Skip to main content

Quantum Secret Sharing in Noisy Environment

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10603))

Abstract

As an unavoidable factor of real-world implementation of quantum cryptograph, quantum noise severally affects the security and reliability of the quantum system. In this paper, we study how QSS, an important branch of quantum cryptograph, is affected by noise or decoherence. QSS protocols for sharing classical information and quantum states are studied in four types of noise that usually encountered in real-world, i.e., the bit-flip, phase-flip (phase-damping), depolarizing and amplitude-damping noise, respectively. Two methods are introduced to evaluate the effect of noise. For the QSS protocol sharing classical information, the efficiency for generating secret key is used. Our results show that the efficiencies are quiet different from each other in four types of noise. While for the protocol sharing quantum states, the output states and the state-independent average fidelity are studied, respectively. It indicates that the players will get two different output states in the amplitude-damping noise, but get one output state in the other three types of noise. Besides, the state-independent average fidelity behaves differently from each other. Our study will be helpful for analyzing and improving quantum secure communications protocols in real-world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, New York, pp. 175–179. IEEE (1984)

    Google Scholar 

  2. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in bell states. Phys. Rev. Lett. 86(25), 5807 (2001)

    Article  Google Scholar 

  4. Wang, M.M., Chen, X.B., Yang, Y.X.: A blind quantum signature protocol using the GHZ states. Sci. China Phys. Mech. Astron. 56(9), 1636 (2013)

    Article  Google Scholar 

  5. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xia, Z., Wang, X., Sun, X., Wang, B.: Steganalysis of least significant bit matching using multi-order differences. Secur. Commun. Netw. 7(8), 1283 (2014)

    Article  Google Scholar 

  7. Xia, Z., Wang, X., Sun, X., Liu, Q., Xiong, N.: Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed. Tools Appl. 75(4), 1947 (2016)

    Article  Google Scholar 

  8. Ma, T., Zhou, J., Tang, M., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M., Lee, S.: Social network and tag sources based augmenting collaborative recommender system. IEICE Trans. Inf. Syst. E98–D(4), 902 (2015)

    Article  Google Scholar 

  9. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  Google Scholar 

  10. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340 (2016)

    Article  Google Scholar 

  11. Fu, Z., Sun, X., Liu, Q., Zhou, L., Shu, J.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. E98.B(1), 190 (2015)

    Article  Google Scholar 

  12. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546 (2016)

    Article  Google Scholar 

  13. Blakley, G.R.: Safeguarding cryptographic key. In: Proceedings of the 1979 AFIPS National Computer Conference, Monval, NJ, USA, pp. 313–317. AFIPS Press (1979)

    Google Scholar 

  14. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  Google Scholar 

  15. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78, 12344 (2008)

    Article  Google Scholar 

  16. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  Google Scholar 

  19. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  MathSciNet  Google Scholar 

  20. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)

    Article  Google Scholar 

  21. Badzia̧g, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62(1), 012311 (2000)

    Article  Google Scholar 

  22. Taketani, B.G., de Melo, F., de Matos Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85(2), 020301 (2012)

    Article  Google Scholar 

  23. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90(4), 042332 (2014)

    Article  Google Scholar 

  24. Rigolin, G., Fortes, R.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92(1), 012338 (2015)

    Article  Google Scholar 

  25. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)

    Article  Google Scholar 

  26. Chen, A.X., Deng, L., Li, J.H., Zhan, Z.M.: Remote preparation of an entangled state in nonideal conditions. Commun. Theor. Phys. 46(2), 221 (2006)

    Article  Google Scholar 

  27. Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53(7), 2236 (2014)

    Article  MATH  Google Scholar 

  28. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14(10), 3857 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15(11), 4805 (2016)

    Article  MATH  Google Scholar 

  30. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels (2016). arXiv:1608.06071

  31. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14(1), 4211 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  34. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  Google Scholar 

  35. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzcaronek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)

    Article  Google Scholar 

  36. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This project was supported by NSFC (Grant Nos. 61601358, 61373131), PAPD and CICAEET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, MM., Qu, ZG., Elhoseny, M. (2017). Quantum Secret Sharing in Noisy Environment. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10603. Springer, Cham. https://doi.org/10.1007/978-3-319-68542-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68542-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68541-0

  • Online ISBN: 978-3-319-68542-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics