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Abstract. The nervous system encodes continuous information from
the environment in the form of discrete spikes, and then decodes these
to produce smooth motor actions. Understanding how spikes integrate,
represent, and process information to produce behavior is one of the
greatest challenges in neuroscience. Information theory has the poten-
tial to help us address this challenge. Informational analyses of deep and
feed-forward artificial neural networks solving static input-output tasks,
have led to the proposal of the Information Bottleneck principle, which
states that deeper layers encode more relevant yet minimal information
about the inputs. Such an analyses on networks that are recurrent, spik-
ing, and perform control tasks is relatively unexplored. Here, we present
results from a Mutual Information analysis of a recurrent spiking neural
network that was evolved to perform the classic pole-balancing task. Our
results show that these networks deviate from the Information Bottleneck
principle prescribed for feed-forward networks.

Keywords: Spiking neurons, Evolutionary neural networks, Recurrent
networks, Information theory, Information Bottleneck

1 Introduction

Deep Learning systems have surpassed other algorithms and even humans at
several tasks [1,2,3,4]. While their applications continue to grow, deep learning
systems are still considered black-box optimization methods. One of the most
vital features behind their success is their ability to extract relevant yet minimal
information as it progresses into deeper and deeper layers [5]. This is an extension
of Rate Coding Theory [6] presented as the Information Bottleneck principle [5,7].
The information bottleneck principle has been primarily focused on systems that
are (a) feedforward, and (b) in an open-loop, decoupled from their environment.

Neuroscientists, on the other hand, have long been studying the principles
behind encoding and representation of environmental information in neural ac-
tivity using principles of information theory [9] and rate distortion theory [8].
Continuous variables from the environment are encoded as discrete spikes in the
brain, which are then decoded to produce smooth continuous movement. Due to
experimental limitations, an informational analysis of a closed-loop brain-body-
environment behaviour system is not yet feasible.
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We take a radically different approach to understanding information flow in a
behaviorally-functional agent. We artificially evolve embodied agents controlled
by recurrent spiking neural networks to perform a task. For this paper, we focus
on a non-Markovian version of the classical pole balancing task. Pole balancing
has been explored quite extensively as a benchmark for control using neural
networks [10,11]. With continuous states and actions, this task serves as an ideal
setting to study the transformation of the continuous input information into
spikes and then back to continuous action. While the typical task is Markovian,
and thus too trivial for an informational analysis, it can easily be transformed
into a non-Markovian task by making the available information to the agent
limited. Our approach to pole balancing incorporates an agent-centric “visual”
interface to the pole. Therefore, information that is typically available, like the
pole’s angle and angular velocity, the agent’s position and velocity, are not fed
directly to the network. Ultimately, the minimal nature of the task makes it
tractable for an investigation of a recurrent network in a closed-loop task.

The parameters of the recurrent spiking neural network that balances the
pole were optimized using an evolutionary algorithm. Evolving neural networks
as opposed to hand-designing them allows maximum flexibility for exploring
the parameter space. While evolutionary algorithms have been very commonly
used in several fields [16], recently, they have been proven to be efficient for
optimizing deep neural networks as well [14,15]. Moreover, due to the stochastic
nature of the optimization, running the algorithm several times provides us with
an ensemble of solutions that solve the problem. This allows the analysis of not
just one solution but several to evaluate consistency of results.

The paper is organized as follows. In the first section we report on the agent,
task, optimization technique, and analysis method. The section that follows
presents an informational analysis for the best and top performing agents. In
the last section we summarize the results.

2 Methods

Agent design. The agent lives in a 1-dimensional world with the pole attached
to its center. Seven equidistant rays of “vision” with overlapping receptive fields
spanning 36◦provide it with sensory stimuli (Fig. 1A,B). The control network
of the agent has three primary components: sensory units, spiking interneurons,
and motor units. There is one sensory units per ray, which merely pass on the
signal received from the rays. Sensory units are fully connected to N interneurons
(here N = 2), modeled by Izhikevich spiking neuron model [13]. The model has
4 parameters per neuron and is governed by a two-dimensional system of ordi-
nary differential equations [13]. Interneurons are recurrently connected (Fig. 1C).
Therefore, each interneuron receives weighted input from each sensory unit, Si,
and from other spiking interneurons, Ii, as follows:

Si + Ii =

7∑
j=1

ws
jisj +

N∑
j=1

wi
jioi (1)
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Fig. 1. Task set up and agent design. [A] The agent (gray circle) moves left/right along
the horizontal axis (gray arrows) sensing the pole (black rod) through the seven vision
rays (color dashed lines), with a range of 36 degrees. [B] Sensory rays have a linearly
diffused receptive field from their centers and overlap at the edges with the receptive
fields of adjacent rays. [C] The agent has 7 vision sensors (black) connected to two
recurrent spiking interneurons (red) connected to two motor units (gray).

where sj is the input at the jth sensory unit, ws
ji is the strength of the connection

from the jth sensory unit to the ith spiking interneuron, wi
ji is the strength of

the recurrent connections from the jth to the ith spiking neuron, and oi is the
output of the neuron. The sign of all outgoing connections from an interneuron
depends on its excitatory or inhibitory nature, as identified by a binary parame-
ter. Finally, the layer of interneurons feeds into the two motor neurons, that has
the following state equation:

τmṁi = −mi +

N∑
j=1

wm
ji ōj i = 1, 2 (2)

ōj(t) =
1

hj

hj∑
k=0

oj(t− k) (3)

where mi represents the motor neuron state, wm
ji is the strength of the connection

from the jth spiking interneuron to the ith motor neuron, ōj represents the firing
rate code, the moving average over a window of length hj for the output of spiking
interneuron j. Finally, the difference in output between the motor neurons results
in a net force that acts upon the agent, moving it along the track. The network
was simulated using Euler integration with step size 0.01.

Pole Balancing Task Design. The agent can move left/right to balance a
pole for as long as possible. The pole-balancing task was implemented based on
published descriptions [12]. The force from the agent, computed as the difference
between motor unit outputs, affects the angular acceleration of the pole and
acceleration of the agent. The physical parameters such as mass, length and
coefficient of friction were all set as per the same reference. While typically pole-
balancers receive as input the angle of the pole (θ), its angular velocity (ω), the
agent’s position (x) and velocity (v), our implementation was modified to only
sense the pole through the sensory rays.
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Evolutionary Algorithm. The network was optimized using a real valued evo-
lutionary algorithm. A solution was encoded by 38 parameters, including the
intrinsic parameters of the Izhikevich neurons, the neuron-specific size of the
window for estimating rate code, all connection weights (sensory-interneuron,
interneuron-interneuron, interneuron-motor), and the time constant, bias and
gain for the motor units. Parameters were constrained to certain ranges: connec-
tion strengths ∈ [−50, 50]; motor unit biases ∈ [−4, 4]; time-constants ∈ [1, 2].
The range of intrinsic parameters and the polarity of the outgoing weights from
the inter-neuron depended on a binary inhibitory/excitatory neuron flag param-
eter in the genotype [13]. The population consisted of 100 individuals.

Fitness Function. Performance was estimated by averaging over 16 trials,
starting at pole angles θ0 between ±12◦, in increments of 3◦, and two initial
angular velocities, ω0 = ±0.001. The fitness function to be maximized was f =
(
∑T

t=1 cos(θt))/T , where T = 500s is the maximum duration of the run. The pole
was considered balanced if it was within the sensory range of the agent. Also,
the track length was fixed at 45 units, beyond which the trial was terminated.

Mutual Information. The amount of information contained in one variable
about another was estimated using Mutual Information (MI). We quantified the
information that neurons contain about pole angle (θ), angular velocity (ω),
agent position (x) and agent velocity (v) by calculating their probability distri-
butions (using a binning method with each bin of width 0.01):

MI(N,X) =
∑
n∈N

∑
x∈X

p(x, n)log
p(x, n)

p(x)p(n)
(4)

3 Results

Performance of evolutionary optimization. While pole balancing is a well-known
benchmark, it was also a relatively easy task to optimize. The evolutionary
algorithm found fairly good solutions (around 75% performance) at the very
first random draw of the population. Fig. 2A shows the performance of the
best agent in every generation over time. Out of the 100 evolutionary runs, 99
converged to over 99% fitness with only two spiking interneurons.

Network structure and performance of the best agent. The network structure
of the best agent from the 100 runs is shown in Fig. 2B. The behavioral traces
of this agent on the 16 trials specified in the previous section are shown in
Fig. 3A. This agent achieved a fitness of 99.4%. To test for generalization, its
performance was evaluated on a finer and broader range of conditions, post-
optimization (Fig. 2C): initial pole angle θ0 in the range [−45, 45] and initial
pole angular velocity ω0 in the range [−0.01, 0.01]. As can be seen, the agent
generalizes well within and outside the region it was evolved on. Note that θ0
that are beyond 18◦ on either side are beyond the range of the sensory rays.

Encoding of environmental variables. The different network elements that
manipulate the input are shown in Fig. 3B. Sensory signals first act on neurons’
potential. The neuron fires based on dynamics in its potential, which is then
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Fig. 2. Optimization performance. [A] Fitness of the best individual in the population
vs. generations for 100 evolutionary runs. Best run in blue, top 10 in light blue and the
rest in gray. [B] Network structure of the best agent. The width of the edges indicate
the magnitude of the weights and are also color coded for polarity. The sensory units
in black are identified as S1-S7, spiking interneurons N1,N2 in red and motor units
M1,M2 in grey. [C] Generalization performance over a broader and finely grained set
of initial conditions that were tested during evolution (marked by cross marks).

interpreted by its rate. The motor units then convert this discrete spike rate
to smooth continuous movement. Note that a single neuron has three levels of
informational content - continuous valued potential, binary spikes, and discrete
spike rate codes. Fig. 3C shows traces for the highlighted trial in Fig. 3A of
the best agent. Although θ is the most directly available information, unlike the
standard practice of directly providing it, the sensory rays provide an agent-
centric perspective of θ. MI between each of the network elements with θ, see
Fig. 3D, revealed that internal potential of neurons have relatively more infor-
mation about θ than the spike rate and so does the motor units. Albeit only for
one trial in one agent, this shows that the bottleneck does not always become
narrow in control tasks. MI also reveals that indirect encoding of ω, x and v all
happen in the very first stage of the network, neuron potential (black bars in
Fig. 4). This can be attributed to the recurrent nature of connections between
the interneurons and also their rather complex non-linear internal dynamics.

Analysis of the Information Bottleneck. All available information, as shown
by MI in V , is not necessarily used in controlling movement, as shown by rel-
atively lower information in R. To further study the bottleneck, we compared
the amount of information contained in neuron potentials, V , versus the rate
coded outputs of the neurons, R. Note that the spikes themselves do not have
any information about the environment but, in fact, encode them in its rate.
For each of the environmental variables a paired samples t-test was conducted
with a significance threshold of p < 0.05. This revealed that there is a significant
drop in the amount of information between V and R (Fig. 4) robustly across the
top ten agents. This can be attributed to the loss due to the discretization of
information available in V as spikes. However, the information in R is sufficient
to perform the behavior with great accuracy and so this is in fact an efficient
encoding of information. The minimal yet relevant information that is encoded
in R is interpreted by the motor units. They integrate R from the interneurons
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Fig. 3. Behavior of the best agent and one of its trials in detail. [A] Angle of the pole
over time on 16 trials. One of the trials (θ0 = −6◦ and ω0 = 0.001) is highlighted
and explored further. [B] Information flowchart: from sensory input rays through the
spiking inter-neuron layer, composed of 3 levels of processing (neuron potential, spiking
activity and rate code), and then the motor units. [C] A sample trace for each of the
components corresponding to each box in B from the trial highlighted in A. Each color
in the first figure is matched with the sensory rays in Fig. 1. The blue and orange colors
indicate interneurons 1 and 2 respectively. The green and brown traces corresponds to
the left and right motor neurons respectively. [D] Mutual Information about the pole
angle (θ) for the highlighted trial for each of the components. [E] Mutual information
about θ in the neuron potential (V ). A comparison between the trial-by-trial MI vs.
the total MI across trials.
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Fig. 4. MI about the four environmental variables: pole angle (θ), pole angular
velocity(ω), agent position (x) and agent velocity (v) in the network elements: neu-
ron potentials (V ), rate coded outputs of neurons (R), and motor unit states (M).
Paired samples t-test yielded highly significant (p � 0.05) differences between the
information contained about θ, ω and v in V versus R and R versus M .

and their outputs directly impact θ, ω, x and v and so this is where a deviation
from the IB principle is expected. Statistical analyses of the MI between R and
the motor units state, M , using the paired samples t-test yielded highly signif-
icant (p � 0.05) increase in information about all environmental variables in
M (Fig. 4). This shows that the IB for control tasks is not always a filtering of
information but is rather filtering followed by an expansion at the control layer.

Context sensitive information encoding. From previous analysis, we know
that components of the network encode information about the environment. But
what information do they encode? Typically, when a neuron is said to encode
information about a feature of the environment it is thought to be a consistent,
context-independent code. To explore this idea further, we compared the MI the
neuron potential has about the pole’s angle I(V, θ) on a trial by trial basis to
the information that same neuron has across all trials about the same feature
of the environment on the best agent (Fig. 3E) and the top 10 agents. A one-
sample t-test of the combined MI with the distribution of trial-by-trial MI values
yielded a highly significant difference (p� 0.05). This means that the combined
information is significantly lower than trial-by-trial information, and therefore
that encoding is highly context-dependent across all evolved pole-balancers.

4 Discussion

In this paper, we have presented results from an information theoretic analysis
of recurrent spiking neural networks that were evolved to perform a continuous
control task: agent-centric non-Markovian pole balancing. Our results can be
summarized as follows. First, networks with as few as two spiking neurons could
be evolved to perform this task. Second, through the use of MI, we show that the
spiking network encoded environmental variables of interest that were directly
and indirectly available. Third, we show that the information bottleneck from
the neuron potential to its firing rate is an efficient filtering/compression, which
was followed by an increase in information at the control layer on account of
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their causal effect on the environment. This is a phenomenon that we expect to
arise in control tasks in general, and plan to explore further with different tasks
and types of networks. Perhaps, this can develop into an optimization method
for neural network control. Finally, we show that the information encoded in the
spiking neurons vary across trials, causing the across-trial combined information
to be significantly lower. This can mean either that the same stimuli are encoded
in different ways (redundancy) or that different stimuli are mapped on to the
same encoding (generalization) or both. This warrants further analysis to un-
derstand the encoding in more detail and more interestingly, to understand how
the context helps disambiguate the generalized representations during a trial.
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