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Abstract. Person Re-Identification is an important task in surveillance and
security systems. Whilst most methods work by extracting features from the
entire image, the best methods improve performance by prioritising features
from foreground regions during the feature extraction stage. In this paper, we
propose the use of a Partial Least Squares Regression model to predict the
skeleton of a person, allowing us to prioritise features from a person’s limbs
rather than from the background. Once the foreground area has been identified,
we use the LOMO [10] and Salient Colour Names [21] features. We then use the
XQDA [10] Distance Metric Learning method to compute the distance between
each of the feature vectors. Experiments on VIPeR [4], QMUL GRID [13–15]
and CUHK03 [9] data sets demonstrate significant improvements against state-
of-the-art.

1 Introduction

Person Re-Identification, or simply ReID, is the process of automatically identifying
someone from a gallery of images that has the same identity as a person presented
in an new image, and it has a number of important applications in surveillance,
people-monitoring and biometrics. Re-Identification is challenging because often ex-
ample images are taken with non-overlapping cameras, e.g. for a CCTV network, and
consequently the images will exhibit large variations in person pose, illumination, and
resolution. There are generally two main components in most ReID systems, feature
extraction and distance metric learning. Feature extraction defines the process of ob-
taining a robust descriptor of the person, using features such as colour and texture,
often chosen because of their robustness to varying illumination.

To overcome the problem of pose variation, many methods, such as [21], split person
images into several bands of stripes, and extract colour histograms separately. This
aims to maintain spatial information and enables matching to be done area-by-area
rather than image-by-image, improving results. However, background information is
also preserved, leading to some information irrelevant to the matching process. In [21],
a Gaussian distribution is used to weight pixels according to their distance from the
centre of the image where they are more likely to represent a persons body, but is less
successful when a person is walking perpendicular to the camera and has their legs
spread widely apart. Symmetry-Driven Accumulation of Local Features is proposed
in [2], where the person image is divided into three parts - the head, torso and legs,
and a vertical axis of symmetry is found. This is achieved by finding vertical axes
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which separate regions with strongly different appearances. Then, a HSV histogram,
Maximally Stable Colour Regions [3] and Recurrent Highly Structured Patches [2] are
extracted. The use of three parts as well as a vertical axis of symmetry maintains some
spatial information by allowing the system to partially know which areas represent a
person’s body. However, it still assumes that foreground information is always closer
to the centre of the image.

Another method that has been used widely for foreground modelling is Stel Com-
ponent Analysis (SCA) [5] and attempts to capture the structure of images of a given
type, by splitting the image into small areas (stels) that have a common feature dis-
tribution [2, 21]. However, if any single component of an image has a wider feature
distribution, or if its feature distribution is similar to the background, both regions
may be merged. This may lead to a significant portion of the image being misclassified.
For feature extraction, Yang et al. [21] proposed Salient Colour Names, where pixels
colours are quantised by their distance from sixteen named colours in the RGB space.
The authors argue that whilst the foreground information is highly important, back-
ground information may also be important to give context, and extract features from
both the foreground and the background, but placing priority on the foreground re-
gions. We employ a similar approach to feature weighting, extracting features from the
entire image but giving a higher weighting to those from the foreground. In LOMO [10],
each person image is split into ten by ten pixel patches with an overlap of five pixels in
each dimension. A HSV joint histogram and a Scale Invariant Local Ternary Pattern
(SILTP) texture histogram [12] is then extracted from each patch. Afterwards, each
row of patches is analysed, with the highest value in each bin taken to form the final
histogram descriptor across that row. The histograms for each row are summed to form
the descriptor. This helps achieve some invariance to viewpoint changes. The image is
then downscaled by a factor of two and four and the process is repeated. The feature
descriptors are then concatenated together. Our proposed foreground segmentation al-
gorithm is used with the LOMO and Salient Colour Names [21] features, extracting
from the entire image whilst weighting pixels more highly from the foreground.

In recent years, multi-layer convolutional neural networks (CNNs) have been shown
to be effective for the ReID matching problem, e.g. [9], in some cases out-performing
traditional feature extraction and matching learning methods. Because CNNs consists
of many millions of weight parameters which have to be learned though training, they
require many thousands of training samples, which restricts their use on some limited
gallery ReID data, and where they are effective, the matching requires re-presentation
of all the gallery data to the network during matching, and thus can be inefficient to
use. One way to generalise training data is by data augmentation through warping,
but the set of transformations required allow for small view point changes, but pose
changes cannot easily be made without an appearance model of people.

In this paper, we propose a person Re-Identification method which predicts the
skeleton and relative widths of the torso and limbs of a person prior to the feature
extraction stage. We use supervised learning in order to calculate a regression between
the appearance of an image and the skeleton landmarks and is achieved through Partial
Least Squares. We show using this method that the Rank-1 rate can be significantly
improved in a traditional ReID approach. We detail the method and present compara-
tive experimental results using the VIPeR [4], QMUL GRID [13–15] and CUHK03 [9]
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Fig. 1. (a) System diagram of the proposed method showing PLS model building, feature
extraction and matching; (b) Examples of appearance representation using HOG features.

data sets. In conclusion, we make proposals of how our appearance model might be
used for video ReID and perhaps in conjunction with a CNN for data augmentation
during network training.

2 Method

In this section, we describe our method which uses a novel skeleton fitting approach
to model the image foreground, and then it is combined with robust feature extraction
and a distance metric learning to perform matching.

2.1 Partial Least Squares Foreground Appearance Modelling

To predict the skeleton of each person, we learn a regression between the appearance of
a person image and a set of landmarks which define a persons skeleton: head, torso and
limbs. We use of a Partial Least Squares Regression model to compute the regression.

Let X = (x1,x2, ...,xn) be a matrix of image appearances, where each column is
a feature vector extracted from a set of n images. Each vector consists of the con-
catenation of several local shape and texture features extracted from different patches
of an image. Similarly, Y = (y1,y2, ...,yn) is a matrix where each column consists
of a series of co-ordinates representing skeleton keypoints, one for each corresponding
image appearance. In constructing y, each skeleton limb is specified by three points:
(p,q, r), representing the ends of the limbs along their centre line and the a point
located perpendicular to its axis, defining the limb width.

Partial Least Squares [17] (PLS) is used to find a linear decomposition of X and Y
such that:

X = TPT + E, Y = UQT + F, (1)

where T and U are the score matrices, P and Q are the loading matrices, and E and F
represent residual matrices of X and Y respectively. Unlike PCA, the PLS algorithm
initially computes weight vectors w and c such that greatest variation in X and Y
is captured. It can be shown that, in this case, weight vector w is the eigenvector
corresponding to the largest eigenvalue of XTY Y TX, and similarly, c is the principal
eigenvector of Y TXXTY . The score vectors are then be used to deflate X and Y

X
′

= X − ttTX, Y
′

= Y − ttTY, (2)
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Fig. 2. Examples of PLS skeleton fitting. Each set of four images shows: original, ground-truth,
PLS fitted result, foreground segmented mask.

and the process is repeated for X
′

and Y
′

until the residuals are below a required
threshold and all score vectors t and u have been extracted.

Having calculated the score matrices, T and U , to predict a skeleton given a test
instance of an image appearance, xi, then

ŷi = P+Qxi (3)

where P = (TTT )−1TTX ′ and Q = (UTU)−1UTY ′ and P+ is the Moore-Penrose
inverse of P .

To learn the PLS regression, we take a set of training images and extract HOG
features on a regular grid across (Figure 1(b)) the image to form our appearances,
and regress them to corresponding landmarks by solving for P+Q. In our method,
the appearance X is represented by these Histogram of Oriented Gradients features.
Figure 2 shows examples of skeleton fitting on a trained PLS model. The method can
be trained to work with both frontal and sideways views.

2.2 Foreground feature extraction and feature weighting

Having located the foreground regions (person) with the PLS skeleton fitting, we apply
a feature extraction stage and use weighted Local Maximal Occurrence (LOMO) [10]
and Salient Colour Names [21].

Weighted LOMO We modify LOMO [10] such that foreground regions are prioritised
over background by feature weighting. LOMO begins by applying a colour normalisa-
tion step using the Retinex algorithm [8] to make the images of the same person from
different cameras with different illumination conditions appear more consistent. LOMO
features are taken from overlapping image patches across the image. HSV histograms
and SILTP histograms over three scales [12] are integrated in a combined feature. Then
by taking the maximum value in each bin, some invariance to viewpoint variations is
gained.

In [21] and [18], the authors discuss the benefits of background in providing context
for the problem of People Re-Identification. However, both methods extract not only
from the entire image, but also from the foreground areas again, concatenating both
to form the final feature. In our work, because the skeleton of each person has been
estimated, we use an image mask to weight the LOMO features as they are accumulated
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by the percentage of predicted foreground in each feature patch which overlaps with
the foreground mask:

fw(B) =
|F ∩B|
|B|

f(B), (4)

where B is the set of pixels in the image patch and F is the set of pixels labelled
foreground. Once all patches in a row have been weighted, the maximum value for each
bin in that row can be taken towards the final descriptor. In the experiments presented
below, we use the code given by [10] to extract the LOMO features, and alter them as
described prior in order to prioritise the features from the foreground.

