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Abstract. Face authentication has been shown to be vulnerable against three
main kinds of attacks: print, replay, and 3D mask. Among those, video replay
attacks appear more challenging to be detected. There exist in the literature many
countermeasures to face spoofing attacks, but a sophisticated detector is still
needed to deal with particularly high-quality video based attacks. In this work,
we perform analysis on the noise residual in frequency domain, and extract dis-
criminative features by using a dynamic texture descriptor to characterize video
based spoofing attacks. We propose a promising detector, which produces com-
petitive results on the most challenging dataset of video based spoofing.
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1 Introduction

Among many applications of biometric authentication, face authentication has been
considered as an efficient and reliable access control mechanism. A face authentication
system works in less intrusive manner, which requires little cooperation from users.
Thanks to the advances in face detection and recognition, a face authentication system
can be flawlessly deployed on low-cost devices.

”Fingerprints cannot lie, but liars can make fingerprints.” [7]

Like other biometric modalities, a face authentication system can be bypassed easily
even at very low cost. We group such spoofing attacks into three main categories: i)
Print attacks: the use of printed photo of an authorized user, ii) Replay attacks: a photo
or a video of an authorized user is replayed on a digital screen, iii) 3D mask attacks: the
authorized user’s face is simulated by 3D mask. The vulnerability of face authentication
system to spoofing attacks has motivated plenty of proposed countermeasures in the past
few years.

One of first attempts to detect print attacks is introduced in [1]. By analyzing the
total amount of movements over video frames, print attacks can be effectively de-
tected. This explains the great success, i.e., high performance detection accuracy [13],
of motion-based methods. While print attacks leave clear and inevitable evidences, pho-
tos or videos replayed on a digital screen are more challenging to be detected [4, 15].
Replayed photos are generally in higher quality (e.g., color, contrast) compared with
printed photos, and replayed videos can easily fool an authentication system since the



face in a high quality video and a real face are almost indistinguishable. By the advance
of 3D printing techniques, another kind of face spoofing attack has been introduced in
[5], the so-called 3D mask attacks. In [5] the vulnerability of face authentication system
to spoofing with 3D masks is shown.

In this work, our concentration is placed on video-based attacks which refer to
replaying a video on a digital screen. A number of approaches have been proposed
[14, 9, 8, 2, 6, 11, 10], and we classify them into two main categories: spatial domain
and frequency domain analysis.

Methods performing analyses on spatial domain take into account directly the pixel
values of the suspected image. In [14], discriminative features characterizing spoofing
attacks are extracted, such as specular reflection, blurriness, chromatic moment, and
color diversity. Multiple classifiers are trained based on the concatenation of all ex-
tracted features and final decision is given by taking mutual information from multiple
classifiers. Another approach exploiting dynamic texture descriptor has been introduced
in [9]. In this work, the authors extend Local Derivative Pattern (LDP) to LDP on Three
Orthogonal Planes (LDP-TOP) in order to capture highly detailed information on spatial
domain as well as subtle face movements over frames. By analyzing image distortion
artifacts such as reflection, color distribution, Moiré patterns (i.e., overlapping grids)
and face shape deformation, the authors in [8] have developed a countermeasure to
spoofing attacks on mobile phones. Most recently, the analysis on disparities between
color texture of genuine faces and fake ones is investigated in [2]. The authors show that
the use of YCbCr and HSV color spaces results in generally better detection accuracy.

Despite the success of methods relying on spatial domain analysis, discriminative
features extract in spatial domain may become scene-dependent. Roughly speaking,
instead of addressing only artifacts of spoofing attacks, spatial domain models learn
also redundant information of the scene. Frequency domain analysis focuses on peri-
odic patterns, i.e., Moiré patterns, which present as peaks in the spectrum image. Such
periodic patterns are independent to image scene. In [6], the authors extract Moiré pat-
terns from still images using a bandpass filter and make analysis on frequency domain.
A large-scale dataset dedicated to video-based attacks is introduced in [11]. This is a
challenging dataset containing huge number of videos recorded under different envi-
ronmental conditions. The authors also provide a baseline method analyzing the noise
residual of the video in terms of visual rhythms. Another method dedicated to noise
analysis is mentioned in [10]. Instead of extracting only low-level features which are
basically artifacts on the spectrum video, to reduce the sensitivity between intra- and
extra-class variations, the authors propose to extract also mid-level features as visual
codebooks from low-level features.

In this work, we select to analyze artifacts on frequency domain for some reasons.
First, it is challenging to extract discriminative features on the spatial domain due to the
contamination of the scene. Despite good detection performance on some benchmark-
ing datasets, methods on the spatial domain tend to get overfitted on specific conditions
of capturing. This results in the low generality in real applications where attempted at-
tacks might be performed in various conditions. Moreover, most of methods on the spa-
tial domain rely on the reliability of face detection and tracking algorithms, which are
not always successful under poor conditions. We propose to analyze the spectrum video



by using a dynamic (spatial-temporal) texture descriptor. Dynamic texture descriptor is
able to capture not only highly detailed information on spatial domain but also subtle
changes over time. Thanks to the success of Local Derivative Pattern on Three Orthog-
onal Planes (LDP-TOP) [9], we select LDP-TOP as the descriptor. The main difference
to [9] is that we use LDP-TOP to analyze discriminative textures of spectrum videos.
Our proposed method outperforms two recent and closely related works on large-scale
dataset of video-based attacks in terms of detection accuracy. By analyzing only the
noise residual, we can skip face detection and tracking which require more computa-
tion and depend heavily on environmental conditions.

The paper is structured as follows: Section 2 presents in detail the schema of the
proposed methods, and experimental analysis is described in Section 3. In Section 4,
we draw some conclusions.

2 The proposed method

2.1 The recaptured artifacts

Video-based spoofing attacks can easily bypass the authentication system because the
face in a high quality video is nearly indistinguishable with the real face. Nevertheless,
when the camera records a digital display, the resulting video presents a number of
visible artifacts:

– Moiré pattern: In recaptured videos, Moiré patterns occur in the form of visible
periodic or almost periodic patterns in every video frame. Specifically, the sampling
grid of the displaying device is overlaid by the sampling grid of acquisition device
resulting the third grid pattern. Misalignment between the two devices also causes
different observable forms of Moiré patterns. Shown in Figure 1 (a) is the Moiré
pattern generated from two overlaid patterns containing parallel lines. Fig. 1 (b) is
original image shown in Macbook Pro screen, Fig. 1 (c) and 1 (d) show images
captured from Macbook Pro screen by HTC Desire HD phone and Apple Ipad Air,
respectively. Note that the original image is taken from UVAD dataset [11].

(a) (b) (c) (d)

Fig. 1. Examples of Moiré patterns.



(a) (b)

Fig. 2. Example of flickering effect.

– Flickering effect: This effect corresponds to horizontal or vertical lines of equal
spaces, caused by the desynchronization between the flashing frequencies of dis-
playing and acquisition device. These noticeable lines might move vertically or hori-
zontally over video frames. Shown in Fig. 2 (a) is an example of flickering effect ob-
served when capturing the image from a screen display by the Olympus SP 800UZ.
The alignment of these effects is highlighted in Fig. 2 (b).

– Other artifacts: Besides Moiré patterns and flickering effects, a recaptured video is
generally blurred compared with the original video. The change in color tone can be
also observed according to different acquisition devices.

Since aforementioned artifacts are independent to image scene, they should be iso-
lated from the content of the image by using an image filter. Moiré pattern and flickering
effect are almost periodic, they are characterized by high-energy peaks in the frequency
domain. A practical way of detecting such artifacts is to perform Fourier transform of
the suspected image, and apply a matched filter to the transformed image. This naive
approach might result in many false detections. On the other hand, blurring artifact im-
plies the increase of low frequency components which are challenging to be detected
by simple thresholding.

2.2 Processing pipeline

The complete processing pipeline of the proposed method is presented in Fig. 3 and
includes three main steps:

A. Noise extraction and spectrum calculation

Since all artifacts present entirely on every frame, we first define a region of interest
(RoI) in the spatial domain. Taking into account RoI of size w × h, we can reduce
greatly the computation time of our proposed method. Denote the frame t-th of the
video V as V (t), we extract its residual by applying a denoising filter F and subtracting
the denoised frame from V (t) to obtain V (t)

r .

V (t)
r = V (t) −F(V (t)), 1 ≤ t ≤M, (1)
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Fig. 3. Schema of the proposed method.

where M is the number of frames. The noise residual V (t)
r contains the noise pattern of

frame t-th. Let V (t)
f denote the presentation of V (t)

r on the frequency domain. V (t)
f is

calculated using 2D Discrete Fourier Transform (DFT ).

V
(t)
f = DFT (V (t)

r ) (2)

To get the final spectrum video Vs, we collect all Fourier spectrum |V (t)
f |, and cal-

culate their logarithmic scale.

V (t)
s = log(|V (t)

f |+ 1) (3)

B. Histogram extraction

In this work, we treat the Fourier transformed video (spectrum video) as a three-
dimensional texture map, and then apply a sophisticated local descriptor on the spec-
trum video in order to extract meaningful features. We select our previously proposed
Local Derivative Pattern on Three Orthogonal Planes, the so-called LDP-TOP [9], as
the descriptor thanks to its success in spoofing detection. It worths noting that in this
work, we apply LDP-TOP to analyze discriminative textures of spectrum videos, i.e.,
not on the spatial domain as in [9].

Given the image I , the first-order derivative along each direction α = {0◦, 45◦, 90◦,
135◦} is denoted as Iα. LetZ0 be a pixel, andZi, i = 1, · · · , 8 be the neighboring pixels
around Z0. The four first-order derivatives at Z = Z0 can be written as:

I0◦ (Z0) = I(Z0)− I(Z4) I45◦ (Z0) = I(Z0)− I(Z3)
I90◦ (Z0) = I(Z0)− I(Z2) I135◦ (Z0) = I(Z0)− I(Z1)

Z1Z2Z3

Z8Z0Z4

Z7Z6Z5

Generally, the nth-order directional LDP, LDPnα(Z0), in direction α at Z = Z0 is
defined as:

LDPnα(Z0) = {f(In−1
α (Z0), I

n−1
α (Z1), · · · , f(In−1

α (Z0), I
n−1
α (Z8)}, (4)

where In−1
α (Z0) is the (n − 1)th-order derivative in direction α at Z = Z0, and

f(In−1
α (Z0), I

n−1
α (Zi)) is defined as



f(In−1
α (Z0), I

n−1
α (Zi)) =

{
0, if In−1

α (Zi) · In−1
α (Z0) > 0

1, if In−1
α (Zi) · In−1

α (Z0) ≤ 0
, i = 1, · · · , 8. (5)

Equation (4) encodes (n − 1)th-order gradient transitions, resulting the nth-order
binary pattern on the local region. Binary patterns are represented in 4 histograms, each
describing a specific direction. This way, the final histogram contains 4× 28 bins.

We consider the time window size Tws (Tws ≤M ) as the number of chronological-
order frames. Only the first Tws frames are taken into account for histogram extraction.
In Fig. 3, three planes XY,XT, Y T are pair-wise orthogonal, where XY corresponds
to a frame of the spectrum video. XT, Y T refer to horizontal and vertical planes. As a
result, we end up three 2D texture maps of size w × h, w × Tws, and h× Tws.

Histogram of LDP-TOP is the concatenation of three LDP histograms from three
orthogonal planes. Finally we end up a feature vector of dimension 3× 4× 28.

C. Classification

We use Support Vector Machine (SVM) [3] to learn and detect video-based attacks.
Specifically, we embed the Histogram Intersection Kernel (HIK) as the kernel of SVM.
HIK was introduced in [12] to compare color histograms. A HIK between two his-
togram a and b is simply defined as:

K(a, b) =

n∑
i=1

min(ai, bi), ai ≥ 0, bi ≥ 0. (6)

In the next section, we present how parameters are experimentally selected and give
some insights on the effectiveness of the proposed method.

3 Experimental analysis

3.1 Parameter selection

We validate the effectiveness of the proposed method on the Unicamp Video-Attack
Database (UVAD) [11]. This dataset contains valid access and attempted attack videos
of 404 different identities. Each video is recorded at high quality, 30 frames per seconds,
and 9 seconds long. The resolution of all videos is fixed to 1366 × 768, where the
face appears approximately in middle of the frame. Six cameras have been used to
record real access videos. Each person is recorded by only one camera, but in different
scenarios (different backgrounds, lighting conditions and places), generating 808 real
access videos in total. For attempted attacks, real access videos are displayed in seven
different display screens and recaptured by the same set of cameras used before. Finally,
the recapturing process produces 16, 268 attempted attack videos.

We evaluate our method using videos from all six cameras: Sony, Kodak, Olym-
pus, Nikon, Canon, and Panasonic. The training set contains real access and attempted
attack videos from Sony, Kodak and Olympus, resulting in 344 real access and 3528 at-
tempted attack videos. On the other hand, real access and attempted attack videos from
Nikon, Canon and Panasonic are used for testing purpose, resulting in 60 real access



Fig. 4. The first row presents example video frames of real access in outdoor (the first two images)
and indoor (the last two) condition. The second row presents example video frames of attempted
attacks in outdoor (the first two images) and indoor (the last two) condition.

and 6356 attempted attack videos. This setup is applied in [10]. Specifically, we select
300 (30 real access and 270 attempted attacks) samples of the training set to serve as the
development set which is used for decision threshold estimation. Some example video
frames are shown in Fig. 4 3.

We report statistics mainly in terms of Half Total Error Rate (HTER), and Area Un-
der the Curve (AUC). The decision of positive or negative is simply made by comparing
the output score of the test sample with a decision threshold. This threshold directly
causes two kinds of error: False Rejection Rate (FRR) referring to rejecting real faces,
and False Acceptance Rate (FAR) referring to accepting spoofed faces. HTER is ap-
plied as threshold-dependent performance measurement, and is defined as the average
of FRR and FAR. On the other hand, AUC is calculated as the area under the ROC
curve, and is invariant to decision threshold.

In order to select the best configuration in our proposed method, we run experiments
on UVAD under various settings. We test the effectiveness of three denoising filters:
Median, Gaussian and Wiener, and use second-order and third-order LDP-TOP to ex-
tract features from spectrum videos. We consider the RoI of 256× 256 pixels which is
located in the center of every frame. We set the time window size Tws to 100. The win-
dow size of all denoising filters are identically 7 × 7, and Gaussian standard deviation
is set to 2. Fig. 5 depicts DET (Detection Error Tradeoff) curves of all configurations.

As can be seen in Fig. 5, Gaussian filter allows best error tradeoff in both of second-
order and third-order LDP-TOP. More specifically, third-order LDP-TOP can produce
better detection performance compared with second-order LDP-TOP. Median filter is
particularly powerful in removing outlier pixels (i.e., salt and pepper noise) and pre-
serving edges, but it appears less efficient in our analysis. Numeric results on UVAD
are shown in Table 1.

3 The set of identities involved in real access videos are disjoint with those involved in attempted
attacks. That is why we do not show the attempted attack of the same identity.
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Fig. 5. DET curves under different configurations.

Table 1. Results the proposed method on UVAD.

(a) 2nd-order LDP-TOP
HTER (%) AUC (%)

Median 29.39 80.01

Gaussian 25.45 86.19

Wiener 30.15 83.24

(b) 3rd-order LDP-TOP
HTER (%) AUC (%)

Median 33.34 74.93

Gaussian 23.69 87.58

Wiener 24.25 81.70

3.2 Comparisons with State-of-the-Art approaches

In this section, we discuss about performance comparisons on UVAD. Since our method
is dedicated to noise analysis, we compare our results mainly with the two recent and
closely related works: Visual Rhythm (VR) [11] and Visual Codebooks (VC) [10].

VR based approach captures noise signatures in terms of 2D maps which are ba-
sically generated by traversing the spectrum video in horizontal, vertical and zigzag
directions. This can be considered as a baseline method in UVAD dataset. The authors
in [11] report results in a different dataset configuration where the size of testing set
is much smaller than our consideration which is described in the previous section. In
order to make more thorough and coherent analysis, we run visual rhythm extraction
on our dataset configuration by using the implementation provided by the authors. We
select Gaussian as the denoising filter and Gray-Level Co-Occurrence Matrix (GLCM)
as the texture descriptor since this is the best reported configuration in [11]. Table 2
depicts detection performance of VR on UVAD. As can be seen, VR reaches its best
performance with visual rhythm extracted from vertical direction.

According to VC, low-level features are extracted from small cuboids in the spec-
trum video, and the authors apply Bag-of-Visual-Word to map onto a more discrimina-



Table 2. Results of VR on UVAD.

HTER (%) AUC (%)
Horizontal 52.01 51.02

Vertical 28.09 73.48

Zigzag 41.28 71.77

Table 3. Results of all methods on UVAD.

FAR (%) FRR (%) HTER (%)
Correlation [1] 81.60 14.56 48.06

LBP [4] 27.41 66.04 46.72

VR [11] 44.52 11.67 28.09

VC [10] 44.73 15.00 29.87

Proposed method 7.38 40.00 23.69

tive mid-level representation. We report all statistics in [10] since those were collected
in the same dataset configuration.

Shown in Table 3 are performance comparisons with VR and VC. In our method
we choose the best configuration in which the Gaussian denoising filter and third-order
LDP-TOP are applied. Compared with VR and VC, our proposed method achieves
lower detection error, as shown in Table 3. Moreover, we consider only the RoI of size
256×256, which is much smaller than the entire volume of the video. There exist plenty
of methods contributing to spatial domain analysis, however, reproducing all results of
them on UVAD is beyond the scope of this paper. We emphasize more on methods on
the frequency domain and show here only results of baseline methods on the spatial
domain [1, 4]. It is evident that methods in [1, 4] perform poorly in detecting video
based spoofing attacks.

3.3 Computational complexity

Considering the computational complexity of the method, we provide here the anal-
ysis of the most impactful steps. Denote N the total number of pixels in RoI, N =
w × h. The complexity of the filtering step is O(N). Fast Fourier Transform requires
O(N × log(N)), and third-order LDP-TOP requires O(N) computations. Finally, the
computational complexity is bounded to O(Tws ×N × log(N)), where Tws is simply
the number of considered frames.

Our testing is run on the computer with the following configuration: Intel(R) Xeon(R)
CPU E5-2630 v3 2.40GHz; 64 Gb of RAM; Linux Ubuntu 14.04 LTS 64 bit installed.
By considering small RoI, it is shown that the proposed approach can be applied for
real-time applications.

The Matlab implementation can be obtained via:
github.com/quoctin/anti_video_spoofing.



4 Conclusions

We have proposed a novel approach for detecting video based spoofing attacks. A recap-
tured video basically contains discriminative artifacts such as blurring, Moiré patterns
and flickering effects. Those signatures are present in the frequency domain and can
be analyzed by using dynamic texture descriptor. Thanks to the superiority of Local
Derivative Pattern on Three Orthogonal Planes (LDP-TOP), we achieve promising re-
sults compared with related works. Future extension of this work will be devoted to
designing sophisticated filters for extracting aforementioned artifacts. We will also find
a mechanism to reduce the dimension of feature vectors.
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