Skip to main content

Automatic Recognition of Mild Cognitive Impairment from MRI Images Using Expedited Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Abstract

Few studies have focused on the potential of applying deep learning algorithms into magnetic resonance imaging (MRI) for automatic recognition of subjects with mild cognitive impairment (MCI). In this work, we propose the expedited convolutional neural networks involving Tucker decomposition to recognize MCI using MRI images. We employ transfer learning and data augmentation to deal with limited training data. The effect of Tucker decomposition on saving computational time is discussed. The experimental results show that the proposed model outperforms the previous methods. The expedited convolutional neural networks can provide a good guidance for the applications of deep learning in real-world classification with large training dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bischkopf, J., Busse, A., Angermeyer, M.C.: Mild cognitive impairment–a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr. Scand. 106, 403–414 (2002)

    Article  Google Scholar 

  2. Reese, L.C., Laezza, F., Woltjer, R., et al.: Dysregulated phosphorylation of Ca2+/calmodulin-dependent protein kinase II-\(\alpha \) in the hippocampus of subjects with mild cognitive impairment and Alzheimers disease. J. Neurochem. 119, 791–804 (2011)

    Article  Google Scholar 

  3. Mirra, S.S., Heyman, A., McKeel, D., et al.: The consortium to establish a registry for Alzheimer’s disease (CERAD) part II, standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41, 479–486 (1991)

    Article  Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  5. Ciodaro, T., Deva, D., De Seixas, J.M., et al.: Online particle detection with neural networks based on topological calorimetry information. J. Phys. Conf. Ser. 368, 012030 (2012)

    Article  Google Scholar 

  6. Turaga, S.C., Murray, J.F., Jain, V., et al.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010)

    Article  MATH  Google Scholar 

  7. Tompson, J., Goroshin, R., Jain, A., et al.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  8. Taigman, Y., Yang, M., Ranzato, M.A., et al.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  9. Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153–1159 (2016)

    Article  Google Scholar 

  10. Roth, H., Lu, L., Liu, J., et al.: Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35, 1170–1181 (2016)

    Article  Google Scholar 

  11. Dou, Q., Chen, H., Yu, L., et al.: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35, 1182–1195 (2016)

    Article  Google Scholar 

  12. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., et al.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35, 1196–1206 (2016)

    Article  Google Scholar 

  13. Anthimopoulos, M., Christodoulidis, S., Ebner, L., et al.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35, 1207–1216 (2016)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. Soc. Ind. Appl. Math. Rev. 51, 455–500 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Wyman, B.T., Harvey, D.J., Crawford, K., et al.: Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s Dement. 9, 332–337 (2013)

    Article  Google Scholar 

  17. Bastien, F., Lamblin, P., Pascanu, R., et al.: Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590 (2012)

  18. Armato, S.G., McLennan, G., Bidaut, L., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38, 915–931 (2011)

    Article  Google Scholar 

  19. Marcus, D.S., Wang, T.H., Parker, J., et al.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19, 1498–1507 (2007)

    Article  Google Scholar 

  20. Wee, C.Y., Yap, P.T., Shen, D.: Prediction of Alzheimers disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 34, 3411–3425 (2013)

    Article  Google Scholar 

  21. Liu, X., Tosun, D., Weiner, M.W., Schuff, N.: Locally linear embedding (LLE) for MRI based Alzheimers disease classification. Neuroimage 83, 148–157 (2013)

    Article  Google Scholar 

  22. Wolz, R., Julkunen, V., Koikkalainen, J., et al.: Multi-method analysis of MRI images in early diagnostics of Alzheimers disease. PLoS ONE 6, e25446 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Shenzhen Basic Research Projects (Grant No. JCYJ 20160531184426303 and JCYJ 20150401150223648), National Natural Science Foundations of China (Grants No. 61502473 and No. 61503368), and Natural Science Foundation of Guangdong Province (Grant No. 2014A030310154 and No. 2016A030313176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, S., Shen, Y., Chen, W., Xiao, T., Hu, J. (2017). Automatic Recognition of Mild Cognitive Impairment from MRI Images Using Expedited Convolutional Neural Networks. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics