Skip to main content

Near/Far-Field Polarization-Dependent Responses from Plasmonic Nanoparticle Antennas

  • Conference paper
  • First Online:
Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 682))

  • 696 Accesses

Abstract

The localized surface plasmons of metallic nanoparticles are able to concentrate light into small volumes, which lead to a variety of fundamental studies and practical applications in plasmonics. For example, by strong coupling between metallic nanoparticles, plasmonic antennas are able to concentrate and re-emit light in a controllable way. A variety of structures of optical antennas have been investigated in in the past decade. The near- and far-field responses of the plasmonic nanoantennas for example, the intensity and phase distributions, and the emission polarization state are found to be sensitive to polarization. This sensitivity is determined to arise from structural properties including particle size, shape, spacing, relative positions and symmetry of nanoparticles. In this review, we will discuss our recent advances in plasmonic nanoparticle antennas from the polarization point of view, i.e., control of the incident polarization-dependent near-field enhancement, control of the (far-field) polarization of elastic or inelastic scattering light, and outlook the corresponding impacts in understanding physics and nanophotonic devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alu, A., Engheta, N.: Theory, modeling and features of optical nanoantennas. IEEE Trans. Antennas Propag. 61(4), 1508–1517 (2013)

    Article  Google Scholar 

  2. Giannini, V., Fernandez-Dominguez, A.I., Heck, S.C., Maier, S.A.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(6), 3888–3912 (2011)

    Article  Google Scholar 

  3. Xu, H., Bjerneld, E.J., Käll, M., Börjesson, L.: Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 83(21), 4357–4360 (1999)

    Article  Google Scholar 

  4. Shegai, T., Li, Z., Dadosh, T., Zhang, Z., Xu, H., Haran, G.: Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proc. Natl. Acad. Sci. U.S.A. 105(43), 16448–16453 (2008)

    Article  Google Scholar 

  5. Crozier, K.B., Zhu, W., Wang, D., Lin, S., Best, M.D., Camden, J.P.: Plasmonics for surface enhanced raman scattering: nanoantennas for single molecules. IEEE J. Sel. Top. Quantum Electron. 20(3), 152–162 (2014)

    Article  Google Scholar 

  6. Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F.: Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329(5994), 930–933 (2010)

    Article  Google Scholar 

  7. Li, Z., Hao, F., Huang, Y., Fang, Y., Nordlander, P., Xu, H.: Directional light emission from propagating surface plasmons of silver nanowires. Nano Lett. 9(12), 4383–4386 (2009)

    Article  Google Scholar 

  8. Li, Z., Zhang, S., Halas, N.J., Nordlander, P., Xu, H.: Coherent modulation of propagating plasmons in silver-nanowire-based structures. Small 7(5), 593–596 (2011)

    Article  Google Scholar 

  9. Li, Z., Bao, K., Fang, Y., Guan, Z., Halas, N.J., Nordlander, P., Xu, H.: Effect of a proximal substrate on plasmon propagation in silver nanowires. Phys. Rev. B 82(24) (2010)

    Google Scholar 

  10. Shegai, T., Miljković, V.D., Bao, K., Xu, H., Nordlander, P., Johansson, P., Käll, M.: Unidirectional broadband light emission from supported plasmonic nanowires. Nano Lett. 11(2), 706–711 (2011)

    Article  Google Scholar 

  11. Svedberg, F., Li, Z., Xu, H., Kall, M.: Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett. 6(12), 2639–2641 (2006)

    Article  Google Scholar 

  12. Wang, W., Li, Z., Gu, B., Zhang, Z., Xu, H.: Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering. ACS Nano 3(11), 3493–3496 (2009)

    Article  Google Scholar 

  13. Li, Z., Kall, M., Xu, H.: Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. Phys. Rev. B 77(8) (2008)

    Google Scholar 

  14. Lal, S., Clare, S.E., Halas, N.J.: Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41(12), 1842–1851 (2008)

    Article  Google Scholar 

  15. Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  Google Scholar 

  16. Kirchain, R., Kimerling, L.: A roadmap for nanophotonics. Nat. Photon. 1(6), 303–305 (2007)

    Article  Google Scholar 

  17. Rodríguez-Fortuño, F.J., Marino, G., Ginzburg, P., O’Connor, D., Martínez, A., Wurtz, G.A., Zayats, A.V.: Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340(6130), 328–330 (2013)

    Article  Google Scholar 

  18. Chuntonov, L., Haran, G.: Maximal Raman optical activity in hybrid single molecule-plasmonic nanostructures with multiple dipolar resonances. Nano Lett. 13(3), 1285–1290 (2013)

    Article  Google Scholar 

  19. Wang, H., Li, Z., Zhang, H., Wang, P., Wen, S.: Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer. Sci. Rep. 5, 8207 (2015)

    Article  Google Scholar 

  20. Tame, M.S., McEnery, K.R., Özdemir, Ş.K., Lee, J., Maier, S.A., Kim, M.S.: Quantum plasmonics. Nat. Phys. 9(6), 329–340 (2013)

    Article  Google Scholar 

  21. Yang, L., Wang, H., Fang, Y., Li, Z.: Polarization state of light scattered from quantum plasmonic dimer antennas. ACS Nano 10(1), 1580–1588 (2016)

    Article  Google Scholar 

  22. Luo, Y., Fernandez-Dominguez, A.I., Wiener, A., Maier, S.A., Pendry, J.B.: Surface plasmons and nonlocality: a simple model. Phys. Rev. Lett. 111(9), 093901 (2013)

    Article  Google Scholar 

  23. Li, Z., Shegai, T., Haran, G., Xu, H.: Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3(3), 637–642 (2009)

    Article  Google Scholar 

  24. Le Ru, E.C., Meyer, M., Etchegoin, P.G.: Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110(4), 1944–1948 (2006)

    Article  Google Scholar 

  25. Li, Z., Xu, H.: Nanoantenna effect of surface-enhanced Raman scattering: managing light with plasmons at the nanometer scale. Adv. Phys. X 1(3), 492–521 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61604041), the Natural Science Foundation of Fujian Province of China (2016J05147), the Startup Foundation of Fujian University of Technology (GY-Z160049), the Mid-youth Project of Education Bureau of Fujian Province (JAT160331), and the Fujian Provincial Major Research and Development Platform for the Technology of Numerical Control Equipment (2014H2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hancong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Wang, H. et al. (2018). Near/Far-Field Polarization-Dependent Responses from Plasmonic Nanoparticle Antennas. In: Krömer, P., Alba, E., Pan, JS., Snášel, V. (eds) Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2017. Advances in Intelligent Systems and Computing, vol 682. Springer, Cham. https://doi.org/10.1007/978-3-319-68527-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68527-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68526-7

  • Online ISBN: 978-3-319-68527-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics