Skip to main content

Neural Computation with Spiking Neural Networks Composed of Synfire Rings

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Included in the following conference series:

Abstract

We show that any finite state automaton can be simulated by some neural network of Izhikevich spiking neurons composed of interconnected synfire rings. The construction turns out to be robust to the introduction of two kinds of synaptic noises. These considerations show that a biological paradigm of neural computation based on sustained activities of cell assemblies is indeed possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the case of RS-IZH neurons, the exponential decay’s rate of the excitatory synapses has been changed from 0.3 to 0.4.

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)

    Google Scholar 

  3. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Englewood Cliffs (1967)

    MATH  Google Scholar 

  4. Siegelmann, H.T.: Recurrent neural networks and finite automata. Computat. Intell. 12, 567–574 (1996)

    Article  Google Scholar 

  5. Turing, A.M.: Intelligent machinery. Technical report, National Physical Laboratory, Teddington, UK (1948)

    Google Scholar 

  6. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst. Sci. 50(1), 132–150 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor. Comput. Sci. 131(2), 331–360 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cabessa, J., Siegelmann, H.T.: The super-Turing computational power of plastic recurrent neural networks. Int. J. Neural Syst. 24(8), 1–22 (2014)

    Article  Google Scholar 

  9. Abeles, M.: Local Cortical Circuits: An Electrophysiological Study. Studies of Brain Function, vol. 6. Springer, Heidelberg (1982)

    Google Scholar 

  10. Abeles, M.: Time is precious. Science 304(5670), 523–524 (2004)

    Article  Google Scholar 

  11. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3(Suppl), 1178–1183 (2000)

    Article  Google Scholar 

  12. Zheng, P., Triesch, J.: Robust development of synfire chains from multiple plasticity mechanisms. Front. Comput. Neurosci. 8, 66 (2014)

    Article  Google Scholar 

  13. Cabessa, J., Masulli, P.: Emulation of finite state automata with networks of synfire rings. In: 2016 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14–19, 2017 (2017, to appear)

    Google Scholar 

  14. Horcholle-Bossavit, G., Brigitte, Q.: Neural model of frog ventilatory rhythmogenesis. Biosystems 97(1), 35–43 (2009)

    Article  Google Scholar 

  15. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neur. Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  16. Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., Brunel, N.: How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23(5), 11628–11640 (2003)

    Google Scholar 

  17. Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci. 3, 9 (2009)

    Article  Google Scholar 

  18. Asai, Y., Guha, A., Villa, A.E.P.: Deterministic neural dynamics transmitted through neural networks. Neural Netw. 21(6), 799–809 (2008)

    Article  Google Scholar 

  19. Asai, Y., Villa, A.: Integration and transmission of distributed deterministic neural activity in feed-forward networks. Brain Res. 1434, 17–33 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Cabessa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cabessa, J., Horcholle-Bossavit, G., Quenet, B. (2017). Neural Computation with Spiking Neural Networks Composed of Synfire Rings. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics