
Combining Event-B and CSP: An Institution
Theoretic approach to Interoperability

Marie Farrell
∗
, Rosemary Monahan, and James F. Power

Department of Computer Science, Maynooth University, Ireland

Abstract. In this paper we present a formal framework designed to fa-
cilitate interoperability between the Event-B specification language and
the process algebra CSP. Our previous work used the theory of insti-
tutions to provide a mathematically sound framework for Event-B, and
this enables interoperability with CSP, which has already been incorpo-
rated into the institutional framework. This paper outlines a comorphism
relationship between the institutions for Event-B and CSP, leveraging
existing tool-chains to facilitate verification. We compare our work to
the combined formalism Event-B‖CSP and use a supporting example to
illustrate the benefits of our approach.

1 Introduction

Event-B is an industrial strength formal method that allows us to model a sys-
tem’s specification at various levels of abstraction using refinement and prove
its safety properties [1]. The most primitive components of an Event-B speci-
fication are events, which are triggered non-deterministically once their guards
evaluate to true. Much work has been done on imposing control on when events
are triggered, as this models state changes in the system [18, 7, 21]. Our contri-
butions seek to provide a mathematical grounding to this work using the theory
of institutions and its underlying category theoretic framework [5]. As a result,
we provide developers with the ability to add (CSP) control to Event-B specifi-
cations. This is achieved through our description of an institution comorphism
between an institutional representation of Event-B (EVT CASL) and an institu-
tional representation of CSP-CASL (CSPCASL) [16].

This document is structured as follows. In the remainder of section 1 we out-
line the relevant background, motivate our work, and introduce our running ex-
ample of a bounded retransmission protocol. Section 2 contains a brief overview
of the institutions for CASL (the Common Algebraic Specification Language),
EVT CASL and CSPCASL. In section 3 we outline the comorphism relating the
institutions EVT CASL and CSPCASL. We illustrate the use of the syntactic
components of this comorphism with respect to our running example in section
4 and discuss implications for refinement of specifications [1, 19]. Finally, we
conclude by outlining directions for future work.

∗
This work is funded by a Government of Ireland Postgraduate Grant from the Irish
Research Council.

1 CONTEXT brp c0
2 SETS STATUS
3 CONSTANTS working, success, failure
4 AXIOMS
5 axm1: STATUS = {working, success,

failure}
6 axm2: working 6= success
7 axm3: working 6= failure
8 axm4: success 6= failure
9 END

10 MACHINE b 0 SEES brp c0
11 VARIABLES r st, s st
12 INVARIANTS
13 inv1: r st ∈ STATUS
14 inv2: s st ∈ STATUS
15 EVENTS
16 Initialisation
17 then
18 act1: r st := working
19 act2: s st := working
20 Event brp =̂ ordinary
21 when
22 grd1: r st 6= working
23 grd2: s st 6= working
24 then
25 Skip
26 Event RCV progress =̂ anticipated
27 then
28 act1: r st :∈ {success, failure}
29 Event SND progress =̂ anticipated
30 then
31 act1: s st :∈ {success, failure}
32 END

Fig. 1: An Event-B model of the bounded retransmission protocol, consisting of a con-
text (lines 1–9) that specifies a new data type called STATUS, and a specification for an
abstract machine b 0 (lines 10–32) [1].

1.1 Event-B and a Running Example

Event-B is a state-based formalism for system-level modelling and analysis. It
uses set theory as a modelling notation, refinement to represent systems at dif-
ferent levels of abstraction and mathematical proof to verify consistency between
refinement levels [1]. In an Event-B model, static aspects of a system are specified
in contexts, while dynamic aspects are modelled in machines. Each machine spec-
ifies states and events which update that state. Refinement between machines
involves the addition of new variables and events, making the initial model more
concrete. Refinement steps generate proof obligations so as to ensure that the re-
fined machine does not invalidate the original model. Event-B is supported by its
Eclipse-based IDE, the Rodin Platform, which provides support for refinement
and automated proof [2].

Figure 1 contains an Event-B specification of a bounded retransmission pro-
tocol which we use as a running example throughout this paper [1, 19]. The
specification corresponds to the sequential file transfer from a sender site to a
receiver site [1, Ch. 6]. The Event-B context specifies a data type called STATUS

(line 2) that contains the three distinct values working, success and failure

(lines 3–8). The corresponding abstract machine introduces two state variables
of type STATUS: these are r st for the receiver and s st for the sender (lines
11–14). The Initialisation event (lines 16–19) sets both of these variables to
the value working.

The events RCV progress and SND progress update the associated state
variable to either success or failure (lines 26–28 and 29–31 respectively). Both
events have the status anticipated which means that they must not increase the

2

1 P0 = S0 ‖ R0
2 S0 = SND progress → brp → STOP
3 R0 = RCV progress → brp → STOP

Fig. 2: An Event-B‖CSP process
specification [19].

Fig. 3: Using the flows plugin to model the
Event-B‖CSP process specification in Figure 2.

variant expression in the machine. However, since there is no variant expression
in this machine, this condition is not evaluated. While this labelling may seem
redundant, it is a common development strategy used in Event-B and, in this
case, reminds developers that these events should be refined to convergent

events in future refinement steps. The event brp (lines 20–25) is triggered when
both variables are no longer set to working, thus indicating that the protocol
has completed [19].

1.2 Related work on adding event ordering to Event-B Machines

Developers often wish to model the order in which events are triggered, and
specifically, how newly added events relate to previous events. Currently, control
can only be implemented in Event-B in an ad hoc manner, typically by adding a
machine variable to represent the current state. Each event must then check the
value of this variable in its guard, and if this value indicates that the machine
is ready to move into the next state then the appropriate event is triggered.

An alternative approach to introducing control is provided by the Event-
B‖CSP formalism which combines Event-B with CSP, so that CSP controllers
can be specified alongside Event-B machines facilitating an explicit approach to
control flow [18]. CSP is a process algebra specifically designed to specify control
oriented applications, using processes that can be composed in a variety of ways
[6]. The subset of CSP made available by Event-B‖CSP is:

P ::= e → P | P1 2 P2 | P1 u P2 | P1‖P2 | S
where P , P1 and P2 are processes, e is a CSP event and S is a process variable.
The semantics of CSP can be evaluated over a number of semantic domains.
These include the traces (sequences of events that a process can engage in after
the Initialisation event), failures (events the process might refuse after a
trace) and divergences (traces after which the process might diverge).

The combination of Event-B and CSP in Event-B‖CSP results in a clear sep-
aration between the data-dependent and control-dependent aspects of a model,
allowing proof obligations concerning control-flow to be discharged within the
CSP framework. However, at the time of writing, no tool support has been ex-
plicitly provided for this approach, at either the Event-B or CSP level. The ProB
animator and model checker can be used to explore Event-B models with CSP
controllers for consistency [10]. Since it was not developed with Event-B‖CSP
in mind there are some incompatibility issues: in particular, it is only feasible to
check refinement for small examples.

3

Figure 2 contains an Event-B‖CSP process specification to be used alongside
the Event-B model in Figure 1. Here, three CSP processes are defined for use with
the machine b 0, splitting the specification into sender and receiver controllers
(S0 and R0 respectively) that are combined in parallel by P0. This approach was
taken by Schneider et al. to model the repeating behaviour of the sender and
receiver using CSP, and to model the state using Event-B [19].

Another perspective is provided by the Flows plugin for Rodin, which extends
Event-B models with event ordering(s) [7]. Flow diagrams represent the possible
use cases of Event-B models. These flows resemble those used in process algebras
such as CSP. A simple graphical notation is used, with a trace semantics provided
over the sequence of events in the machine. No new Event-B specifications are
generated by the Flows plugin. Instead new proof obligations are created to assist
reasoning about whether or not a flow is feasible in a given Event-B model. The
generated proof obligations characterise the relationship between the after-state
of one event and the guard (before-state) of another.

Figure 3 illustrates a potential use case using the flows plugin, corresponding
to the Event-B‖CSP specification in Figure 2, introducing control to the Event-B
machine b 0 (Figure 1). Notice that it is not possible to indicate parallel com-
position here using the flows plugin. We can only specify S0 and R0 separately.
Therefore, we conclude that the Event-B‖CSP specification outlined in Figure 2
is much more expressive that the flow described in Figure 3.

2 Background on Institutions

The theory of institutions was originally developed by Goguen and Burstall in
a series of papers originating from their work on algebraic specification [5]. An
institution is composed of signatures (vocabulary), sentences (syntax), models
and a satisfaction condition (semantics). Figure 4 contains a summary of the
definitions for these components. The key observation is that once the syntax
and semantics of a formal system have been defined in a uniform way, using
some basic constructs from category theory, then a set of specification-building
operators can be defined that allow specifications to be written and modularised
in a formalism-independent manner [17].

Institutions have been defined for many logics and formalisms, including
formal languages such as Event-B, UML and CSP [3, 9, 12]. We can achieve in-
teroperability between different logics by constructing a comorphism between
their institutions. Figure 5 contains a summary of the definitions for the compo-
nents of an institution comorphism, which broadly consist of mappings for each
of the elements in an institution, as referred to in Figure 4. Figures 4 and 5 are
brief summaries of the relevant constructions; full details can be found in the
literature [5, 17]. Readers familiar with Unifying Theories of Programming may
note that the notion of institutions, in this way, is similar to that of a “theory
supermarket” where one can shop for theories with the confidence that they will
work together [4].

4

An institution is composed of:
Vocabulary: A category Sign of signatures, with signature morphisms σ : Σ → Σ′

for each signature Σ, Σ′ ∈ |Sign|.
Syntax: A functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences for each

signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′) which translates Σ-
sentences to Σ′-sentences for each signature morphism σ : Σ → Σ′.

Semantics: A functor Mod : Signop → Cat giving a category Mod(Σ) of Σ-
models for each signature Σ and a functor Mod(σ) : Mod(Σ′)→Mod(Σ) which
translates Σ′-models to Σ-models (and Σ′-morphisms to Σ-morphisms) for each
signature morphism σ : Σ → Σ′.

A Satisfaction Relation |=INS,Σ⊆ |Mod(Σ)| × Sen(Σ), determining satisfaction
of Σ-sentences by Σ-models for each signature Σ.

An institution must uphold the satisfaction condition: for any signature morphism
σ : Σ → Σ′ the translations Mod(σ) of models and Sen(σ) of sentences

M ′ |=INS,Σ′ Sen(σ)(φ) ⇔ Mod(σ)(M ′) |=INS,Σ φ
for any φ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ′)| [5].

Fig. 4: A brief summary of the definitions for the main components of an institution.

The institutions relevant to this paper are the institutions for CASL, CASL,
CSP-CASL, CSPCASL, and our definition of the institution for Event-B, EVT -
CASL. Originally, we defined the institution EVT for Event-B to be built on top
of the institution for first-order predicate logic with equality [3]. In this paper,
we build our institution EVT CASL on top of the (more general) institution
for CASL, of which FOPEQ is a sublogic. The main components of these are
summarised in Figure 6. We do not delve deeply into their components here, but
refer the reader to the literature and our website for further information1.

The CSPCASL institution is built on the definition of the institutions CSP
and CASL [12, 13]. A specification over CSPCASL consists of a data part (writ-
ten as a structured CASL specification), a channel part and a process part (writ-
ten using CSP) [16]. The inclusion of channels is a form of syntactic sugaring as
specifications with channels can easily be translated into those without but they
provide a more convenient notation so we include them to aid in readability [14].

In Section 3, we outline the institution comorphism between CSPCASL and
our institution for Event-B, EVT CASL. This is the theoretical foundation and
main contribution of our work and we use it to create a sound mechanism that
has enabled us to achieve interoperability between CSP and Event-B.

2.1 Tool Support and Avenues to Interoperability

The Heterogeneous Toolset (Hets), written in Haskell, provides a general frame-
work for parsing, static analysis and for proving the correctness of specifications
in a formalism independent and thus heterogeneous manner [11]. In Hets, each
formalism (expressed as an institution) is represented as a logic. In this setting,

1 http://www.cs.nuim.ie/∼mfarrell/extended.pdf

5

An institution comorphism ρ : INS→ INS′ is composed of:
A functor: ρSign : Sign→ Sign′

A natural transformation: ρSen : Sen→ ρSign ; Sen′, that is, for each Σ ∈ |Sign|,
a function ρSenΣ : Sen(Σ)→ Sen′(ρSign(Σ)).

A natural transformation: ρMod : (ρSign)op ; Mod′ → Mod, that is, for each
Σ ∈ |Sign|, a functor ρMod

Σ : Mod′(ρSign(Σ))→Mod(Σ).
An institution comorphism must ensure that for any signature Σ ∈ |Sign|, the trans-
lations ρSenΣ of sentences and ρMod

Σ of models preserve the satisfaction relation, that is,
for any ψ ∈ Sen(Σ) and M ′ ∈ |Mod(ρSign(Σ))|:

ρMod
Σ (M ′) |=Σ ψ ⇔ M ′ |=′

ρSign (Σ) ρ
Sen
Σ (ψ)

and the relevant diagrams in Sen and Mod commute for each signature morphism in
Sign [5].

Fig. 5: A brief summary of the main components of an institution comorphism, which
is one way of combining specifications from different institutions.

interoperability between formalisms is defined using institution comorphisms to
relate the syntax of different logics and formalisms.

The institutions for CASL and CSPCASL have already been implemented
in Hets. One notable feature available via Hets is the CSPCASLProver, a
prover for CSPCASL based on the CSP-Prover [8]. It uses the Isabelle theorem
prover to prove properties about specifications over the permitted CSP semantic
domains [15]. We have added an implementation for our institution for Event-B,
EVT CASL, to Hets.

In previous work, we have defined a translational semantics for Event-B spec-
ifications using the institutional language of EVT CASL. We have implemented
this via a parser for the Event-B files that are generated by Rodin. In this way
we bridge the gap between the Rodin and Hets software ecosystems, enabling
the analysis and manipulation of Event-B specifications in the interoperability-
friendly environment made available by Hets. Using our translational semantics
for Event-B [3] we generate the EVT CASL signatures and sentences (as shown
in Figure 7) that correspond to the Event-B model defined in Figure 1.

3 Translating EVT CASL specifications to CSPCASL
specifications

We outline a comorphism-based translation between EVT CASL and CSPCASL.
Both of these institutions rely on CASL to model the static components of a
specification, with Event-B events and CSP processes used to model dynamic
behaviour. There are a number of potential approaches to the construction of a
comorphism. We could have opted to translate specifications written over both
institutions into specifications written over CASL, as CASL is the base layer of
both EVT CASL and CSPCASL. However, this would lead to the loss of event,
channel and process names, unless we used additional annotations alongside
the translation. Instead, our approach translates directly from EVT CASL to

6

CASL: The institution for CASL [13]:
– Signatures are triples of the form 〈S , Ω,Π〉, containing sort names, sort/arity

indexed operation names (representing total and partial functions), sort-indexed
predicate names and a subsort relation.

– Sentences are first order formulae and term equalities.
– Models contain a carrier set corresponding to each sort name, a function over sort

carrier sets for each operation name and a relation over sort carrier sets for each
predicate name.

– The satisfaction relation is the usual satisfaction of first-order structures in
first-order sentences.

CSPCASL: The institution for CSP-CASL [16]:
– Signatures are tuples 〈ΣData ,C , ΣProc〉 where ΣData is a basic CASL signature,

C is a set of sort-indexed channel names and ΣProc = Nw,comms is a family of
finite sets of process names. For every n ∈ Nw,comms , w is a sequence of sort names
corresponding to the parameter type of n and comms ⊆ S is the set of all types
of events that n can engage in.

– Sentences are either CASL sentences or CSP process sentences.
– Models are pairs of the form 〈A, I 〉 where A is a CASL-model and I is a family

of process interpretation functions. Each process interpretation function takes as
arguments a process name and suitable parameters, and returns a CSP denotation
for the appropriate CSP semantic domain (traces/failures/divergences).

– The satisfaction relation for process sentences is two-phase: (i) process terms
are evaluated in process sentences using the CASL semantics, thus replacing each
term by its valuation; (ii) the CSP semantics is than applied in the usual way for
the specific semantic domain (traces/failures/divergences).

EVT CASL: The institution for Event-B [3]:
– Signatures are tuples of the form 〈S , Ω,Π,E ,V 〉, where 〈S , Ω,Π〉 is a CASL

signature, E is a set of (event name, status) pairs, and V is a set of sort-indexed
variable names.

– Sentences are pairs of the form 〈e, φ(x , x ′)〉 where e is an event name and φ(x , x ′)
is a CASL-formula. Here x is the set of free variable names from V and x ′ is the
same set with each variable name primed.

– Models are triples 〈A,L,R〉 where A is a CASL model, L contains sets of variable-
to-value mappings for each of the primed versions of the variable names in V . R
is a set of relations over the before and after variable-to-value mappings for every
(non-initial) event name in E .

– The satisfaction relation uses a comorphism between CASL and EVT to eval-
uate the satisfaction of EVT CASL sentences and models over CASL.

Fig. 6: The principal components of the institutions for the common algebraic specifi-
cation language (CASL), CSP-CASL (CSPCASL) and Event-B (EVT CASL).

7

1 Σbrp c0 = 〈 S , Ω, Π, E , V 〉 where
2 S = {STATUS},
3 Ω = {working:STATUS, success:STATUS,
4 failure:STATUS},
5 Π = {}, E = {}, V = {}

6 Σb 0 = 〈 S , Ω, Π, E , V 〉 where
7 S = {STATUS,BOOL},
8 Ω = {working:STATUS, success:STATUS,
9 failure:STATUS},

10 Π = {},
11 E =
12 {(brp, Ordinary),
13 (RCV progress, Anticipated),
14 (SND progress, Anticipated),
15 (e init, Ordinary)},
16 V = {(r st:STATUS), (s st:STATUS)}

The sentences in Sen(Σbrp c0) that correspond to
the Event-B context in Figure 1 are:

17 {〈e init, STATUS = {working, success,failure}〉
18 〈e init, working 6= success〉
19 〈e init, working 6= failure〉
20 〈e init, success 6= failure〉}

The sentences in Sen(Σb c0) that correspond to
the Event-B machine in Figure 1 are:

21 {〈e init, STATUS = {working, success, failure}〉
22 〈e init, working 6= success〉
23 〈e init, working 6= failure〉
24 〈e init, success 6= failure〉
25 〈e init, (r st’ = working ∧ s st’ = working)〉
26 〈brp, (r st 6= working ∧ s st 6= working)〉
27 〈RCV progress, (r st :∈ {success, failure})〉
28 〈SND progress, (s st :∈ {success, failure})〉}

Fig. 7: The EVT CASL signatures and sentences generated, using our translational
semantics parser, from the Event-B model in Figure 1. We use subscript notation
to indicate the origin of each of these signatures and sentences.

CSPCASL, thus ensuring that the event, channel and process names are not lost.
We use the event names in CSPCASL process definitions in order to introduce
control over EVT CASL specifications.

3.1 An Institution Theoretic Translation

Here we outline the process that we used to define our institution theoretic
translation ρ : EVT CASL → CSPCASL and the difficulties that we encoun-
tered. There are three components to an institution comorphism but only the
first two are required in order to implement a comorphism translation in Hets.
These are the signature and sentences translations described below.

Signature translation:
ρSign : SignEVT CASL → SignCSPCASL

Given the EVT CASL signature 〈S , Ω,Π,E ,V 〉, we form the CSPCASL sig-
nature 〈ΣData ,C , ΣProc〉. Since both institutions are based on CASL, we map
〈S , Ω,Π〉 to ΣData . We enrich S , the set of sort names, with the new sort Event
whose carrier set consists of dom(E). For each event name e ∈ dom(E), we
construct the 0-ary operation e, of sort Event, and add it to Ω. Finally, we
equip ΣProc with the new process names E e, one for each e ∈ dom(E). Each
variable in V is represented by two channels in C of the variable’s sort, one for
its before value and one for its after value, in order to facilitate variable input
for processes.

Sentence translation:
ρSen : SenEVT CASL → ρSign ; SenCSPCASL

8

Each EVT CASL sentence is of the form 〈e, φ(x , x ′)〉 where e is the event
name and φ(x , x ′) is a formula over the before and after values of the variables
in the signature Σ. As CSPCASL specifications are over some base logic we
assume that this logic corresponds to the base logic of the mathematical pred-
icate language of Event-B for the processes that we construct [12]. Then for
each EVT CASL sentence ρSen yields the following CSPCASL process sentence:

E e = ?c1.x 1 . . . c2n .x
′
2n → (if φ(x , x ′) then e → STOP else STOP)

The notation ?c1.x 1 . . . c2n .x
′
2n takes a sort appropriate value for each the vari-

ables x 1, . . . , x
′
2n as input on the designated channel for that variable. This

indicates that if the formula φ(x , x ′) evaluates to true then the corresponding
event e has been triggered. Using the process STOP is safe as it does nothing.

Model translation: The signature and sentence translations described above
are sufficient for the implementation of an institution comorphism in Hets.
However, in order to provide a theoretic underpinning to this translation by
correctly defining an institution comorphism we must also provide a translation
for the models:

ρMod : (ρSign)op ; ModCSPCASL →ModEVT CASL
Here ρMod(〈A, I 〉) = 〈A,L,R〉 and consists of two maps, the identity map on

the CASL model components and a map from I to 〈L,R〉. Given a CSPCASL-
sentence of the form described above, I (E e) returns a CSP denotation for the
process E e in a specified semantic domain D ∈ {T ,N ,F}. As the primary con-
cern of Event-B is safety we examine the traces model which gives the following
set of traces:

{. . . , 〈〉, 〈c1.a1, . . . , c2n .a2n , e〉, . . . , 〈c1.b1, . . . , c2n .b2n〉, . . .}
where traces of the form 〈c1.a1, . . . , c2n .a2n , e〉 indicate that the predicate φ(x , x ′)
evaluated to true when the values listed in c1.a1, . . . , c2n .a2n were given to the
variables x 1, . . . , x

′
2n . Then, traces of the form 〈c1.b1, . . . , c2n .b2n〉 indicate that

the predicate φ(x , x ′) evaluated to false on these variable values. We use this
traces model to generate the R component (which is made up of the relations
R.e for e ∈ dom(E) 6= Init) of the EVT CASL-model such that:

R.e = {{x 1 7→ a1, . . . x
′
2n 7→ a2n} | 〈c1.a1, . . . , c2n .a2n , e〉 ∈ I (E e)T }

Note that in what follows, we abbreviate the Initialisation event to Init. We
only include the values from the traces model that caused the predicate φ(x , x ′)
to evaluate to true, since these variable values will also satisfy the EVT CASL-
sentence 〈e, φ(x , x ′)〉 in the EVT CASL institution. These are easily identified as
the traces that ended with the event name e thus indicating that the event e
was triggered. In the case where e = Init we construct L in a similar fashion,
otherwise, L = {∅}.

Comorphisms are defined such that for any signature Σ ∈ |SignEVT CASL|,
the translations ρSenΣ : SenEVT CASL(Σ)→ SenCSPCASL(ρSign(Σ)) of sentences
and ρMod

Σ : ModCSPCASL(ρSign(Σ)) → ModEVT CASL(Σ) of models preserve
the satisfaction relation. That is, for any ψ ∈ SenEVT CASL(Σ) and M ′ ∈
|ModCSPCASL(ρSign(Σ))|

ρMod
Σ (M ′) |=EVT CASL

Σ ψ ⇔ M ′ |=CSPCASL
ρSign(Σ) ρSenΣ (ψ)

9

Note that in the special case where the formula φ(x , x ′) denotes a contradic-
tion (there are no variable values that cause it to evaluate to true), then the
comorphism satisfaction condition fails to hold. In this case, the corresponding
R.e will be empty but as there are variables in the EVT CASL signature, the
generated EVT CASL-model is not a valid one. We are currently investigating
alternative constructions of ρMod and alternative institution-based translations
in order to resolve this issue. The case study that we present in this paper utilises
Hets which has no notion of the model translation component of a comorphism
so we illustrate how the syntactic components (ρSign and ρSen) can, in general,
be applied to translate EVT CASL specifications into CSPCASL specifications
that can be processed by Hets.

3.2 Translation via ρSign and ρSen

Figure 8 contains the CSPCASL specification corresponding to the Event-B
specification in Figure 1. Our translation from Event-B to CSPCASL involves
two distinct steps. First, an Event-B specification (Figure 1) is translated into
a specification in the language of EVT CASL using our translational semantics
parser (Figure 7). Next, we apply ρSign and ρSen , the signature and sentence
translations described earlier, to the EVT CASL specification to generate the cor-
responding CSPCASL specification (Figure 8). This translation is represented
by the dashed arrows in the refinement cube in Figure 10 and the resultant
CSPCASL specification corresponds to the vertex labelled b 0.

Applying ρSign to the EVT CASL signatures in Figure 7 (lines 1–16) gen-
erates the CSPCASL signature 〈ΣData ,C , ΣProc〉 where the sort component of
the data signature ΣData is augmented with new sorts Event and STATUS. The
operation component of ΣData is augmented with one 0-ary operator per event
name in dom(E) of the EVT CASL signature Σ, yielding the set:

{Init, brp, RCV progress, SND progress : Event}
C contains two sort-appropriate channels for each variable in V (before and af-
ter values). In this EVT CASL example, there are two variables of sort STATUS,
yielding four channels of sort STATUS in the corresponding CSPCASL specifi-
cation. The ΣProc component of the CSPCASL signature is augmented a new
process E e for every e ∈ dom(E).

Applying ρSen to the sentences in Sen(Σ) (Figure 7, lines 17–28) gives the
(syntactically sugared) CSPCASL specification in Figure 8. Note that we have
manually added the process M to describe the behaviour of the Event-B machine
in its entirety. We use parallel composition to indicate that events are triggered
in any order. This specification has been proven consistent, using the Darwin and
FACT consistency checkers available in Hets [11]. For readability, we have not
included the invariant sentences given in Figure 7 (lines 17–24). The formulae
corresponding to each of these sentences is appended by logical conjunction to
each of the formulae in the event process definitions in Figure 8 (lines 14–29).
We have included the context axiom sentences as predicates (lines 4–8) of the
CSPCASL specification, corresponding to the context in Figure 1.

10

1 spec brp c0 over CASL
2 sort STATUS
3 ops
4 preds STATUS = {working, success,
5 failure}
6 working 6= success
7 working 6= failure
8 success 6= failure
9 end

10 spec b 0 over CSPCASL
11 data brp c0
12 channel c1, c2, c3, c4: STATUS
13 process
14 E Init =
15 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
16 if r st’ = working ∧ s st’ = working
17 then (Init → M) else STOP
18 E brp =
19 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
20 if r st 6= working ∧ s st 6= working
21 then (brp → M) else STOP
22 E RCV progress =
23 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
24 if r st :∈ {success, failure}
25 then (RCV progress → M) else STOP
26 E SND progress =
27 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
28 if s st :∈ {success, failure}
29 then (SND progress → M) else STOP
30 M = E Init ‖ E brp‖E RCV progress
31 ‖E SND progress
32 end

Fig. 8: CSPCASL specification that is generated using ρSign and ρSen as described
in Section 3. This specification has been syntactically sugared for presentation. We
provide the full specification that can be input to Hets on our website.

1 spec eb‖csp b 0 over CSPCASL
2 b 0 then
3 process
4 P0 = S0 ‖ R0
5 S0 = SND progress → brp → STOP
6 R0 = RCV progress → brp → STOP
7 end

8 refinement ref0 =
9 b 0 refined to eb‖csp b 0

Fig. 9: A CSPCASL specification corresponding to the Event-B‖CSP specification in
Figure 2 and a statement of refinement in the notation of Hets between the CSPCASL
specifications b 0 and eb‖csp b 0.

A CSPCASL representation of the Event-B‖CSP specification in Figure 2 is
illustrated in Figure 9 (lines 1–7). This shows that once the Event-B component
of the Event-B‖CSP specification has been translated into CSPCASL, then the
CSP component can be easily written using CSPCASL. These specifications
are thus provided with tool support in Hets [11], an environment designed to
facilitate interoperability.

4 The Refinement Cube

The refinement cube in Figure 10 depicts the specifications and translations that
will be presented throughout this section. In this cube, the labelled vertices rep-
resent specifications and the arrows between them describe how they are related.
The front face of the cube corresponds to specifications that were developed in
Rodin and the combined formalism Event-B‖CSP, the rear face corresponds to
those completed in Hets using CSPCASL. The vertex labelled b 0 corresponds

11

b 0 b 1

b 0 b 1

EB‖CSP b 0 EB‖CSP b 1

EB‖CSP b 0 EB‖CSP b 1

ref2, ref3

ref0 ref1

Fig. 10: Refinement cube: solid lines represent refinement relations and the dashed lines
represent our translation into CSPCASL.

to the Event-B specification in Figure 1 and the vertex labelled EB‖CSP b 0

corresponds to the Event-B‖CSP specification in Figure 2. The vertical arrow
between them indicates that b 0 is used alongside EB‖CSP b 0.

4.1 Event and Process Refinement

In this subsection, we describe the refinement steps that correspond to the solid
horizontal arrows in the refinement cube of Figure 10. The theory of institutions
equips us with a basic notion of refinement as model-class inclusion where the
class of models of the concrete specification are a subset of the class of models
of the abstract specification [17]. When the signatures are the same we simply
denote this refinement as:

SPA v SPC ⇔ Mod(SPC) ⊆ Mod(SPA)
where SPA is an abstract specification that refines (v) to a concrete specification
SPC .

If the signatures are different then we must define a signature morphism
σ : Sig [SPA]→ Sig [SPC], and can then use the corresponding model morphism
to interpret the concrete specification as containing only the signature items
from the abstract specification. This refinement is the model-class inclusion of
the models of the concrete specification, restricted using the model morphism,
into the class of models of the abstract specification. In this case write:

SPA v SPC ⇔ Mod(σ)(SPC) ⊆ Mod(SPA)
where Mod(σ)(SPC) is the model morphism applied to the model-class of the
concrete specification SPC . This interprets each of the models of SPC as models
of SPA before a refinement relationship is determined. In our running example,
all refinement steps involve a change of signature. A similar approach taken
by Schneider et al. involves using a renaming function, f , to relate concrete
events to their abstract counterparts before a refinement relation is evaluated
[20]. This was used to prove the refinement indicated by the horizontal arrow
from EB‖CSP b 0 to EB‖CSP b 1 in Figure 10.

Figure 11 contains a refined version of the abstract Event-B machine from
Figure 1. Here, each of the events RCV progress and SND progress are re-
fined and split into two events (RCV success, RCV failure, SND success and
SND failure). The status of these events has been changed from anticipated

to convergent during the refinement. Thus, the variant expression on line 6
must now be decreased by these events. This amounts to ensuring that in these
events the following condition, that we refer to as var in Figure 12, holds:

12

1 MACHINE b 1 refines b 0 SEES brp c0
2 VARIABLES r st, s st
3 INVARIANTS
4 inv1 s st = success ⇒ r st = success
5 VARIANT
6 {success, failure, s st, r st}
7 Initialisation ordinary
8 then
9 act1 r st := working

10 act2 s st := working
11 Event brp =̂ ordinary
12 refines brp
13 when
14 grd1 r st 6= working
15 grd2 s st 6= working
16 then
17 Skip
18 Event RCV success =̂convergent
19 refines RCV progress
20 when
21 grd1 r st = working
22 then
23 act1 r st := success

24 Event RCV failure =̂convergent
25 refines RCV progress
26 when
27 grd1 r st = working
28 grd2 s st = failure
29 then
30 act1 r st := failure
31 Event SND success =̂convergent
32 refines SND progress
33 when
34 grd1 s st = working
35 grd2 r st = success
36 then
37 act1 s st := success
38 Event SND failure =̂convergent
39 refines SND progress
40 when
41 grd1 s st = working
42 then
43 act1 s st := failure
44 END

Fig. 11: A refined version of the Event-B machine that was described in Figure 1.

|{success, failure, s st’, r st’}| < |{success, failure, s st, r st}|
When one of the variables moves from working to success or failure then

the cardinality of the first set decreases, and this condition will evaluate to true.
We apply the same process to this Event-B specification, using our translational
semantics and the comorphism that we have described in Section 3. The resulting
CSPCASL specification is shown in Figure 12.

Specifying refinement between Event-B and Event-B‖CSP: We have
successfully proven that the Event-B‖CSP specification (given in Figure 2 and
written as a CSPCASL specification in Figure 9 (lines 1–7)) is a refinement of the
translation of the Event-B model (given in Figure 1 and written as a CSPCASL
specification in Figure 8) using the Auto-DG-Prover available in Hets.

This refinement is specified in Hets as shown on lines 8–9 of Figure 9, and
essentially adds the processes P0, S0 and R0 to the CSPCASL specification of
B 0 from lines 10–32 of Figure 8. This inclusion is indicated by the use of the
“then” specification-building operator (line 2 of Figure 9), which corresponds
to proving that the Event-B‖CSP specification (Figure 2) is a refinement of the
Event-B model (Figure 1). This is a logical conclusion to draw since Event-
B‖CSP is intended to be used alongside the Event-B machine specification and
thus adds a level of deterministic behaviour to the Event-B model.

Similarly, we proved that the Event-B‖CSP specification on lines 34–42 of
Figure 12 is a refinement of the refined Event-B machine in Figure 11 by trans-
lating the Event-B specification into CSPCASL via our translational semantics
and the comorphism that we outlined earlier. These refinement steps are indi-
cated by the downwards arrows in the back face of the refinement cube in Figure
10 and by the refinement statements ref0 on lines 8–9 of Figure 9 and ref1 on
line 43 of Figure 12.

13

1 spec b 1 over CSPCASL
2 data BRP c0
3 channelc1,c2,c3,c4: STATUS
4 process
5 E Init =
6 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
7 if r st’ = workings ∧ st’ = working
8 then (Init → M) else STOP
9 E brp =

10 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
11 if r st 6= working ∧ s st 6= working
12 then (brp → M) else STOP
13 E RCV success =
14 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
15 if r st = working ∧ r st’ = success ∧ var
16 then (RCV success → M) else STOP
17 E RCV failure =
18 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
19 if r st = working ∧ s st = failure ∧ var
20 ∧ r st’ = failure
21 then RCV failure → M) else STOP
22 E SND success =
23 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
24 if s st = working ∧ r st = success ∧ var
25 ∧ s st’ = success
26 then (SND success → M) else STOP
27 E SND failure =
28 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
29 if s st = working ∧ s st’ = failure ∧ var
30 then (SND failure → M) else STOP
31 M = E Init‖E brp‖E RCV success‖E SND success
32 ‖E RCV failure‖E SND failure
33 end

34 spec eb||csp b 1 over CSPCASL
35 b 1 then
36 process
37 P 1 = S 1 ‖ R 1
38 S 1 = (SND success → brp → STOP)
39 2 (SND failure → brp → STOP)
40 R 1 = (RCV success → brp → STOP)
41 2 (RCV failure → brp → STOP)
42 end

43 refinement ref1 = b 1 to eb||csp b 1

44 refinement ref2 = b 0 refined via
45 RCV progress |-> RCV success
46 SND progress |-> SND success
47 E RCV progress |-> E RCV success
48 E SND progress |-> E SND success
49 to b 1

50 refinement ref3 = b 0 refined via
51 RCV progress |-> RCV failure
52 SND progress |-> SND failure
53 E RCV progress |-> E RCV failure
54 E SND progress |-> E SND failure
55 to b 1

Fig. 12: CSPCASL specification corresponding to the concrete machine from Figure 11
as well as the refinement relations. We have also included the corresponding CSPCASL
for the Event-B‖CSP specification used by Schneider et al. on lines (34–42) [19] .

Using CSPCASLProver to preserve Event-B Refinement: Using Hets
and the CSPCASLProver we proved a refinement relation between the two
CSPCASL specifications (Figure 8 and lines 1–33 of Figure 12) that we gen-
erated using our comorphism. This is indicated by the top horizontal arrow in
the back face of the refinement cube (Figure 10).

Since the corresponding refinement step in Event-B split a single event into
two events, we had to define two separate refinements in Hets, ref2 and ref3 on
lines 44–55 in Figure 12. The syntax of these refinement specifications differs to
the previous ones that we have discussed, because this refinement is not the sim-
ple addition of processes. Here, the refinement relation specifies the relationship
between the signatures of the abstract and refined specifications.

For example, for ref2 we prove that the following are derivable from the
specification in Figure 12:

E RCV success = if r st’ = success ∨ r st’ = failure

then RCV success → M else STOP

E SND success = if s st’ = success ∨ s st’ = failure

then SND success → M else STOP

M = E Init‖E brp ‖ E RCV success ‖ E SND success

14

This corresponds to changing the names of the abstract processes E RCV pro-

gress and E SND progress to E RCV success and E SND success respec-
tively. Thus the concrete processes still preserve the truth of the abstract ones
that they refine. A similar construction follows for ref3.

Schneider et al. provide a CSP account of Event-B refinement by adding a
new event status devolved, which indicates events where the CSP controller
must ensure convergence [20]. In this paper, we have translated the Event-B
specification into CSPCASL so all convergence checks occur within the same
formalism. Therefore we do not need this new status.

These proofs were mostly automatic. Some path issues, caused by the trans-
lation from Hets to CSPCASLProver (which uses Isabelle), resulted in a small
manual effort to discharge these proofs in Isabelle. Our findings illustrate that
the notions of refinement, although expressed differently, in Rodin and Hets
are preserved using this comorphism. Thus highlighting the benefits of our in-
stitution theoretic approach to interoperability by maintaining that “truth is
invariant under change of notation” [5].

5 Conclusions and Future Work

Until now, interoperability between Event-B and CSP has been mostly theo-
retical, offering little in terms of tool support. By devising a means of forming
Hets-readable CSPCASL specifications from those in Event-B we have created
tool support for the combination of Event-B and CSP using the theory of institu-
tions. The institutional approach supplies a general framework within which we
can achieve interoperability, offering more freedom and a more formal foundation
than the approach taken by both the flows plugin and the combined formalism
Event-B‖CSP, with the advantage of tool support via Hets.

It has been shown that the institutions for both EVT CASL and CSPCASL
have good behaviour with respect to the institution-theoretic amalgamation
property [12, 13]. As a result, we are now able to write modular Event-B specifi-
cations and interoperate with CSPCASL using specification-building operators
that are made available in the theory of institutions and supported by Hets.
In future work, we will investigate the relationships between these specification-
building operators and the modularisation constructs in Event-B and CSP. We
will define and prove that ρMod obeys the required properties. We will also exam-
ine whether other kinds of institution morphisms could exist between these two
formalisms with particular focus on providing a more heterogeneous specification
similar to that of the Event-B‖CSP formalism.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer, 12(6):447–466, 2010.

15

3. M. Farrell, R. Monahan, and J. F. Power. Providing a Semantics and Modular-
isation Constructs for Event-B using Institutions. In International Workshop on
Algebraic Development Techniques, 2016.

4. J. Fitzgerald, P. G. Larsen, and J. Woodcock. Foundations for model-based engi-
neering of systems of systems. In Complex Systems Design & Management, pages
1–19. Springer, 2014.

5. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

6. C. A. R. Hoare. Communicating sequential processes. In The origin of concurrent
programming, pages 413–443. Springer, 1978.

7. A. Iliasov. On Event-B and control flow. Technical report, Newcastle University,
Newcastle Upon Tyne, U.K., 2009.

8. Y. Isobe and M. Roggenbach. CSP-Prover – a proof tool for the verification of scal-
able concurrent systems. Information and Media Technologies, 5(1):32–39, 2010.

9. A. Knapp, T. Mossakowski, M. Roggenbach, and M. Glauer. An institution for
simple UML state machines. In Fundamental Approaches to Software Engineering,
volume 9033 of LNCS, pages 3–18, 2015.

10. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer, 10(2):185–203,
2008.

11. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of LNCS, pages 519–522, 2007.

12. T. Mossakowski and M. Roggenbach. Structured CSP – a process algebra as an
institution. In Recent Trends in Algebraic Development Techniques, volume 4409
of LNCS, pages 92–110, 2007.

13. P. D. Mosses, editor. CASL Reference Manual, volume 2960 of LNCS. Springer,
2004.

14. L. O’Reilly. Structured Specification with Processes and Data. PhD thesis, Swansea
University, Swansea, U.K., 2012.

15. L. O’Reilly, M. Roggenbach, and Y. Isobe. CSP-CASL-Prover: a generic tool for
process and data refinement. Electronic Notes in Theoretical Computer Science,
250(2):69–84, 2009.

16. M. Roggenbach. CSP-CASL – a new integration of process algebra and algebraic
specification. Theoretical Computer Science, 354(1):42–71, 2006.

17. D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

18. S. Schneider, H. Treharne, and H. Wehrheim. A CSP approach to control in Event-
B. In Integrated Formal Methods, volume 6396 of LNCS, pages 260–274, 2010.

19. S. Schneider, H. Treharne, and H. Wehrheim. Bounded retransmission in Event-
B||CSP: a case study. Electronic Notes in Theoretical Computer Science, 280:69–80,
2011.

20. S. Schneider, H. Treharne, and H. Wehrheim. The behavioural semantics of Event-
B refinement. Formal Aspects of Computing, 26:251–280, 2014.

21. C. Snook and M. Butler. UML-B and Event-B: an integration of languages and
tools. In IASTED International Conference on Software Engineering, pages 336–
341, Innsbruck, Austria, 2008.

16

