Skip to main content

Efficient and Short Identity-Based Deniable Authenticated Encryption

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10603))

Included in the following conference series:

Abstract

Deniable authentication is an important security requirement for many applications that require user privacy protection, since the sender can deny that he/she has signed the message. Considering the importance of communication efficiency, in this paper, we explore the novel deniable authenticated encryption, which outperforms the existing ones in terms of communication costs and ciphertext size. Our protocol meets all the security requirement of message confidentiality and deniable message authentication. Our protocol is based on identity cryptography and can avoid the public key certificates based public key infrastructure (PKI). Our protocol is provably secure in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing Symposium on Theory of Computing (STOC 1998), Texas, USA, pp. 409–418 (1998)

    Google Scholar 

  2. Wang, B., Song, Z.: A non-interactive deniable authentication scheme based on designated verifier proofs. J. Inf. Sci. 179(6), 858–865 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Raimondo, M., Gennaro, R.: New approaches for deniable authentication. J. Crypto. 22(4), 572–615 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Tian, H., Chen, X., Jiang, Z.: Non-interactive deniable authentication protocols. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 142–159. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34704-7_12

    Chapter  Google Scholar 

  5. Youn, T., Lee, C., Park, Y.: An efficient non-interactive deniable authentication scheme based on trapdoor commitment schemes. Comput. Commun. 34(3), 353–357 (2011)

    Article  Google Scholar 

  6. Chen, Y., Chou, J.: ECC-Based non-interactive deniable authentication with designated verifier. IACR Cryptology ePrint Archive, p. 783 (2013)

    Google Scholar 

  7. Li, F., Xiong, P., Jin, C.: Identity-based deniable authentication for Ad Hoc networks. Computing 96(9), 843–853 (2014)

    Article  MATH  Google Scholar 

  8. Gambs, S., Onete, C., Robert, J.: Prover anonymous and deniable distance-bounding authentication. In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, pp. 501–506. ACM (2014)

    Google Scholar 

  9. Shi, W., Zhang, J., Zhou, Y., Yang, Y.G.: A novel quantum deniable authentication protocol without entanglement. Quantum Inf. Process. 14(6), 2183–2193 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zeng, S., Chen, Y., Tan, S., He, M.: Concurrently deniable ring authentication and its application to LBS in VANETs. Peer-to-Peer Netw. Appl. 10, 1–13 (2016)

    Google Scholar 

  11. Li, F., Hong, J., Omala, A.: Practical deniable authentication for pervasive computing environments. Wireless Netw. 1–11 (2016)

    Google Scholar 

  12. Harn, L., Ren, J.: Design of fully deniable authentication service for e-mail applications. Commun. Lett. 12(3), 219–221 (2008)

    Article  Google Scholar 

  13. Lu, R., Lin, X., Cao, Z., Qin, L., Liang, X.: A simple deniable authentication protocol based on the Diffie-Hellman algorithm. Int. J. Comput. Math. 85(9), 1315–1323 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yoon, E., Yoo, K., Yeo, S., Lee, C.: Robust deniable authentication protocol. Wireless Pers. Commun. 55(1), 81–90 (2010)

    Article  Google Scholar 

  15. Li, F., Takagi, T.: Cryptanalysis and improvement of robust deniable authentication protocol. Wireless Pers. Commun. 69(4), 1391–1398 (2013)

    Article  Google Scholar 

  16. Hwang, S., Sung, Y.: Confidential deniable authentication using promised signcryption. J. Syst. Softw. 84(10), 1652–1659 (2011)

    Article  Google Scholar 

  17. Harn, L., Lee, C., Lin, C., Chang, C.C.: Fully deniable message authentication protocols preserving confidentiality. Comput. J. 54(10), 1688–1699 (2011)

    Article  Google Scholar 

  18. Hwang, S., Sung, Y., Chi, J.: Deniable authentication protocols with confidentiality and anonymous fair protections. In: Pan, J.S., Yang, C.N., Lin, C.C. (eds.) Advances in Intelligent Systems and Applications, vol. 21, pp. 41–51. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35473-1_5

    Google Scholar 

  19. Li, F., Zhong, D., Takagi, T.: Efficient deniably authenticated encryption and its application to e-mail. IEEE Trans. Inf. Forensics Secur. 11(11), 2477–2486 (2016)

    Article  Google Scholar 

  20. Wu, W., Li, F.: An efficient identity-based deniable authenticated encryption scheme. KSII Trans. Internet Inf. Syst. (TIIS) 9(5), 1904–1919 (2015)

    Google Scholar 

  21. Li, F., Zheng, Z., Jin, C.: Identity-based deniable authenticated encryption and its application to e-mail system. Telecommun. Syst. 62(4), 625–639 (2016)

    Article  Google Scholar 

  22. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \( \ll \) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, pp. 165–179. Springer, Heidelberg (1997). doi:10.1007/BFb0052234

    Chapter  Google Scholar 

  23. Choon, J.C., Hee Cheon, J.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2003). doi:10.1007/3-540-36288-6_2

    Chapter  Google Scholar 

  24. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  25. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Crypto. 13(3), 61–396 (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant no. 61073176), the Natural Science Foundation of Jiangsu Province (grant no. BK20161302) and Electric Power Company Technology Project of Jiangsu Province (grant no. J2017123)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, C., Zhao, J. (2017). Efficient and Short Identity-Based Deniable Authenticated Encryption. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10603. Springer, Cham. https://doi.org/10.1007/978-3-319-68542-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68542-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68541-0

  • Online ISBN: 978-3-319-68542-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics