u.o.c.

means that the convergence is uniformly on compact set. A triple (Ω,F , {Ft}) is called a

filtered space if Ω is a set, F is a σ-field of subsets of Ω, and {Ft, t ≥ 0} is an increasing

family of sub-σ-fields of F , i.e., a filtration. If, in addition, P is a probability measure on

(Ω,F), then (Ω,F , {Ft}, P ) is called a filtered probability space. Let Px denote the unique

family of probability measures on (Ω,F), and Ex be the expectation operator under Px.
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2 Model Description

In this section, we describe a more general large-scale bike sharing system with N different

stations and with N(N − 1) different roads, which has renewal arrival processes of bike

users and general travel times.

In the large-scale bike sharing system, a customer arrives at a nonempty station,

rents a bike, and uses it for a while, then he returns the bike to a destination station

and immediately leaves this system. If a customer arrives at a empty station, then he

immediately leaves this system.

Now, we describe the bike sharing system including operations mechanism, system

parameters and mathematical notation as follows:

(1) Stations and roads: We assume that the bike sharing system contains N different

stations and at most N(N − 1) different roads, where a pair of directed roads may be

designed from any station to another station. Also, we assume that at the initial time

t = 0, each station has Ci bikes and Ki parking positions, where 1 ≤ Ci ≤ Ki < ∞ for

i = 1, . . . , N and
∑N

i=1 Ci > Kj for j = 1, . . . , N . Note that these conditions make that

some bikes can result in at least a full station.

(2) Arrival processes: The arrivals of outside bike users (or customers) at each

station is a general renewal process. For station j, let uj = {uj(n), n ≥ 1} be an i.i.d.

random sequence of exogenous interarrival times, where uj(n) ≥ 0 is the interarrival time

between the (n − 1)st customer and the nth customer. We assume that uj(n) has the

mean 1/λj and the coefficient of variation ca,j .

(3) The bike return times:

(3.1) The first return: Once an outside customer successfully rents a bike from sta-

tion i, then he rides on a road directed to station j with probability pi→j for
∑N

j 6=i pi→j = 1,

and his riding-bike time v
(1)
i→j on the road i → j is a general distribution with the mean

1/µ
(1)
i→j and the coefficient of variation c

(1)
s,i→j. If there is at least one available parking

position at station j, then the customer directly returns his bike to station j, and imme-

diately leaves this system. Let ri = {rij(n), n ≥ 1} be a sequence of routing selections for

i, j = 1, . . . , N with i 6= j, where rij(n) = 1 means that the nth customer rents a bike from

station i and rides on a road directed to station j (i.e., the customer rides on road i → j),

hence Pr{rij(n) = 1} = pi→j.

(3.2) The second return: From (3.1), if no parking position is available at station
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j, then the customer has to ride the bike to another station l1 with probability αj→l1

for
∑N

l1 6=j αj→l1 = 1, and his riding-bike time v
(2)
j→l1

on road j → l1 is also a general

distribution with the mean 1/µ
(2)
j→l1

and the coefficient of variation c
(2)
s,j→l1

. If there is at

least one available parking position at station l1, then the customer directly returns his

bike and immediately leaves this bike sharing system.

(3.3) The (k + 1)st return for k ≥ 2: From (3.2) and more, we assume that

this bike has not been returned at any station yet through k consecutive returns. In

this case, the customer has to try his (k + 1)st lucky return, he will ride bike from the

lk−1th full station to the lkth station with probability αlk−1→lk for
∑N

lk 6=lk−1
αlk−1→lk = 1,

and his riding-bike time v
(2)
lk−1→lk

on road lk−1 → lk is also a general distribution with

the mean 1/µ
(2)
lk−1→lk

and the coefficient of variation c
(2)
s,lk−1→lk

. If there is at least one

available parking station, then the customer directly returns his bike and immediately

leaves this bike sharing system; otherwise he has to continuously try another station

again. In the next section, those bikes ridden under their first return are called the

first class of virtual customers; while those bikes ridden under the k (k ≥ 2) returns are

called the second class of virtual customers. Let r̄j = {r̄ji (n), n ≥ 1} be a sequence of

routing selections for i, j = 1, . . . , N with i 6= j, where r̄ji (n) = 1 means that the nth

customer who can not return the bike to the full station j will deflect into road j → i,

thus Pr{r̄ji (n) = 1} = αj→i. Similarly, let rj→i,(d) = {rj→i,(d)(n), n ≥ 1} be a sequence of

routing selections for i, j = 1, . . . , N with i 6= j, d = 1, 2, where rj→i,(d)(n) = 1 means the

nth customer of class d who completes his short trip on road j → i will return the bike to

station i, hence Pr{rj→i,(d)(n) = 1} = pj→i,i = 1.

(4) Two classes of riding-bike times: In (3), there are two classes of riding-bike

times, who have two general distributions, that is, there are two classes of virtual customers

riding on each road. Let v
(d)
j→i = {v(d)j→i(n), n ≥ 1} be a random sequence of riding-bike

times of class d for i, j = 1, . . . , N with i 6= j, d = 1, 2, where v
(d)
j→i(n) is the riding-bike

time for the nth customer of class d riding on the road j → i. We assume that v
(d)
j→i has the

mean 1/µ
(d)
j→i and the coefficient of variation c

(d)
s,j→i. To care for the expected riding-bike

times, we set that µ
(d)
j→i = 1/mj→i for d = 1 and µ

(d)
j→i = 1/ξj→i for d = 2.

(5) The departure disciplines: The customer departure has two different cases:

(a) an outside customer directly leaves the bike sharing system if he arrives at an empty

station; (b) if one customer rents and uses a bike, and he finally returns the bike to a

station, then the customer completes his trip and immediately leaves the bike sharing
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Figure 1: The physical structure of the bike sharing system.

system.

For such a bike sharing system, Figure 1 outlines its physical structure and associated

operations.

3 The Closed Queueing Network

In this section, we establish a multiclass closed queueing network from the bike-sharing

system where bikes are abstracted as virtual customers, and both stations and roads are

regarded as virtual nodes or servers. Specifically, the stations contains only one class of

virtual customers; while the roads can contains two classes of virtual customers.

In the bike sharing system, there are N stations and N(N−1) roads, and each bike can

not leave this system, hence, the total number of bikes in this system is fixed as
∑N

i=1 Ci.

Base on this, such a system can be regarded as a closed queueing network with multiclass

customers due to two types of different travel or return times.

Let Si and Ri→j denote station i and road i → j, respectively. Let SN denote the

set of nodes abstracted by the stations, and RN the set of nodes abstracted by the roads.

Clearly SN= {Si, i = 1, . . . , N} and RN= {Ri→j : i, j = 1, . . . , N with i 6= j}. Let nj and

n
(d)
i→j denote the numbers of bikes parking in the jth station node and of bikes of class d

riding on the road i → j node, respectively.

(1) Virtual nodes: Although the stations and the roads have different physical

attributes, they are all regarded as abstract nodes in the closed queueing network.
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(2) Virtual customers: The virtual customers are abstracted by the bikes, which

are either parked in the stations or ridden on the roads. It is seen that only one class of

virtual customers are packed in the station nodes; while two classes of different virtual

customers are ridden on the road nodes due to their different return times.

(3) The routing matrix P : To express the routing matrix, we first define a mapping

σ(·) as follow,






σ(Si) = i for i = 1, . . . , N,

σ(Ri→j) = i〈j〉 for i, j = 1, . . . , N, with i 6= j.

It is necessary to understand the mapping σ(·). For example, N = 2, σ(S1) = 1, σ(S2) = 2,

σ(R1→2) = 1〈2〉, σ(R2→1) = 2〈1〉, thus the routing matrix is written as

P =

1 2 1〈2〉 2〈1〉
1

2

1〈2〉
2〈1〉





























.

In this case, the component pĩ,j̃ of the routing matrix P denotes the probability that a

customer leaves node ĩ to node j̃, where

pĩ,j̃ =



























1 if ĩ = σ(Ri→j), j̃ = σ(Sj),

pi→j if ĩ = σ(Si), j̃ = σ(Ri→j),

αj→k if ĩ = σ(Ri→j), j̃ = σ(Rj→k),

0 otherwise.

(4) The service processes in the station nodes: For j ∈ SN, the service process

Sj = {Sj(t), t ≥ 0} of station node j, associated with the interarrival time sequence uj =

{uj(n), n ≥ 1} of the outside customers who arrive at station j, is given by

Sj(t) = sup{n : Uj(n) ≤ t},

where Uj(n) =
∑n

l=1 uj(l), n ≥ 1 and Uj(0) = 0. Let bj = λj1{1≤nj≤Kj}.

(5) The service processes in the road nodes: For i, j = 1, . . . , N with i 6= j and

d = 1, 2, the service process S
(d)
j→i = {S(d)

j→i(t), t ≥ 0} of road node j → i, associated with

the riding-bike time sequence v
(d)
j→i = {v(d)j→i(n), n ≥ 1} of the customers of class d ridden

on road j → i, is given by

S
(d)
j→i(t) = sup{n : V

(d)
j→i(n) ≤ t},
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where V
(d)
j→i(n) =

∑n
l=1 v

(d)
j→i(l), n ≥ 1 and V

(d)
j→i(0) = 0. We write

b
(d)
j→i = n

(d)
j→iµ

(d)
j→i =







n
(1)
j→i

1
mj→i

d = 1,

n
(2)
j→i

1
ξj→i

d = 2.

(6) The routing processes in the station nodes:

Case one: For j ∈ SN, the routing process Rj = {Rj
i , i 6= j, i = 1, . . . , N} and

Rj
i = {Rj

i (n), n ≥ 1}, associated with the routing selecting sequence ri = {rij(n), n ≥ 1}
of station j, is given by

Rj(n) =

n
∑

l=1

rj(l) or Rj
i (n) =

n
∑

l=1

rji (l), n ≥ 1,

and the ith component of Rj(n) is Rj
i (n) associated with probability pj→i.

Case two: For j ∈ SN, the routing process R̄j = {R̄j
i , i 6= j, i = 1, . . . , N} and

R̄j
i = {R̄j

i (n), n ≥ 1}, associated with the routing deflecting sequence r̄j = {r̄ji (n), n ≥ 1}
of station j, is given by

R̄j(n) =
n
∑

l=1

r̄j(l) or R̄j
i (n) =

n
∑

l=1

r̄ji (l), n ≥ 1,

and the ith component of R̄j(n) is R̄j
i (n) associated with probability αj→i.

(7) The routing processes in the road nodes: For i, j = 1, . . . , N with i 6= j and

d = 1, 2, the routing process Rj→i,(d) = {Rj→i,(d)(n), n ≥ 1}, associated with the routing

transferring sequence rj→i,(d) = {rj→i,(d)(n), n ≥ 1} of road j → i, is given by

Rj→i,(d)(n) =

n
∑

l=1

rj→i,(d)(l), n ≥ 1,

and the Rj→i,(d)(n) is associated with probability pj→i,i = 1.

(8) Service disciplines: The first come first served (FCFS) discipline is assumed for

all station nodes. A new processor sharing (PS) is used for all the road nodes, where each

customer of either class one or class two is served by a general service time distribution,

as described in (4) and (5).

4 The Joint Queueing Process

In this section, we set up the queue-length processes of the multiclass closed queueing

network by means of the numbers of bikes both at the stations and on the roads, and

establish the fluid scaled equations and the diffusion scaled equations.
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(1) Q(t) = {(Qj(t), Q
(d)
j→i(t)), i 6= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}, where Qj(t) and

Q
(d)
j→i(t) are the number of virtual customers at station node j and the numbers of virtual

customers of class d at the road j → i at time t, respectively. Specifically, Qj(0) and

Q
(d)
j→i(0) are the number of virtual customers at station node j and the number of virtual

customers of class d on the road node j → i at time t = 0, respectively.

(2) Y K(t) = {(Y K
j (t)), j = 1, . . . , N ; t ≥ 0}, where Y K

j (t) is the cumulative number

of virtual customers deflecting from station node j whose parking positions are full in the

time interval [0, t].

(3) Y 0(t) = {(Y 0
j (t), Y

0,(d)
j→i (t)), i 6= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}, where Y 0

j (t) and

Y
0,(d)
j→i (t) are the cumulative amount of time that station node j and the road node j → i

are idle (no available bike, i.e., empty) in the time interval [0, t], respectively.

Y 0
j (t) =

∫ t

0
1{Qj(s) = 0}ds = t−Bj(t),

Y
0,(d)
j→i (t) =

∫ t

0
1{Q(d)

j→i(s) = 0}ds = t−B
(d)
j→i(t).

(4) B(t) = {(Bj(t), B
(d)
j→i(t)), i 6= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}, where Bj(t) and

B
(d)
j→i(t) are the cumulative amount of time that the station node j and the road node

j → i are busy (available bike, non-empty) in the time interval [0, t], respectively.

Bj(t) =

∫ t

0
1{0 < Qj(s) ≤ Kj}ds,

B
(d)
j→i(t) =

∫ t

0
1{Q(d)

j→i(s) > 0}ds.

(5) BF (t) = {(BF
j (t)), j = 1, . . . , N ; t ≥ 0}, where BF

j (t) is the cumulative amount of

time that station node j is full (no available parking position) in the time interval [0, t],

BF
j (t) =

∫ t

0
1{Qj(s) = Kj}ds.

(6) Sj(Bj(t)) denotes the number of virtual customers that have completed service at

station node j during the time interval [0, t]; S
(d)
j→i(B

(d)
j→i(t)) denotes the number of virtual

customers of class d that have completed service at road node j → i during the time

interval [0, t].

(7) Rj
i (Sj(Bj(t))) denotes the number of virtual customers that enter station node i

(i.e., riding on road j → i) from station node j during the time interval [0, t]; R̄j
i (Y

K
j (t))

denotes the number of virtual customers that enter station node i from station j whose
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parking positions are full during the time interval [0, t]; and Rj→i,(d)(S
(d)
j→i(B

(d)
j→i(t))) de-

notes the number of virtual customers of class d that enter station node i from road node

j → i during the time interval [0, t].

Now, we have the following flow balance relations for the station nodes and the road

nodes. For station node j = 1, . . . , N ,

Qj(t) = Qj(0) +

2
∑

d=1

N
∑

i 6=j

[

Ri→j,(d)(S
(d)
i→j(B

(d)
i→j(t)))−Ri→j,(d)(S

(d)
i→j(B

F
j (t)))

]

− Sj(Bj(t)). (1)

Note that Y K
j (t) =

∑2
d=1

∑N
i 6=j R

i→j,(d)(S
(d)
i→j(B

F
j (t))), we have

Qj(t) = Qj(0) +

2
∑

d=1

N
∑

i 6=j

Ri→j,(d)(S
(d)
i→j(B

(d)
i→j(t))) − Sj(Bj(t))− Y K

j (t). (2)

For road node j → i for i, j = 1, . . . , N with i 6= j and d = 1, 2, we have

Q
(1)
j→i(t) = Q

(1)
j→i(0) +Rj

i (Sj(Bj(t))) − S
(1)
j→i(B

(1)
j→i(t)), (3)

Q
(2)
j→i(t) = Q

(2)
j→i(0) + R̄j

i (Y
K
j (t))− S

(2)
j→i(B

(2)
j→i(t)). (4)

Because the total number of bikes in this bike sharing system is fixed as
∑N

i=1 Ci, we

get that for t ≥ 0
N
∑

i=1

Qi(t) +

2
∑

d=1

N
∑

i 6=j

Q
(d)
i→j(t) =

N
∑

i=1

Ci. (5)

We now elaborate to apply a centering operation to the queue-length representations of

the station nodes and of the road nodes, and rewrite (2), (3) and (4) as follows:

Q(t) = X(t) +R0Y 0(t) +RKY K(t), (6)

where X(t) = (X1(t),X2(t), . . . ,XN (t)), and Xj(t) is given by

Xj(t) = Qj(0) +

2
∑

d=1

N
∑

i 6=j

[

Ri→j,(d)(S
(d)
i→j(B

(d)
i→j(t)))− S

(d)
i→j(B

(d)
i→j(t))

]

+
2
∑

d=1

N
∑

i 6=j

[

S
(d)
i→j(B

(d)
i→j(t))− b

(d)
i→jB

(d)
i→j(t)

]

− [Sj(Bj(t))− bjBj(t)]

− Y K
j (t) + θjt, (7)
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note that Ri→j,(d)(S
(d)
i→j(B

(d)
i→j(t))) = S

(d)
i→j(B

(d)
i→j(t)), Xj(t) is simplified as

Xj(t) = Qj(0) +

2
∑

d=1

N
∑

i 6=j

[

S
(d)
i→j(B

(d)
i→j(t))− b

(d)
i→jB

(d)
i→j(t)

]

− [Sj(Bj(t))− bjBj(t)]− Y K
j (t) + θjt, (8)

θj =

2
∑

d=1

N
∑

i 6=j

b
(d)
i→j − bj, (9)

(

R0Y 0(t)
)

ĩ,j̃
=















bjY
0
j (t), if ĩ = σ(Si), and j̃ = ĩ,

−∑2
d=1 b

(d)
i→jY

0,(d)
i→j (t), if ĩ = σ(Si), and j̃ = σ(Ri→j),

0, otherwise,

(10)

(RKY K(t))̃i,j̃ =







−Y K
j (t), if ĩ = σ(Si), and ĩ = j̃,

0, otherwise.
(11)

For road node j → i (i, j = 1, . . . , N with i 6= j and d = 1, 2), X
(d)
j→i(t) is given by,

X
(1)
j→i(t) = Q

(1)
j→i(0) +

[

Rj
i (Sj(Bj(t)))− pj→iSj(Bj(t))

]

+ [pj→i(Sj(Bj(t))− bjBj(t))]

−
[

S
(1)
j→i(B

(1)
j→i(t)) − b

(1)
j→iB

(1)
j→i(t)

]

+ θ
(1)
j→it, (12)

θ
(1)
j→i = pj→ibj − b

(1)
j→i, (13)

(

R0Y 0(t)
)

ĩ,j̃
=















b
(1)
j→iY

0,(1)
j→i (t), if ĩ = σ(Rj→i) and j̃ = ĩ,

−pj→ibjY
0
j (t), if ĩ = σ(Rj→i) and j̃ = σ(Sj),

0, otherwise,

(14)

(RKY K(t))̃i,j̃ = 0. (15)

X
(2)
j→i(t) = Q

(2)
j→i(0) +

[

R̄j
i (Y

K
j (t))− αj→iY

K
j (t)

]

−
[

S
(2)
j→i(B

(2)
j→i(t))− b

(2)
j→iB

(2)
j→i(t)

]

+ θ
(2)
j→it, (16)

θ
(2)
j→i = −b

(2)
j→i, (17)

(

R0Y 0(t)
)

ĩ,j̃
=







b
(2)
j→iY

0,(2)
j→i (t), if ĩ = σ(Rj→i) and j̃ = ĩ,

0, otherwise,
(18)
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(RKY K(t))̃i,j̃ =







αj→iY
K
j (t), if ĩ = σ(Rj→i) and j̃ = σ(Sj),

0, otherwise,
(19)

For i, j = 1, . . . , N with i 6= j, and d = 1, 2, Qj(t), Q
(d)
j→i(t), Y

0
j (t), Y

K
j (t), Y

0,(d)
j→i (t) have

some important properties as follows:

0 ≤ Qj(t) ≤ Kj ; 0 ≤ Q
(d)
j→i(t) ≤

N
∑

i=1

Ci; t ≥ 0, (20)

Y 0
j (0) = 0, Y 0

j (t) is continuous and nondecreasing, (21)

Y K
j (0) = 0, Y K

j (t) is continuous and nondecreasing, (22)

Y
0,(d)
j→i (0) = 0, Y

0,(d)
j→i (t) is continuous and nondecreasing, (23)

Y 0
j (t) increases at times t only when Qj(t) = 0, (24)

Y K
j (t) increases at times t only when Qj(t) = Kj, (25)

Y
0,(d)
j→i (t) increases at times t only when Q

(d)
j→i(t) = 0. (26)

In the remainder of this section, we provide a lemma to prove that the matrix R =

(R0, RK) is an S - matrix, which plays a key role in discussing existence and uniqueness

of the SRBM through the box polyhedron for the closed queueing network. Note that R0

and RK are defined in (14) and (15) for d = 1, and in (18) and (19) for d = 2. Also, the

ith column of R is denoted as the vector vi. To analyze the matrix R, readers may refer

to Theorem 1.3 in Dai and Williams [7] for more details.

The following definition comes from Dai and Williams [7], here we restate it for con-

venience of readers.

Definition 1 A square matrix A is called an S - matrix if there is a vector x ≥ 0 such

that Ax > 0. The matrix A is completely - S if and only if each principal submatrix of A

is an S - matrix.

Notice that the capacity of station nodes is finite and the total number of bikes in this

bike sharing system is a fixed constant. Without loss of generality, we assume that the

capacity of each road node is also finite, and the maximal capacity of each road is
∑N

i=1 Ci

due to the fact that the total number of bikes in this bike sharing system is
∑N

i=1 Ci.
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Therefore, the state space S of this close queueing network is a N2-dimensional box space

with 2N2 boundary faces Fi, given by

S ≡ {x = (x1, . . . , xN2)
′ ∈ RN2

+ : 0 ≤ xi ≤
N
∑

i=1

Ci}. (27)

We write

Fi ≡ {x ∈ S : xi = 0}, Fi+N2 ≡ {x ∈ S : xi = Ki} for i ∈ SN, (28)

Fj ≡ {x ∈ S : xj = 0}, Fj+N2 ≡ {x ∈ S : xj =
N
∑

i=1

Ci} for j ∈ RN. (29)

Let J ≡ {1, 2, . . . , 2N2} be the index set of the faces, and for each ∅ 6= K ⊂ J , define

FK = ∩i∈KFi. We indicate that the set K ⊂ J is maximal if K 6= ∅, FK 6= ∅, and FK 6= FK̃

for any K ⊂ K̃ such that K 6= K̃. Thus, we can obtain that the maximal set K is precisely

the set of indexes of N2 distinct faces meeting at any vertex of S. Let N be a 2N2 ×N2

matrix whose ith row is given by the unit normal of face Fi, which directs to the interior

of S. We obtain,

N =













































1 0 · · · 0

0 1 · · · 0

· · · · · ·
0 0 · · · 1

−−−−−−−−−
−1 0 · · · 0

0 −1 · · · 0

· · · · · ·
0 0 · · · −1













































.

The state space S has 2N
2
vertexes due to its box space and each vertex given by

(∩i∈αFi) ∩ (∩i∈βFi+N2) for a unique index set α ⊂ {1, . . . , N2} with β = {1, . . . , N2}\α.
Before we provide a lemma to prove the (NR)K (exactly |K| distinct faces contain FK) is

a special S-matrix, we give a geometric interpretation for a |K|× |K| S-matrix (NR)K. At

the each vertex of the box, we should make sure that there is a positive linear combination

xivi + xjvj+N2 , xi > 0 for i ∈ α and xj > 0 for j ∈ β such that xivi + xjvj+N2 directs to

the interior of the state space S.

Now, we provide a lemma to indicate the matrix (NR)K is an S-matrix.

Lemma 1 The matrix (NR)K is an S-matrix for each maximal K ⊂ J .
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Proof: It is easy to check that

NR =





R0 RK

−R0 −RK



 .

Because the state space of the closed queueing network is a N2-dimensional box space, it

has 2N2 faces. Now, let us make a classify of those vertexes in this box space as follows:

Type-1: the vertexes are given by (∩i∈AS
Fi) ∩ (∩j∈AR

Fj);

Type-2: the vertexes are given by (∩i∈AS
Fi) ∩ (∩k∈BR

Fk);

Type-3: the vertexes are given by (∩l∈BS
Fl) ∩ (∩j∈AR

Fj);

Type-4: the vertexes are given by (∩l∈BS
Fl) ∩ (∩k∈BR

Fk);

Type-5: the vertexes are given by (∩i∈AS
Fi) ∩ (∩j∈AR

Fj) ∩ (∩k∈BR\AR
Fk);

Type-6: the vertexes are given by (∩l∈BS
Fl) ∩ (∩j∈AR

Fj) ∩ (∩k∈BR\AR
Fk);

Type-7: the vertexes are given by (∩j∈AR
Fj) ∩ (∩i∈AS

Fi) ∩ (∩l∈BS\AS
Fl);

Type-8: the vertexes are given by (∩k∈BR
Fk) ∩ (∩i∈AS

Fi) ∩ (∩l∈BS\AS
Fl);

Type-9: the vertexes are given by (∩i∈AS
Fi)∩(∩l∈BS\AS

Fl)∩(∩j∈AR
Fj)∩(∩k∈BR\AR

Fk);

where AS and AR denote the set of index of face Fi = {xi = 0} for i ∈ SN and Fj = {xj =
0} for j ∈ RN, respectively; BS and BR denote the set of index of face Fl = {xl = Kl} for

l ∈ SN and Fk = {xk =
∑N

i=1 Ci + 1} for k ∈ RN, respectively. According to the model

description in Section 2, it is seen that the following two cases can not be established:

Case 1: All the station nodes are saturated when 1 ≤ Ci < Ki < ∞, namely, the

reflection direction vector vi on face Fi(i ∈ BS) can not simultaneously exist in the box

state space S due to
∑N

i=1 Ki >
∑N

i=1 Ci. Therefore, at the vertexes of type-3, there must

be a positive linear combination xivi + xjvj > 0 to direct to the interior of state space S,

where xi ≥ 0 for i ∈ AR and xj ≥ 0 for j ∈ BS .

Case 2: Any road node is full, namely, the faces Fi(i ∈ BR) does not have the reflection

direction vector vi in the box state space S. In other word, the reflection direction vector

vi on face Fi (i ∈ BR) is zero vector. Therefore, at the vertexes of type-2, type-4, type-5,

type-6, type-8 and type-9, there must be a positive linear combination who directs to the

interior of state space S.

Now, we should only prove that at these vertexes of type-1, type-7 and type-3, where

Ci = Ki, there also is a positive linear combination who directs to the interior of the state

space S.

At the vertexes of type-1, we only should prove that the matrix R0 in the matrix NR
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is an S-matrix for d = 1, 2. It is clear that the matrix R0 is an S-matrix due to the fact

that all the diagonal elements of R0 are positive.

At the vertexes of type-7 and of type-3, for Ci = Ki and d = 1, 2, we can rewrite the

(NR)K as the following form:

M = (NR)K =





M1 M2

M1 M4



 =





M1 0

0 M4



+





0 M2

M3 0



 .

where M1 is a submatrix of R0, which contains ith row (column) and ith column (row)

of R0 simultaneously with i ∈ α ⊂ {1, . . . , N2}. Because the R0 is a complete S-matrix,

M1 is an S-matrix. M4 is also a submatrix of −RK , which also contains i + N2th row

(column) and i+N2th column (row) of −RK simultaneously with i ∈ β = {1, . . . , N2}\α.
At the same time, M4 is a diagonal matrix whose diagonal element is unit one, hence M4

is also an S-matrix. M2 is a submatrix of RK and M3 is a submatrix of −R0. Because

M2 and M3 do not contain any diagonal elements of RK and −R0, M2 and M3 are both

nonnegative matrices. Therefore, there must be a positive linear combination who direct

to the interior of the state space S at the vertexes of type-7 and type-3, for Ci = Ki and

d = 1, 2. This completes the proof.

5 Fluid Limits

In this section, we provide a fluid limit theorem for the queueing processes of the closed

queueing network corresponding to the bike sharing system.

It follows from the functional strong law of large numbers (FSLLN) that as t → ∞

(
1

t
Sj(t),

1

t
S
(d)
j→i(t)) → (bj , b

(d)
j→i), d = 1, 2, (30)

and as n → ∞

(
1

n
Rj

i (n),
1

n
R̄j

i (n),
1

n
Ri→j,(d)(n)) → (pj→i, αj→i, 1), d = 1, 2. (31)

We consider a sequence of closed queueing networks, indexed by n = 1, 2, . . ., as

described in Section 3. Let (Ωn,Fn, Pn) be the probability space on which the nth closed

queueing network is defined for the bike sharing system. All the processes and parameters

associated with the nth network are appended with a superscript n.
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For the nth network, the renewal service processes of the station nodes and of the

road nodes are expressed by Sn
j = {Sn

j (t), t ≥ 0} and S
(d),n
j→i = {S(d),n

j→i (t), t ≥ 0}, respec-
tively. Let bnj and b

(d),n
j→i be the long run average service rates of Sn

i (t) and S
(d),n
j→i (t),

respectively. The vectors of the N station capacities and of their initial bike num-

bers are denoted as Kn = (Kn
1 , . . . ,K

n
N )

′

and Cn = (Cn
1 , . . . , C

n
N )

′

, respectively, where

1 ≤ Cn
i ≤ Kn

N < ∞. For simplicity of description, we write Rj,n as Rj , R̄j,n as R̄j and

Rj→i,(d),n as Rj→i,(d) for all n ≥ 1, i.e., the routing processes of the station nodes and of

the road nodes are compressed the number n. We append a superscript n to the perfor-

mance indexes such as Y 0,n
j (t), Y

0,(d),n
j→i (t), Bn

j (t) and Bn
j→i(t), and the interesting processes

Qn = ((Qn
j (t), Q

(d),n
j→i (t))

′

and Y K,n
j (t).

The heavy traffic conditions: We assume that as n → ∞

(bnj , b
(d),n
j→i ,

√
nθnj ,

√
nθ

(d),n
j→i ,

1√
n
Cn
i ,

1√
n
Kn

i ) → (bj, b
(d)
j→i, θj , θ

(d)
j→i, Ci,Ki), (32)

where θnj =
∑2

d=1

∑N
j 6=i b

(d),n
j→i − bnj ; θ

(1),n
j→i = pj→ib

n
j − b

(1),n
j→i and θ

(2),n
j→i = −b

(2),n
j→i . At the

same time, we assume that for i, j = 1, . . . , N with i 6= j, d = 1, 2, all these limits are

finite.

For the initial queue lengths Qn
j (0) and Q

(d),n
j→i (0), we assume that as n → ∞

Q̄n
j (0) ≡

1

n
Qn

j (0) → 0 and Q̄
(d),n
j→i (0) ≡

1

n
Q

(d),n
j→i (0) → 0. (33)

It follows from the functional strong law of large numbers that for d = 1, 2, as n → ∞

(S̄n
j (t), S̄

(d),n
j→i (t), R̄

j,n
i (t), ¯̄Rj,n

i (t), R̄j→i,(d),n(t))

→ (bjt, b
(d)
j→it, pj→it, αj→it, t), u.o.c., (34)

where

S̄n
j (t) =

1

n
Sn
j (nt), S̄

(d),n
j→i (t) =

1

n
S
(d),n
j (nt), R̄j,n

i (t) =
1

n
Rj

i (⌊nt⌋),

¯̄Rj,n
i (t) =

1

n
R̄j

i (⌊nt⌋), R̄j→i,(d),n(t) =
1

n
Rj→i,(d)(⌊nt⌋),

and ⌊x⌋ is the maximal integer part of the real number x.

We give a notation: for any process W n = {W n(t), t ≥ 0}, we define its centered

processes Ŵ n = {Ŵ n(t), t ≥ 0} by

Ŵ n(nt) = W n(nt)− wnnt,

where wn is the mean of the process W n.
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For the station nodes and road nodes, we write some centered processes as

Ŝn
j (nt) = Sn

j (nt)− bnj nt, Ŝ
(d),n
j→i (t) = S

(d),n
j→i (nt)− b

(d),n
j→i nt, (35)

R̂j,n
i (t) = Rj,n

i (⌊nt⌋)− pj→i ⌊nt⌋), ˆ̄Rj,n
i (t) = R̄j,n

i (⌊nt⌋)− αj→i ⌊nt⌋). (36)

For convenience of readers, we restate a lemma for the oscillation result of a sequence

of (Sn, Rn)-regulation problems in convex polyhedrons, which is a summary restatement

of Lemma 4.3 of Dai and Williams [7] and the Theorem 3.1 of Dai [8], whose proof is

omitted here and can easily be referred to Dai and Williams [7] and Dai [8] for more

details.

This lemma prevails due to the fact that the state space of the box polyhedron of this

bike sharing system belongs to a simple convex polyhedrons as analyzed in the last of

Section 4. For a function f defined from [t1, t2] ⊂ [0,∞] into Rk for some k ≥ 1, let

Osc(f, [t1, t2]) = sup
t1≤s≤t≤t2

|f(t)− f(s)| .

Lemma 2 For any T > 0, given a sequence of {xn}∞n=1 ∈ DRN2 [0, T ] with the initial

values xn(0) ∈ Sn. Let (zn, yn) be an (Sn, Rn)-regulation of xn over [0, T ], where (zn, yn) ∈
DRN2 [0, T ] × DR2N2

+
[0, T ]. Assuming that all Sn have the same shape, i.e., the only

difference is the corresponding boundary size Kn
i . Assuming that {Kn

i } belongs to some

bounded set, and the jump sizes of yn are bounded by Γn for each n. Then if (NR)K is

an S - matrix and Rn → R as n → ∞, we have

Osc(zn, [t1, t2]) ≤ C max{Osc(xn, [t1, t2]),Γ
n},

Osc(yn, [t1, t2]) ≤ C max{Osc(xn, [t1, t2]),Γ
n},

where C depends only on (N , R, |K|) for all K ⊂ Ξ, where Ξ denotes the collection of

subsets of J ≡ {1, 2, . . . , 2N2} consisting of all maximal sets in J together with the empty

set.

Theorem 1 (Fluid Limit Theorem) Under Assumptions (32) to (34), as n → ∞, we have

(

B̄n
j (t), B̄

(d),n
j→i (t), Ȳ

0,n
j (t), Ȳ

0,(d),n
j→i (t)

)

→
(

τ̄j(t), τ̄
(d)
j→i(t), Ȳ

0
j (t), Ȳ

0,(d)
j→i (t)

)

u.o.c,

where τ̄j(t) ≡ et, τ̄
(d)
j→i(t) ≡ et, Ȳj(t) ≡ 0 and Ȳ

(d)
j→i(t) ≡ 0; Ȳ 0,n

j (t) = 1
n
Y 0,n
j (nt),

Ȳ
0,(d),n
j→i (t) = 1

n
Y

0,(d),n
j→i (nt), B̄n

j (t) = 1
n
Bn

j (nt) and B̄
(d),n
j→i (t) = 1

n
B

(d),n
j→i (nt) for i, j =

1, . . . , N with i 6= j, d = 1, 2.
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Proof: Recall the queue length process : Q(t) = X(t)+R0Y 0(t)+RKY K(t), where X(t)

is given by (8), (12) and (16) in Section 4. It follows from (2) to (4) that the scaling

queueing processes for the station nodes and the road nodes are given by

Q̄n(t) = Q̄n(0) + X̄n(t) +R0,nȲ 0,n(t) +RK,nȲ K,n(t),

where Q̄n(t) = 1
n
Qn(nt), Q̄n(t) = {(Q̄n

j (t), Q̄
(d),n
j→i (t)), i 6= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0};

X̄n(t) = 1
n
Xn(nt), X̄n(t) = {(X̄n

j (t), X̄
(d),n
j→i (t)), i 6= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0};

Ȳ 0,n(t) = 1
n
Y 0,n(nt), Ȳ 0,n(t) = {(Ȳ 0,n

j (t), Ȳ
0,(d),n
j→i (t)), i 6= j, i, j = 1, . . . , N ; d = 1, 2; t ≥

0}; Ȳ K,n(t) = 1
n
Y K,n(nt), Ȳ K,n(t) = {(Ȳ K,n

j (t)), j = 1, . . . , N}. For each n, Q̄n(t), Ȳ n(t)

and Ȳ K,n(t) satisfy the properties (20) to (26) with the state space Sn, given by

Sn ≡
{

x = (x1, . . . , xN2)
′ ∈ RN2

+ : xi ≤ K̄n
i =

Kn
i

n
for i ∈ SN;

and xi ≤
∑N

i=1C
n
i

n
+ 1 for i ∈ RN

}

.

For station node j = 1, . . . , N , by using (2), (8), (35) and (36), we have

X̄n
j (t) ≡

1

n
Qn

j (0) +
1

n

2
∑

d=1

N
∑

i 6=j

Ŝ
(d),n
i→j (nB̄

(d),n
i→j (t))− 1

n
Ŝn
j (nB̄

n
j (t)) +

1

n
θnj nt. (37)

For road node j → i (i, j = 1, . . . , N with i 6= j), by using (12), (16), (35) and (36), we

have,

X̄
(1),n
j→i (t) ≡

1

n
Q

(1),n
j→i (0) +

1

n
R̂j,n

i (nS̄n
j (B̄

n
j (t)))

+
1

n
pj→iŜ

n
j (nB̄

n
j (t)) −

1

n
Ŝ
(1),n
j→i (nB̄

(1),n
j→i (t)) +

1

n
θ
(1),n
j→i nt, (38)

X̄
(2),n
j→i (t) ≡

1

n
Q

(2),n
j→i (0) +

1

n
ˆ̄Rj,n
i (nȲ K,n

j (t))− 1

n
Ŝ
(2),n
j→i (nB̄

(2),n
j→i (t)) +

1

n
θ
(2),n
j→i nt. (39)

Note that B̄
(1),n
j→i (t) ≤ t, B̄n

j (t) ≤ t, Ȳ K,n
j (t) ≤ ∑N

i=1C
n
i −Kn

j , by using (32) to (34) and

the Skorohod Representation Theorem, as n → ∞, we have

X̄n(t) = (X̄n
j (t), X̄

(d),n
j→i (t)) → 0, u.o.c.

Since the state space Sn of this bike sharing system are the boxes of the same shape in the

N2-dimensional space, (NR)K is an S-matrix and Rn → R as n → ∞. Then by Lemma

2 we have

Osc(Ȳ 0,n, [s, t] ⊆ [0, T ]) ≤ C Osc(X̄n, [s, t] ⊆ [0, T ]),
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for any T ≥ 0, where C depends only on R and N for n large enough.

0 ≤ lim
n→∞

inf Osc(Ȳ 0,n, [s, t] ⊆ [0, T ])

≤ lim
n→∞

supOsc(Ȳ 0,n, [s, t] ⊆ [0, T ])

≤ C lim
n→∞

Osc(X̄n, [s, t] ⊆ [0, T ])

= 0, a.s.

where Ȳ n(t) = (Ȳ 0,n
j (t)

′

, Ȳ
(d),0,n
j→i (t)

′

)
′

. Notice that Y n(0) = 0 for all n, we have

lim
n→∞

Ȳ n(t) = 0, u.o.c. (40)

Since B̄n
j (t) = t − Ȳ 0,n

j (t) and B̄
(d),n
j→i (t) = t − Ȳ

(d),0,n
j→i (t), we obtain the convergence of

B̄n
j (t) and B̄

(d),n
j→i (t) for i, j = 1, . . . , N with i 6= j, d = 1, 2. This competes the proof.

6 Diffusion limits

In this section, we set up the diffusion scaled processes of the queueing processes, and give

their weak convergence results for the multiclass closed queueing network corresponding

to the bike sharing system.

We introduce the diffusion scaling process for the process Ŵ n = {Ŵ n(nt), t ≥ 0},
given by

W̃ n(t) ≡ 1√
n
Ŵ n(nt) =

1√
n
(W n(nt)−wnnt).

For the station nodes and the road nodes, we write

S̃n
j (t) =

√
n

(

Sn
j (nt)

n
− bnj t

)

, S̃
(d),n
j→i (t) =

√
n

(

S
(d),n
j→i (nt)

n
− b

(d),n
j→i t

)

, (41)

R̃j,n
i (t) =

√
n

(

Rj,n
i (nt)

n
− pj→it

)

, ˜̄Rj,n
i (t) =

√
n

(

R̄j,n
i (nt)

n
− αj→it

)

, (42)

R̃j→i,(d),n(t) =
√
n

(

Rj→i,(d),n(nt)

n
− t

)

. (43)

For the initial queueing processes Qn
j (0) and Q

n,(d)
j→i (0) for i, j = 1, . . . , N with i 6= j,

d = 1, 2, we assume that as n → ∞

Q̃n
j (0) ≡

1√
n
Qn

j (0) ⇒ Q̃(0), (44)
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Q̃
(d),n
j→i (0) ≡

1√
n
Q

(d),n
j→i (0) ⇒ Q̃

(d)
j→i(0). (45)

It follows from the Skorohod Representation Theorem and the Donsker’s Theorem that

(S̃n
j (t), S̃

(d),n
j→i (t), R̃

j,n
i (t), ˜̄Rj,n

i (t), R̃j→i,(d),n(t))

⇒ (S̃j(t), S̃
(d)
j→i(t), R̃

j
i (t),

˜̄Rj
i (t), R̃

j→i,(d)(t)), (46)

where ⇒ denotes weak convergence, and S̃j(t), S̃
(d)
j→i(t), R̃

j
i (t),

˜̄Rj
i (t) and R̃j→i,(d)(t) are

all the Brownian motions with drift zero and covariance matrices ΓS, ΓR,S,l, ΓR̄,S,l and

ΓR,S,j→i, which are given by

(1) The covariance matrix of S̃(t) = (S̃j(t), S̃
(d)
j→i(t)) for i, j = 1, . . . , N with i 6= j,

d = 1, 2, is given by

ΓS =





(

ΓS,S
)

N×N
0

0
(

ΓS,R,(d)
)

(N2−N)×(N2−N)





N2×N2

,

where

(

ΓS,S
)

ĩ,j̃
=







bic
2
a,iδ̃i,j̃ , σ(Si) = ĩ,

0, otherwise,

(

ΓS,R,(d)
)

ĩ,j̃
=







b
(d)
i→j(c

(d)
s,i→j)

2δı̃,j̃, σ(Ri→j) = ĩ,

0, otherwise.

(2) The covariance matrix of R̃(t) = (R̃l(t)) for l = 1, . . . , N , is given by

ΓR,S,l =





0 0

0
(

ΓR,S,l
)

(N−1)×(N−1)





N2×N2

,

where
(

ΓR,S,l
)

ĩ,j̃
=







pl→k1(δ̃i,j̃ − pl→k2), σ(Rl→k1) = ĩ, σ(Rl→k2) = j̃,

0, otherwise.

(3) The covariance matrix of ˜̄R(t) = ( ˜̄Rl(t)) for l = 1, . . . , N , is given by

ΓR̄,S,l =





0 0

0
(

ΓR̄,S,l
)

(N−1)×(N−1)





N2×N2

,

where
(

ΓR̄,S,l
)

ĩ,j̃
=







αl→k1(δ̃i,j̃ − αl→k2), σ(Rl→k1) = ĩ, σ(Rl→k2) = j̃,

0, otherwise.
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(4) The covariance matrix of R̃(t) = (R̃j→i,(d)(t)) for i, j = 1, . . . , N with i 6= j,

d = 1, 2, is given by

ΓR,S,j→i =





(

ΓR,R,j→i
)

N×N
0

0 0





N2×N2

,

where

(

ΓR,R,j→i
)

l̃,k̃
=







pj→i,l(δl̃,k̃ − pj→i,k) = 0, σ(Sl) = l̃, σ(Sk) = k̃,

0, otherwise.,

Now, we prove adaptedness properties of the diffusion scaling processes (Q̃n(t), X̃n(t), Ỹ n(t)),

where Q̃n(t) = 1√
n
Qn(nt), Q̃n(t) = (Q̃n

j (t), Q̃
(d),n
j→i (t)); X̃n(t) = 1√

n
Xn(nt), X̃n(t) =

(X̃n
j (t), X̃

(d),n
j→i (t)); Ỹ 0,n(t) = 1√

n
Y 0,n(nt), Ỹ 0,n(t) = (Ỹ 0,n

j (t)
′

, Ỹ
0,(d),n
j→i (t)

′

), Ỹ K,n
j (t) =

1√
n
Y K,n
j (nt).

Define

ςnt = σ{Q̃n(0), S̃n(s), Ỹ 0,n(s), Ỹ K,n(t), s ≤ t}, (47)

where Q̃n(0), S̃(d),n(s), R̃(d),n(s) and ˜̄Rn(s) are defined in (41) to (45). Define T n
k =

(T j,n
k , T

j→i,(d),n
k ), where T j,n

k and T
j→i,(d),n
k denote the partial sum of the service time

sequence at station node j and road node j → i, respectively, for the nth network, that

is,

T j,n
k =

k
∑

l=1

unj (l), T
j→i,(d),n
k =

k
∑

l=1

v
(d),n
j→i (l),

with the initial condition T n
0 ≡ 0. Notice that T n

k = (T j,n
k , T

j→i,(d),n
k ) is a ςnt − stopping

time, and, 0 = T n
0 < T n

1 < T n
2 < · · · < T n

k → ∞ a.s. as k → ∞ for each n and

i, j = 1, . . . , N with i 6= j, d = 1, 2. Let ς
T

(n)−
k

denote the strict past at time T n
k . Then

ς
T

(n)−
k

= σ(At ∩ {t < T n
k }, At ∈ ςnt , t ≥ 0).

Because T n
k is a ςnt -stopping time, unj (k+1) and v

(d),n
j→i (k+1) are independent of the history

of the network before the time at which the kth customer is served at station node j and

road node j → i. Therefore, T n
k is ς

T
(n)−
k

-measurable, unj (k+1) is independent of ς
T

(j,n)−
k

,

and v
(d),n
j→i (k + 1) is independent of ς

T
(j→i,(d),n)−
k

.

Theorem 2 Under Assumption (32), we have that

(

Q̃n(t), X̃n(t), Ỹ 0,n(t), Ỹ K,n(t)
)

⇒
(

Q̃(t), X̃(t), Ỹ 0(t), Ỹ K(t)
)

, as n → ∞,
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or, in component form,
(

Q̃n
j (t), Q̃

(d),n
j→i (t), X̃

n
j (t), X̃

(d),n
j→i (t), Ỹ

0,n
j (t), Ỹ

0,(d),n
j→i (t), Ỹ K,n

j (t)
)

⇒
(

Q̃j(t), Q̃
(d)
j→i(t), X̃j(t), X̃

(d)
j→i(t), Ỹ

0
j (t), Ỹ

0,(d)
j→i (t), Ỹ K

j (t)
)

,
as n → ∞,

where X̃(t) is a Brownian motion with covariance matrix Γ. Moreover, X̃(t) − θt is a

martingale with respect to the filtration Ft = σ(Q̃(s), Ỹ 0(s), Ỹ K(s), s ≤ t).

Proof:. First, we define

τn+(t) = min{T n
k : T n

k > t} and τn−(t) = max{T n
k : T n

k ≤ t}. (48)

For the station node j ∈ SN, when τ j,n+ (nt) approximates nt from its right side, we have

lim
n→∞

E

[∣

∣

∣

∣

1√
n
(Sn

j (τ
j,n
+ (nt))− bnj τ

j,n
+ (nt))− S̃n

j (t)

∣

∣

∣

∣

]

= lim
n→∞

E

[∣

∣

∣

∣

1√
n
(1− bnj (τ

jn
+ (nt))− nt)

∣

∣

∣

∣

]

≤ 1√
n

lim
n→∞

bnjE
[

τ j,n+ (nt)− τ j,n− (nt)
]

= lim
n→∞

1√
n
bnjE

[

unj (1)
]

= 0. (49)

Similarly, when τ j,n− (nt) approximates nt from its left side, we have

lim
n→∞

E[| 1√
n
(Sn

j (τ
j,n
− (nt))− bnj τ

j,n
− (nt))− S̃n

j (t)|] = 0. (50)

Moreover, we obtain

E[S̃n
j (T

j,n
k+1)− S̃n

j (T
j,n
k )|ςn

T
j,n)
k

] =
1√
n
{1− bnjE[unj (k + 1)|ςn

T
j,n)
k

]} = 0, (51)

where the filtration {ςnt } is defined in (47). Notice that for any {ςnt }-stopping time T and

any random variable X with E [|X|] < ∞,

E [E [X |ςnt ] |ςnt ] I{T>t} = E [X |ςnt ] I{T>t} = E
[

XI{T>t} |ςnt
]

. (52)

Also, for each j ∈ SN and all s, t ≥ 0,

E
[

S̃n
j (t+ s)− S̃n

j (t) |ςnt
]

= E

[

S̃n
j (t+ s)− 1√

n

(

Sn
j (τ

j,n
− (n(t+ s)))− bnj τ

j,n
− (n(t+ s))

)

|ςnt
]

+ E

[

1√
n

(

Sn
j (τ

j,n
+ (nt))− bnj τ

j,n
+ (nt)

)

− S̃n
j (t) |ςnt

]

−
∑

k

E
[

E
[

S̃n
j (T

j,n
k+1)− S̃n

j (T
j,n
k )

∣

∣

∣ςn
T

j,n
k

]

I{nt<T
j,n
k

≤n(t+s)} |ς
n
t

]

.
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Hence, it follows from (49) to (52) that

lim
n→∞

E
[∣

∣

∣
E
[

S̃n
j (t+ s)− S̃n

j (t) |ςnt
]∣

∣

∣

]

= 0. (53)

For road node j → i (i, j = 1, . . . , N with i 6= j). When we approximate nt from both

sides, a similar analysis to the proof of (53) for station node j. For all s, t ≥ 0, we have

lim
n→∞

E
[∣

∣

∣E
[

S̃
(d),n
j→i (t+ s)− S̃

(d),n
j→i (t) |ςnt

]∣

∣

∣

]

= 0. (54)

Next, we can set up the scaling queueing processes by mean of (2) to (4) for the station

nodes and of the road nodes through the scaling processes (41) to (45), given by:

Q̃n(t) = Q̃n(0) + X̃n(t) +R0,nỸ 0,n(t) +RK,nỸ K,n(t), (55)

and for each n, (Q̃n(t), Ỹ 0,n(t), Ỹ K,n(t)) has the properties (20) to (26) with the state

space Sn as follow:

Sn ≡
{

x = (x1, . . . , xN2)
′ ∈ RN2

+ : xi ≤ K̃n
i =

Kn
i√
n

for i ∈ SN,

and xi ≤
∑N

i=1 C
n
i√

n
+ 1 for i ∈ RN

}

.

For station node j = 1, . . . , N , by using (3), (12), (41) to (45) and X̃n
j (t) =

1√
n
Xn

j (nt) =√
nX̄n

j (t), we have

X̃n
j (t) = Q̃n

j (0) +
1√
n

2
∑

d=1

N
∑

i 6=j

Ŝ
(d),n
i→j (nB̄

(d),n
i→j (t))− 1√

n
Ŝn
j (nB̄

n
j (t)) +

√
nθnj t. (56)

For road node j → i (i, j = 1, . . . , N with i 6= j), by using (12), (16), (41) to (45) and

X̃
(d),n
j→i (t) =

1√
n
X

(d),n
j→i (nt) =

√
nX̄

(d),n
j→i (t), we have,

X̃
(1),n
j→i (t) = Q̃

(1),n
j→i (0) +

1√
n
R̂j,n

i (nS̄n
j (B̄j(t)))

+
1√
n
pj→iŜ

n
j (nB̄

n
j (t))−

1√
n
Ŝ
(1),n
j→i (nB̄

(1),n
j→i (t)) +

1√
n
θ
(1),n
j→i nt (57)

and

X̃
(2),n
j→i (t) = Q̃

(2),n
j→i (0) +

1√
n
ˆ̄Rj,n
i (nȲ K,n

j (t))− 1√
n
Ŝ
(2),n
j→i (nB̄

(2),n
j→i (t)) +

1√
n
θ
(2),n
j→i nt. (58)

From Assumption (32), using the Continuous Mapping Theorem and Theorem 1 (Fluid

Limit), we obtain that for station node j,

X̃n
j (t) ⇒ X̃j(t) = Q̃j(0) +

2
∑

d=1

N
∑

i 6=j

S̃
(d)
i→j(t)− S̃j(t) + θjt, (59)
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where X̃j(t) is an Brownian motion with the initial queue length Q̃j(0) and the drift θj.

For road station j → i,

X̃
(1),n
j→i (t) ⇒ X̃

(1)
j→i(t) = Q̃

(1)
j→i(0) + R̃j

i (bjt) + pj→iS̃j(t)− S̃
(1)
j→i(t) + θ

(1)
j→it, (60)

where X̃
(1)
j→i(t) is an Brownian motion with the initial queue length Q̃

(1)
j→i(0) and the drift

θ
(1)
j→i. Similarly we have

X̃
(2),n
j→i (t) ⇒ X̃

(2)
j→i(t) = Q̃

(2)
j→i(0) +

˜̄Rj,n
i (Ȳ K,n

j (t))− S̃
(2)
j→i(t) + θ

(2)
j→it, (61)

where X̃
(2)
j→i(t) is an Brownian motion with the initial queue length Q̃

(2)
j→i(0) and the drift

θ
(2)
j→i. The covariance matrix Γ = (Γ

k̃,l̃
)N2×N2 of X̃(t) = (X̃j(t), X̃

(d)
j→i(t)) is given by

Γk̃,l̃ =











































































∑2
d=1

∑N
i 6=k b

(d)
i→k(c

(d)
s,i→k)

2δ
k̃,l̃

+ blc
2
a,lδk̃,l̃,

if σ(Sk) = k̃, σ(Sl) = l̃;

pk→lbkc
2
a,k, if σ(Sk) = k̃, σ(Rk→l) = l̃, d = 1;

bipi→k(δk̃,l̃ − pi→l)

+ pk→lbkc
2
a,k + b

(d)
k→l(c

(d)
s,k→l)

2,
if σ(Rk→l) = k̃, l̃ = k̃, d = 1;

bkαi→k(δk̃,l̃ − αi→l)

+ b
(d)
k→l(c

(d)
s,k→l)

2,
if σ(Rk→l) = k̃, l̃ = k̃, d = 2;

0, otherwise.

(62)

Now, let h(t) be an arbitrary real, bounded and continuous function. For an arbitrary

positive integer m, let ti ≤ t ≤ t+ s, i ≤ m. Define

H̃n(t) =
(

Q̃n(t), Ỹ 0,n(t), Ỹ K,n(t)
)

, H̃(t) =
(

Q̃(t), Ỹ 0(t), Ỹ K(t)
)

,

Gn(t, s) =
(

Gn
j (t, s), G

(d),n
j→i (t, s)

)

,

Gn
j (t, s) = X̃n

j (t+ s)− X̃n
j (t) , G

(d),n
j→i (t, s) = X̃

(d),n
j→i (t+ s)− X̃

(d),n
j→i (t).

Notice that

S̃n
j (t) =

1√
n

(

sup

{

k :

k
∑

l=1

unj (l) ≤ bnj nt

}

− bnj nt

)

,

S̃
(d),n
j→i (t) =

1√
n

(

sup

{

k :
k
∑

l=1

v
(d),n
j→i (l) ≤ b

(d),n
j→i nt

}

− b
(d),n
j→i nt

)

,
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by using the Assumption (32), there exist some nonnegative constants C1 and C2 such

that bnj ≤ C1 and b
(d),n
j→i ≤ C2. From the convergences of (53) and (54), we have

∣

∣

∣
E
[

h
(

H̃(ti), i ≤ m
)(

X̃(t+ s)− X̃(t)− θs
)]∣

∣

∣

=
∣

∣

∣ lim
n→∞

E
[

h
(

H̃n(ti), i ≤ m
)

Gn(t, s)
]∣

∣

∣

= lim
n→∞

∣

∣

∣
E
[

h
(

H̃n(ti), i ≤ m
)

E [Gn(t, s) |ςnt ]
]∣

∣

∣

≤ M lim
n→∞

E [|E [Gn(t, s) |ςnt ]|]

= 0,

where M is some positive constant. The arbitrariness of h(t), ti, t and t+ s implies that

E
[

X̃(t+ s)− X̃(t)− θs |Fu, u ≤ t
]

= 0.

This shows that X̃(t)− θt is an {Ft}-martingale. This completes the proof.

Remark 1 Note that Dai [8] discussed the queueing networks with finite buffers, this

paper is related well to fluid and diffusion limits in Dai [8] in order to deal with a two-

class closed queueing network.

Now, we give the diffusion limit for the bike sharing system. In Section 5, we set up a

sequence of closed queueing networks corresponding to the bike sharing systems, and prove

the limit theorems of the fluid scaled equations of the busy period processes and the idle

period processes through the functional strong law of large numbers and the oscillation

property of an (Sn, Rn)-regulation. This is summarized as the Fluid Limit Theorem 1.

Furthermore, based on the Fluid Limit Theorem, we prove the weak limit of the diffusion

scaled processes of some performance measures and obtain a key martingale. Also see

Theorem 2.

The following theorem provides a diffusion limit, and its proof is easy by means of

some similar analysis to Theorems 3.2 and 3.3 in Dai [8] or Theorem 3.1 in Dai and Dai

[6].

Theorem 3 (Diffusion Limit Theorem) Under Assumption (32), we have

(

1√
n
Qn(nt),

1√
n
Y 0,n(nt),

1√
n
Y K,n(nt)

)

⇒
(

Q̃(t), Ỹ 0(t), Ỹ K(t)
)

,
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where Q̃(t) =
(

Q̃j(t), Q̃
(d)
j→i(t)

)

, Ỹ 0(t) =
(

Ỹ 0
j (t), Ỹ

0,(d)
j→i (t)

)

; Q̃(t) together with Ỹ 0(t) and

Ỹ K(t) are an (S, θ,Γ, R)-semimartingale reflecting Brownian motion with Q̃(t) = Q̃(0) +

X̃(t) +R0Ỹ 0(t) +RK Ỹ K(t). The state space S is given by (27) to (29). For station node

j, X̃j(t) is given by (59), R0 and RK are given by (10), (11). For road node j → i, when

d = 1, X̃
(1)
j→i(t) is given by (60), R0 and RK are given by (14) and (15); when d = 2,

X̃
(2),n
j→i (t) is given by (61), R0 and RK are given by (18) and (19), and the covariance

matrix Γ = (Γ
k̃,l̃
)N2×N2 of X̃(t) = (X̃j(t), X̃

(d)
j→i(t)) is given by (62).

7 Performance analysis

In this section, we first set up a basic adjoint relationship for the steady-state probabilities

of N station nodes and of N(N −1) road nodes in the multiclass closed queueing network.

Then we analyze some key performance measures of the bike sharing system.

From Theorem 3, it is seen that the scaling queueing processes, for the numbers of bikes

in the stations and on the roads, converge in distribution to a semimartingale reflecting

Brownian motion Q̃(t) =
(

Q̃ĩ(t), Q̃
(d)

j̃
(t)
)

for ĩ = σ(Si) (i = 1, . . . , N) and j̃ = σ(Rj→i)

(i, j = 1, . . . , N with i 6= j, d = 1, 2), where the state space S, the drift vector θ =
(

θĩ, θ
(d)

j̃

)

for ĩ = σ(Si), j̃ = σ(Rj→l), the covariance matrix

Γ =









(Γĩ,k̃) (Γ
(d)

ĩ,j̃
)

(Γ
(d)

l̃,k̃
) (Γ

(d)

l̃,j̃
)









N2×N2

for ĩ = σ(Si), k̃ = σ(Sk), j̃ = σ(Rj→h), l̃ = σ(Rl→g) and the reflecting matrix R =
((

R0
ĩ

)

,
(

R
K,(d)

j̃

))

for ĩ = σ(Si), j̃ = σ(Rj→l), as seen in those previous sections. Hence,

it is natural to approximate the steady-state distribution of the queue-length process by

means of the steady-state distribution of the semimartingale reflecting Brownian motion.

From Lemma 1 and Theorem 1.3 in Dai and Williams [7], it is seen that there ex-

ists a unique stationary distribution π =
(

πĩ, π
(d)

j̃

)

on (S,BS) for the SRBM Q̃(t) =
(

Q̃ĩ(t), Q̃
(d)

j̃
(t)
)

. Furthermore, π =
(

πĩ, π
(d)

j̃

)

is equivalent to the Lebesgue measure on

the state space S, thus for every bounded Borel function f on S and for t ≥ 0, we have

Eπ

[

f
(

Q̃(t)
)]

≡
∫

S

(

Ex

[

f
(

Q̃(t)
)])

π(dx) =

∫

S

f(x)π(dx).

Then for each ĩ = 1, . . . , N (i.e., ĩ = σ(Si), i = 1, . . . , N) and j̃ = 1, . . . , N(N − 1) (i.e.,
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j̃ = σ(Rj→i), i, j = 1, . . . , N with i 6= j), let δ =
(

δ̃i, δ
(d)

j̃

)

denote (N2 − 1)-dimensional

Lebesgue measure (surface measure) vector on face (F,BF ). Thus, there is a finite Borel

measure vector βF =
(

βF
ĩ
, β

F,(d)

j̃

)

on face F = (Fĩ, Fj̃) such that βF ≈ δ and

Eπ

{
∫ t

0
1A

(

Q̃(s)
)

dỸ (s)

}

= tβF (A), t ≥ 0, A ∈ BF ,

where Ỹ (t) =
(

Ỹ 0(t), Ỹ K(t)
)

. Notice that the SRBM Q̃(t) = (Q̃ĩ(t), Q̃
(d)

j̃
(t)) is a strong

Markov process with continuous sample paths. Furthermore, let p(x) =
(

pĩ(xĩ), p
(d)

j̃

(

x
(d)

j̃

))

,

pF (x) =
(

pF
ĩ

(

δ̃i
)

, p
F,(d)

j̃

(

δ
(d)

j̃

))

, and define dπ = pdx, i.e., dπĩ = pĩdxĩ for ĩ = σ(Si)

(i = 1, . . . , N) and dπ
(d)

j̃
= p

(d)

j̃
dx

(d)

j̃
for j̃ = σ(Rj→i) (i, j = 1, . . . , N with i 6= j, d = 1, 2).

Further, we define dβF = pFdδ, i.e., dβF
ĩ

= pF
ĩ
dδ̃i for ĩ = σ(Si) (i = 1, . . . , N) and

dβ
F,(d)

j̃
= p

F,(d)

j̃
dδ

(d)

j̃
for j̃ = σ(Rj→i) (i, j = 1, . . . , N with i 6= j, d = 1, 2). Let ∇f(x) be

the gradient of f , and C2
b (S) the space of twice differentiable functions whose first and

second order partial derivative are continuous and bounded on the state space S. Base on

this, it follows from the Ito’s formula that the probability measures p(x) and pF (x) have

a basic adjoint relationship as follows: for ∀f ∈ C2
b (S),

∫

S

(Lf(x)p(x)) dx+
N
∑

ĩ=1

∫

FH

ĩ

(Dĩf(δ̃i)p
F
ĩ
(δ̃i))dδ̃i +

2
∑

d=1

N2−N
∑

j̃=1

∫

FH

j̃

(Dj̃f(δ
(d)

j̃
)p

F,(d)

j̃
(δ

(d)

j̃
))dδ

(d)

j̃

+

N
∑

ĩ=1

∫

FN

ĩ

(Dĩf(δ̃i)p
F
ĩ
(δ̃i))dδ̃i +

2
∑

d=1

N2−N
∑

j̃=1

∫

FN

j̃

(Dj̃f(δ
(d)

j̃
)p

F,(d)

j̃
(δ

(d)

j̃
))dδ

(d)

j̃
= 0, (63)

where

Lf =

N
∑

ĩ=1

Lf(xĩ) +
2
∑

d=1

N2−N
∑

j̃

Lf(x(d)
j̃

),

for i, k, j = 1, . . . , N with i 6= j, d = 1, 2, and k̃ = σ(Sk), j̃ = σ(Rj→i), ĩ = σ(Si) ∈
{1, 2, . . . , N},

Lf(xĩ) =
1

2

N
∑

k̃=1

Γ
ĩ,k̃

∂2f(xĩ)

∂xĩ∂xk̃
+

1

2

2
∑

d=1

N2−N
∑

j̃=1

Γ
(d)

ĩ,j̃

∂2f(xĩ)

∂xĩ∂x
(d)

j̃

+ θĩ
∂f(xĩ)

∂xĩ
,

Dĩf(δ̃i) ≡ v′
ĩ
∇f(δ̃i) =

N
∑

k̃=1

v
k̃,̃i

∂

∂δ
k̃

f(δ̃i) +

2
∑

d=1

N2−N
∑

j̃=1

vj̃,̃i
∂

∂δ
(d)

j̃

f(δ̃i),

for l, k, i, j, h = 1, . . . , N with j 6= i, l 6= k and d = 1, 2, and l̃ = σ(Rl→k), h̃ = σ(Sh),

j̃ = σ(Rj→i) ∈ {1, 2, . . . , N2 −N},
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Lf(x(d)
j̃

) =
1

2

N
∑

h̃=1

Γ
(d)

j̃,h̃

∂2f(x
(d)

j̃
)

∂x
(d)

j̃
∂xh̃

+

N2−N
∑

l̃=1

Γ
(d)

j̃,l̃

∂2f(x
(d)

j̃
)

∂x
(d)

j̃
∂x

(d)

l̃

+ θ
(d)

j̃

∂f(x
(d)

j̃
)

∂x
(d)

j̃

,

Dj̃f(δ
(d)

j̃
) ≡ v′

j̃
∇f(δ

(d)

j̃
) =

N(N−1)
∑

l̃=1

v
l̃,j̃

∂

∂δ
(d)

l̃

f(δ
(d)

j̃
) +

N
∑

h̃=1

v
h̃,j̃

∂

∂δh̃
f(δ

(d)

j̃
),

FH

ĩ
and FN

ĩ
denote the “bottom face” and the “top face” in this box state space S cor-

responding to empty station i and full station i, respectively. As a similar expression, it

is clear that FH

j̃
and FN

j̃
are related to road j → i; v

k̃
is the k̃th column of the reflection

matrix R =
((

R0
ĩ

)

,
(

R
K,(d)

j̃

))

.

Now, we consider some key performance measures of the bike sharing system in terms of

the steady-state probability density function p on (S,BS) and an nonnegative integrable

Borel function pF on (F,BF ). Here, it is easy to see that for ĩ = 1, . . . , N and j̃ =

1, . . . , N(N − 1), the “bottom face” FH

ĩ
(FH

j̃
) and the “top face” FN

ĩ
(FN

j̃
) are precisely

parallel in this box state space S.

(1) The steady-state probability that station i is empty is given by

∫

S

pF
ĩ
1{x

ĩ
∈FH

ĩ
}dxĩ, for ĩ = σ(Si).

(2) The steady-state probability that station i is full is given by

∫

S

pF
ĩ
1{x

ĩ
∈FN

ĩ
}dxĩ, for ĩ = σ(Si).

(3) The steady-state probability that road j → i is empty for bikes of class d is given

by
∫

S

p
F,(d)

j̃
1{x(d)

j̃
∈FH

j̃
}dx

(d)

j̃
, for j̃ = σ(Rj→i), d = 1, 2.

(4) The steady-state probability that road j → i is full for bikes of class d is given by

∫

S

p
F,(d)

j̃
1{x(d)

j̃
∈FN

j̃
}dx

(d)

j̃
, for j̃ = σ(Rj→i), d = 1, 2.

(5) The steady-state means of the number of bikes parked at the station i and the

number of bikes of class d ridden on road j → i are respectively given by

Qĩ =

∫

S

xĩpĩ(xĩ)dxĩ, for ĩ = σ(Si),

Q(d)

j̃
=

∫

S

x
(d)

j̃
p
(d)

j̃

(

x
(d)

j̃

)

dx
(d)

j̃
, for j̃ = σ(Rj→i), d = 1, 2.
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(6) The steady-state mean of the number of bikes of class d deflecting from the full

station i is given by

E(d)

ĩ
=

∫

FN

ĩ

x
(d)

ĩ
p
F,(d)

ĩ

(

x
(d)

ĩ

)

dx
(d)

ĩ
, for ĩ = σ(Si), d = 1, 2.

8 Concluding Remarks

In this paper, we describe a more general large-scale bike sharing system having renewal

arrival processes and general travel times, and develop fluid and diffusion approximation

of a multiclass closed queuing network which is established from the bike sharing system

where bikes are regarded as virtual customers, and stations and roads are viewed as virtual

nodes or servers. From the multiclass closed queuing network, we show that the scaling

queue-length processes, which are set up by means of the number of bikes both at stations

and on roads, converge in distribution to a semimartingale reflecting Brownian motion.

Also, we obtain the Fluid Limit Theorem and the Diffusion Limit Theorem. Based on

this, we provide performance analysis of the bike sharing system. Therefore, the results of

this paper give new highlight in the study of more general large-scale bike sharing systems.

The methodology developed here can be applicable to deal with more general bike sharing

systems by means of the fluid and diffusion approximation. Along such a line, there are

some interesting directions in our future research, for example,

• analyzing bike repositioning policies through several fleets of trucks under informa-

tion technologies;

• making price regulation of bike sharing systems through Brownian approximation

of multiclass closed queuing network;

• developing heavy traffic approximation for time-varying or periodic bike sharing

systems; and

• developing heavy traffic approximation for new ride sharing (bike or car) systems

with scheduling, matching and control.
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