Salient Colour Names Salient Colour Names [21] define sixteen coordinates in the
RGB space of carefully chosen colours, e.g. fuchsia, blue, aqua, lime, etc., extending
the Colour Names [19] method, which has only eleven. The RGB colour space is then
first quantized into 32 × 32 × 32 indexes, d, with each index having 512 quite similar
colours, w. The set of colour names are defined as coordinates in the RGB space,
Z = {z1, z2, ..., z16}, and a mapping (posterior probability) from a given index colour
d and a colour name distribution over Z is calculated. The process is a form of vector
quantisation, and similar to the concept of a Bag of Words, and has the advantage for
being able to assign multiple similar colours to similar colour name distributions.

Then a mapping posterior probability distribution is factorised into two terms:

p(z|d) =

512∑
j=1

p(z|wj)p(wj |d), (5)

where the first term is a distribution of probabilities p(z|w) calculated as normally
distributed variates of the closest K colour name given a quantized colours wj (i.e.
one of those that fall within a discretization bin di). Note that variance of this dis-
tribution is estimated over K − 1 colours not in the nearest K nearest neighbour set,

1
K−1

∑
zk 6=z p(zk|zj):

p(z|wj) =
exp(−‖z−wj‖2/ 1

K−1
∑

zi 6=z ‖zi −wj‖2)∑
k exp(−‖z−wk‖2/ 1

K−1
∑

zi 6=z ‖zi −wj‖2)
(6)

The second term of Eq. 5, p(w|d), models the variance wj at sample di, against its
mean value, µ, capturing how likely many similar colours are being captured at this
position. The more similar colours that are present, the larger this value.

p(wj |d) =
exp(−α|wj − µ|2)∑512
k=1 exp(−α|wk − µ|2)

. (7)

Together the two terms capturing how similar or salient colour names are, to the sample
colour indexes di. Multiple similar colours result in similar colour name distributions
and thus providing greater illumination variation. The salient colour name colour dis-
tributions can be computed off-line, and so are computationally efficient when used.
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Finally, similarly to the LOMO feature, a log transform is applied to the Salient
Colour Names features, and each histogram is normalised to a unit length. This de-
scriptor is concatenated with the weighted LOMO features to form our final feature
descriptor.

2.3 Distance Metric Learning

A metric for measuring the distance between feature descriptors is used at the matching
stage. KISSME [6] calculates the distance between two feature vectors as:

τ2M (fi, fj) = (fi − fj)
T (Σ−1I −Σ−1E )(fi − fj). (8)

with the intra-personal, ΣI , and extra-personal, ΣE , scatter matrices. Here, we use
Cross-view Quadratic Discriminant Analysis (XQDA) [10], which extends KISSME.
With KISSME, it is possible to perform dimensionality reduction prior to estimating ΣI

and ΣE by performing PCA on the input vectors. XQDA however considers the metric
learning and the dimensionality reduction together. If D is the original dimensionality
of the data and R the required reduced dimensionality, XQDA learns a subspace W =
(w1,w2, ...,wR) ∈ RR, whilst simultaneously learning a distance function:

dw(fi, fj) = (fi − fj)
TW (Σ

′−1
I −Σ

′−1
E )WT (fi − fj) (9)

where Σ
′

I = WTΣIW and similarly Σ
′

E = WTΣEW . Directly optimising dw is not
possible because of the presence of two inverse matrices. As the distribution of intra-
personal and extra-personal distances have zero mean, a traditional LDA cannot be
used to determineW . Instead, for any projection direction w, which is a column ofW , it
is possible to maximise the ratio of variances σ2

E(w)/σ2
I (w). Since however, σ2

E(w) =
wTΣEw and similarly σ2

I (w) = wTΣEw, the objective function is the Generalised
Rayleigh Quotient:

J(w) =
wTΣEw

wTΣIw
. (10)

We can solve for w by a generalised eigenvalue decomposition in the same way as LDA
is solved by maximising

max
w

wTΣEw, s.t. w
TΣIw = 1. (11)

The columns of W are the R eigenvectors of Σ−1I ΣE taken in decreasing order of
eigenvalue. Liao et al. [10], have advice on how to make the distance learning calculation
robust and computationally efficient. Features extracted from training images using the
ground-truth skeletons can be passed to XQDA in order to learn a distance metric.

3 Results and Discussion

In our experimentation, we define a skeleton of twenty-nine points representing fourteen
limbs, where each limb consists of two end-points, and a third point to locate the limb
edge. The bottom point of each limb is also the top point of the following limb. For
our PLS models, we extract the top fifteen components for the Skeleton appearance
models. We use three data sets for our experiments:
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– VIPeR: VIPeR [4] contains 632 image pairs, each with a size of 128 × 48 pixels.
Images in the VIPeR data set are captured using two cameras, and have large
variations with pose and illumination, and also contain occlusion.

– QMUL GRID: QMUL GRID [13–15] consists of 250 person image pairs, taken from
eight disjoint cameras in an underground public transport station. In addition,
there are also 775 identities consisting of only one image. Images come in varying
sizes. This data set suffers from severe occlusion, as well as variations in pose and
illumination. Colour is not as vibrant as in the other data sets, and significant noise
is present in the images.

– CUHK03: CUHK03 [9] is the largest widely-used data set in this area, consisting
of 1360 identities across two cameras per identity. Each individual has an average
of about five images per camera view. Images are obtained by taking stills from
a video sequence over several months, and thus suffer from varying illumination
conditions. This data set also suffers from pose variations and occlusion. Images
are cropped using both manual cropping and a person detector.

From all data sets, we extract Histogram of Oriented Gradients (HOG) features
from the standard, non-Retinex images, using a cell size of 6 pixels and a block size of
2 pixels. From the VIPeR data set, we extract the HOG features from the V channel
of the HSV colour space, in order to build PLS regression models. The VIPeR data set
provides person orientation information for each image, and thus we can split the images
in to two partitions - perpendicular to the camera or otherwise. We build separate PLS
models for each partition and learn a classifier for model selection. Examples of skeleton
fits and the best and worst fitting results on VIPeR are shown in Figure 3. The fitting
fails on the few images where a person has their arms raised above their heads.

(a) (b) (c)

Fig. 3. Examples of the ground-truth and predicted skeletons from VIPeR: (a) A random
image with a RMSE of 3.8 pixels; (b) The image with the minimum RMSE of 1.8 pixels; (c)
The image with the maximum RMSE of 16.0 pixels. The average RMSE is 5.2 pixels.

We use the experimental procedures used in various literature, e.g. [10] [2]. The
training and testing sets are split randomly into even sized sets, with 316 identities
used for each. We repeat our experiment ten times, averaging the scores to produce
our final result. From Table 1, we can see that by concatenating the original LOMO
features with features primarily from the foreground (PLSAM(v1)), we can achieve an
increase in all measured Rank scores and demonstrates that our method produces a



8

VIPeR QMUL GRID CUHK03

r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

PLSAM(v2) 46.3 75.0 85.6 93.9 26.7 47.9 59.0 68.2 65.2 89.8 95.0 97.9

PLSAM(v1) 42.8 71.9 82.0 91.9 23.9 41.8 51.0 61.4 64.6 89.2 94.9 98.1

Null Space [23] 42.3 71.5 82.9 92.1 - - - - 58.9 85.6 92.5 96.3

MLAPG [11] 40.7 69.9 82.3 92.4 16.6 33.1 41.2 53.0 58.0 87.1 94.7 98.0

DeepList [20] 40.5 69.2 81.0 91.2 - - - - 55.9 86.3 93.7 98.0

LOMO+XQDA [10] 40.3 68.3 80.9 91.1 17.3 36.3 44.8 55.4 54.9 85.3 92.6 97.1

FPNN [9] - - - - - - - - 20.7 50.9 67.0 83.0

Table 1. A comparison of state-of-the-art methods: VIPeR [4] data set with 316 person
identities were allocated for training, and 316 for testing; QMUL GRID [13–15] data set
with 125 person identities were allocated for training, and 900 for testing, where the testing
identities contained 125 image pairs and 775 single images; CUHK03 [9] data set with 1160
person identities were allocated for training, and 100 for testing. For the test set, one image
of each identity was taken to form the gallery set. Every probe image in the test set was
compared to every gallery image in the test set. PLSAM(v2) is with weighted LOMO and
Salient Colour Names features and XQDA; PLSAM(v1) is with weighted LOMO and XQDA.

much more robust person descriptor. When concatenated with Salient Colour Names
features (PLSAM(v2)), the results increase further. This is unsurprising, due to how
distinct are the clothing colours in the VIPeR data set. Overall, we can see a 4.0%
increase when comparing our method to the state-of-the-art. The CMC curve plots are
given in Figure 4.

For the QMUL GRID data set, we resize each image to 128 × 48 pixels. PLS
models are built from HOG features from the V channel of the HSV colour model.
Whilst we use two view PLS models for the VIPeR data set, only a single model is
used for the QMUL GRID data set because most people in this data set are facing
either towards or away from the camera. Examples of skeleton fits and the best and
worst fitting results on QMUL GRID are shown in Figure 5. Again, because of lack of
sufficient training examples, the fitting fails on people with raised arms. We use the
experimental protocols used in various literature [10] [16]. The training and testing
sets are split evenly, with 125 identities used for each. The 775 images which do not
belong to an image pair are added to the gallery set and we run our experiment ten
times, averaging the scores to produce the final result. Table 1 again shows that both
PLSAM(v1) and PLSAM(v2) out-perform other methods. As the cameras are located
in a busy station, this data has a high level of occlusion and overlapping people in
the background and particularly benefits from foreground modelling, producing more
representative person descriptors. The CMC curve is plotted in Figure 4.

For the CUHK03 data set, we use the manually cropped images for our experiments.
We resize all images to a resolution of 128 × 48 pixels. However, to take advantage of
the higher source resolution in some images in this data set, for the feature extraction
(LOMO and weighted LOMO) and orientation modelling stages, we resize to 160 ×
60 pixels. All images in the first camera of each camera pair form one orientation,
whilst the other forms the second orientation. We extract HOG features from the
Y channel of the YIQ colour model, rather than the V channel of the HSV colour
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Fig. 4. CMC on the VIPeR data set [4], QMUL GRID data set [13–15] and, CUHK03 data
sets [9]. All of our CMC curves are single-shot results. Results are reproduced from [10], [22], [9]
and [11].

model. Whilst we build a CUHK03-specific model for the orientation prediction, for
the skeleton fitting stage, we re-used the VIPeR PLS skeleton appearance models, i.e.
we do not perform any separate skeleton appearance model training on this data set.
Visually the two data sets are quite similar with regards to the camera viewpoints. Our
experimentation protocol follow [10] and [9] by splitting the images into a training set
of 1160 identities and a test set of 100 identities. We run our experiments twenty times,
and average to produce the final results. The results (Table 1), show PLSAM(v1) gives
an improvement in the Rank-1 score by 5.7%. With the addition of Salient Colour
Names features, PLASM(v2), the Rank-1 score instead improves by 6.3%. The CMC
curve can be seen in Figure 4.

4 Conclusions

In this paper, we demonstrated the advantages of using a skeleton appearance model
to identify locations of torso and limbs from a person image. Partial Least Squares
regression is used on appearance features from training images, and corresponding
hand-marked skeleton data to build a model for predicting the foreground region of an
new image. We use the foreground to locate and prioritise feature extraction to create
a robust feature descriptor less sensitive to background clutter and occlusion. Our
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(a) (b) (c)

Fig. 5. Examples of the ground-truth and the predicted skeleton from the QMUL GRID data
set: (a) A random image with a RMSE of 3.9 pixels; (b) The image with the minimum RMSE
of 2.3 pixels; (c) The image with the maximum RMSE of 17.7 pixels. The average RMSE over
the entire test is 5.3 pixels.

comparative analysis, using state-of-art feature extraction (LOMO and Salient Colour
Names) and XQDA distance metric learning, demonstrate a superior matching accuracy
when feature extraction is weighted by our foreground estimation. Experiments on the
VIPeR, QMUL GRID and CUHK03 data sets show that the proposed method achieves
an improvement when vs. the the LOMO feature of 6.0%, 9.4% and 10.3% respectively
in the Rank-1 matching rate. An improvement of 4.0%, 9.4% and 6.3% respectively in
the Rank-1 matching rate is observed vs. other state-of-the-art methods.

In the case of CUHK03, we show that the skeleton fitting foreground model learnt
on one data set, in this case VIPeR, generalises to a different camera view without
the need to retrain. For the orientation in VIPeR, we fitted two separate foreground
models: one for frontal views and one for sideways views. The model selection process
seems to work well in our experiments, and might be extended to multiple views from
a network of cameras.

Our further work is focused on using the skeleton fitting in the context of a deep
learning (CNN) architecture [1]. We are working on using the PLS model to train a de-
convolution CNN to perform foreground modelling and will compare the performance.
The non-linearities inherent in neural network regression models might preclude the
need to use multiple linear PLS models for varying viewpoints. We also think the PLS
models may prove useful in data augmentation for CNN training where the number
of training examples is limited, which might be achieved by synthesising appearance
model instances from a PCA of the learnt space of variation, e.g. [24].
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