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Neural or Statistical: An Empirical Study on Language Models for
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Chinese input recommendation plays an important role in alleviating human cost in typing Chinese words,
especially in the scenario of mobile applications. The fundamental problem is to predict the conditional
probability of the next word given the sequence of previous words. Therefore, statistical language models,
i.e. n-grams based models, have been extensively used on this task in real application. However, the char-
acteristics of extremely different typing behaviors usually lead to serious sparsity problem, even n-gram
with smoothing will fail. A reasonable approach to tackle this problem is to use the recently proposed neu-
ral models, such as probabilistic neural language model, recurrent neural network and word2vec. They can
leverage more semantically similar words for estimating the probability. However, there is no conclusion
on which approach of the two will work better in real application. In this paper, we conduct an extensive
empirical study to show the differences between statistical and neural language models. The experimental
results show that the two different approach have individual advantages, and a hybrid approach will bring
a significant improvement.
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1. INTRODUCTION
Chinese input recommendation is a useful technology in reducing users’ human cost in
typing Chinese words, especially when users are using some mobile applications, since
the typing costs are heavier than those on the computer. Typically, the recommender
system will recommend some possible next words based on a user’ typing history, and
the user can directly select the word which he or she would like to input rather than di-
rectly typing it. Therefore, the typing costs can be largely saved. This task can usually
be formulated as follows: given a user’s typing history, i.e. a word sequence w1, · · · , wt−1
for example, the recommendation engine will provide a recommendation list according
to the probability of generating the next word wt. Therefore, the fundamental problem
is to estimate the conditional probability of the next word wt given the word sequence
w1, · · · , wt−1, i.e. P (wt|w1, · · · , wt−1). This is exactly the target of language models [Gao
et al. 2002; Sutskever et al. 2014; Jelinek 1990].
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Traditional n-gram based statistical language models can be a natural choice to this
task, based on the assumption that a user would like to input the same sequential pat-
terns which other users have been input. Benefiting from the simplicity and stability,
n-gram based statistical language models have been widely used in the real appli-
cation of Chinese input recommendation. However, it cannot fully solve this problem
since the task of Chinese input recommendation has some intrinsic characteristics.
(1) The representation of Chinese input can be quite diverse, even though users refer
to the same meaning. (2) Users’ typing behaviors are quite different. Some users in-
put Chinese sentences character by character, while others prefer the way of word by
word, or even directly typing the Pinyin of the whole sentence. These characteristics
pose great challenges of sparsity to traditional n-gram based models, even smoothed
n-gram [Chen and Goodman 1996; Reinhard and Hermann 1995] will fail in recom-
mending the useful next words.

Recently in academic community, a new approach named neural language models
has been proposed to further taking into account the ‘similarity’ between words. Ex-
amples include neural language model (NLM for short) [Bengio et al. 2003], word2vec
[Tomas et al. 2013; Mikolov et al. 2013], recurrent neural network [Tomas et al. 2010]
(RNN for short) and long short term memory [Hochreiter and Schmidhuber 1997]
(LSTM for short). Specifically, these models represent each word as a dense vector.
Therefore, different words can be connected by their semantic representations to alle-
viate the sparsity problem. So far however, there has been no conclusion on which one
of the two different approach will perform better and should be used in real applica-
tion, to the best of our knowledge.

In this paper, we conduct an extensive empirical study on real data of Chinese in-
put recommendation to compare the two different approaches. Specifically, we collect
a large scale data set, named CIR from a commercial company focusing on Chinese
input recommendation to facilitate our study. The data set contains 20,000,000 word
sequences, and each sequence is composed of 4.9 words on average. In our study, we
don’t use any pre-process of Chinese word segmentation since we do not want to be
biased by any artificial segmentation in the real application.

The experimental results show that when using a single language model for the task
of Chinese input recommendation, the statistical language model can give the best re-
sults, the neural probabilistic language model is a little worse, while the other neural
language models perform the worst. This result tells us that the exact matching ap-
proach (n-gram based models) can find accurate results, while semantic matching ap-
proach (neural language models) can give further candidates but also introduce noises.
We also find that the overlap between the results given by two different approaches
are relatively small. Therefore, it motivates us to use a hybrid model to combine both
approaches, and thus better recommendation results can be obtained than using the
single model. Specifically, the combination of NLM with n-gram model is better than
that of other neural models and n-grams. We also find that word2vec is different with
NLM and RNN due to the negative sampling, and the combination of n-gram, word2vec
and NLM can obtains further improvement.

The rest of the paper is organized as follows. Section 2 discusses the background of
Chinese input recommendation task, the statistical language model and the evaluation
measures. Section 3 describes the neural language models, including NLM, word2vec,
RNN, and LSTM. Section 4 shows our experimental settings. Section 5 shows the ex-
perimental results and discussions. The conclusion is made in Section 6.

2. BACKGROUNDS ON CHINESE INPUT RECOMMENDATION
In this section, we will introduce some backgrounds on Chinese input recommendation,
including the task description, state-of-the-art algorithms and evaluation measures.
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Fig. 1. An example of Chinese input recommendation on the mobile phone.

2.1. Task Description
Inputing Chinese words is difficult on the mobile device. Taking the most popular
Pinyin[Chen et al. 2015] typing methods for example, people first need to type the
right Pinyin (composed of different English characters), and then choose which words
he/she wants to input since different words can share a same pinyin representation.
For example, if a user want to input a Chinese word ‘推导(deduce)’, he needs to first
type a Pinyin ‘tuidao’, and then choose the word ‘推导(deduce)’ from ‘推倒(push over)’
‘退到(back to)’ and ‘推导(deduce)’. Or if the user is in favor of typing the Chinese char-
acter one by one, he may first type the Pinyin ‘tui’ and choose the character ‘推(push)’
from ‘推(push)’ ‘退(back)’ ‘忒(very)’, and then type the Pinyin ‘dao’ and select the char-
acter ‘导(deduce)’ from ‘到(to)’ ‘导(deduce)’ ‘道(way)’ and ‘倒(over)’, etc. We can see that
this is more difficult than English words input task on mobile. That’s why Chinese
input recommendation becomes an important tool for mobile devices. Based on users’
typing history, the recommender system can give a ranking list of possible words user
want to type in the next step. With this ranking list, users can directly input the words
by clicking rather than typing if the words is recommended on top of the ranking list.
By this way, the typing efforts can be largely reduced and the typing error can be
avoided at the same time. Therefore, we can see that an effective Chinese input rec-
ommendation algorithm is critical on mobile, since the screen of mobile is usually very
small and only few top recommended words can be displayed on the screen.

Figure 1 gives an illustration of the real system of Chinese input recommendation.
In the example, we are given a user’s typing history, i.e. a sequence of words ‘我(I)-
明天(tomorrow)-要(will)-去(go to)’. The recommender system gives a recommendation
list containing five words: ‘超市(supermarket)青海(Qinghai)医院(hospital)上班(work)
学校(school)’. If the user’s next word exactly lies in the recommendation list, he/she
can directly click the word (e.g. ‘学校’(school)), rather than typing the exact words.
Therefore, we can see that users’ cost is largely reduced. This is extremely useful in
the scenario of mobile.

Therefore, the task of Chinese input recommendation can be formulated as a
language modeling problem. Given a user’s typing history, i.e. a word sequence
w1, · · · , wt−1, a recommendation list can be given out by estimating the conditional
probability of each next word P (wt|w1, · · · , wt−1). The goal is to rank the required
words on top of the ranking lists, i.e. P (w∗t |w1, · · · , wt−1) = maxwt

P (wt|w1, · · · , wt−1),
where wt∗ is the exact next words the user want to input.
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2.2. Statistical Language Models
N-gram based models[Katz 1987] are the most popular and successful statistical lan-
guage models, which has also been widely used in the real application of Chinese input
recommendation due to its simplicity in implementation and explanation. The basic as-
sumption is that the probability of a word only depends on the preceding n− 1 words.
Therefore, the probability generated for a specific word sequence w1, · · · , wt is calcu-
lated as:

P (w1, · · · , wt) ≈
t∏

i=1

P (wi|wi−(n−1), · · · , wi−1).

The conditional probability can then be calculated from the frequency counts, based on
the maximum likelihood estimation.

P (wi|wi−n−1, · · ·, wi−1)=
count(wi−n−1, · · · , wi)

count(wi−n−1, · · · , wi−1)
.

Typically, however, the n-gram based probabilities are not derived directly from the
frequency counts, because models derived this way have severe sparsity problems.
That is to say, some n-grams may have not explicitly been seen before. Instead, some
form of smoothing strategy is proposed to tackle this problem, by assigning some of
the total probability mass to unseen words or n-grams. In this paper, we use a popular
smoothing method, namely the interpolated Kneser-Ney smoothing[Bengio et al. 2003;
Reinhard and Hermann 1995; Moore and Quirk 2009; Stolcke 2002; Stolcke 2011],
for comparison. Let us denote the context as c = wi−n−1, · · · , wi−1, the interpolated
Kneser-Ney estimates the conditional probability by discounting the true count(c, wi)
with a fixed amount d(c), depending on the length (c, w) if count(c, w) > 0 (otherwise
the count remains 0). Furthermore, it interpolates the estimated probability of word
wi with lower order m-gram probabilities. The mathematical description is given as
follows:

P (wi|c)=
max(0, count(c, wi)− d(c))

count(c)
+
d(c)t(c)

count(c)
P ′(wi|c)

where t(c) = #{w′|count(c, w′) > 0} is the number of distinct words w′ following context
c in training data, and the P ′(wi|c) are the lower order m-gram probabilities.

2.3. Evaluation Measures
Typical measures for recommendation task is Precision, Recall, and F1 score[Chen
1995; Vrajitoru 1998]. We give their formal definitions as follows.

Assume that for a given context w1, · · · , wt−1, the recommendation results are de-
noted as r1, · · · , rKt

, and the ground-truth words are denoted as w(1)
t , · · · , w(U)

t , which
are words that aggregated from different users typing behavior. Please note that the
recommender system we are considering is not a personalized one, therefore, it is rea-
sonable to view each next word a user input in the context of w1, · · · , wt−1 as a ground-
truth word. The precision score is defined as:

P@K =

∑U
u=1

∑K
k=1 δ(rk = w

(u)
t )∑U

t=1 δ(K
t > 0)

,

where δ(·) is the indicator function andKt is the number of the recommendation words.
That is, if A is true, δ(A) = 1, otherwise δ(A) = 0.
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Unlike precision that is the fraction of retrieved instances that are relevant, recall
reflects the fraction of relevant instances that are retrieved:

R@K =
1

U

U∑
u=1

K∑
k=1

δ(rk = w
(u)
t ).

Since the cost of recommendation is much lower than the cost of input, this task value
recall more important than precision. That is, the user prefer to glancing at the rec-
ommendation list rather than inputting the whole word on the mobile phone.

F1 both considers the precision and recall to compute the testing score, defined as
follows.

F1@K =
P@K ×R@K

βP@K + (1− β)R@K
.

Regarding the Chinese input recommendation task as a ranking problem rather
than a classification problem, it is suitable to use ranking measures for evaluation. In
this paper, we take the mean average precision (MAP)[Chen 1995; Vrajitoru 1998] as
ranking measure for evaluation. The definitions are given as follows.

MAP =
1

U

U∑
u=1

1

rank(w
(u)
t )

,

where rank(w(u)
t ) stands for the ranking position of w(u)

t in the recommendation list.
Specially for the task of Chinese input recommendation, we would like to evaluate

from the perspective of how much the recommender system reduce the users’ typing
costs. Inspired by the measure of saved term defined in [Vargas et al. 2016], we in-
troduce two new evaluation measures in this paper, namely saved words and saved
characters. The measure of the saved words(SW ) is the defined as percentage of words
that users can directly select from the recommendation lists rather than typing di-
rectly on the mobile. While the measure of saved characters(SC) further takes into
account of the length of words, beyond the measure of saved words. We give the pre-
cise mathematical formulas as follows:

SW =

∑U
u=1

∑K
k=1 δ(rk = w

(u)
t )

U
,

SC =

∑U
u=1

∑K
k=1 δ(rk = w

(u)
t )lenc(w

(u)
t )∑U

u=1 lenc(w
(u)
t )

,

where lenc(·) stands for the length of the word (·), i.e. the number of characters con-
tained in the word.

As we can see, the measure of SW is the same as R@K. Therefore, the measure of
Recall is more important than Precision in the Chinese input recommendation task,
since the main concern of Chinese input recommender system is to rank the ground-
truth words on top of the ranking list as most as possible so as to reduce users’ input
effort in the mobile devices. Considering the above issue, we set the β in F1 measure
as 2/3 in our experiments to emphasize the concern of Recall.

3. NEURAL LANGUAGE MODELS
Though statistical language models such as n-gram based models have been widely
used in the real Chinese input recommender systems and gain great success, it usually
encounters serious sparsity problem because Chinese input recommendation task has
some intrinsic characteristics.
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(1) The representation of Chinese input can be quite diverse, even though users refer
to the same meaning. For example, a chair in Chinese can be input as many forms, such
as ‘凳子(stool)’, ‘板凳(stool)’, ‘椅子(chair)’. Since the n-gram have no generalization to
other sequence of n words and no cross-generalization between different n-tuples, the
n-gram has poor generalization and heavy sparse problem[Bengio 2016].

(2) Users’ typing behaviors are quite different. Some users input Chinese sentences
character by character, while others prefer the way of word by word, or even directly
typing the Pinyin of the whole sentence.

Though smoothed n-gram language models[Chen and Goodman 1996; Chengxiang
and Lafferty 2001] can alleviate the sparsity problem[Trnka 2008], there are at least
two characteristics in this approach which beg to be improved upon. Firstly, it is not
taking into account contexts father than 1 or 2 words 1. Secondly, it does not take into
account the ‘similarity’ between words. Therefore, the effect of sparsity can not be well
tackled with the smoothed statistical language models.

Recently, the approach of neural language models has been proposed to tackle these
problems[Zheng et al. 2013; Zou et al. 2013a; Chen et al. 2014]. The idea can be sum-
marized as follows. Firstly, each word in the vocabulary is associated with a distributed
word feature vector (a real valued vector in Rd). Secondly, the joint probability of a
word sequence is expressed based on the feature vectors of these words in the sequence.
Thirdly, the word feature vectors and the parameters of the probability function is
learned simultaneously. In this paper, we compare four popular neural language mod-
els, namely neural probabilistic language model (NLM) [Bengio et al. 2003], word2vec
[Tomas et al. 2013; Mikolov et al. 2013], recurrent neural network(RNN)[Tomas et al.
2010] and long short term memory(LSTM)[Hochreiter and Schmidhuber 1997; Gers
et al. 2000].

3.1. Probabilistic Neural Language Model
Neural probabilistic language model (NLM for short) is proposed by Bengio et al. [Ben-
gio et al. 2003], which has been successfully used in many tasks[Tang et al. 2014; Zhou
et al. 2015; Zou et al. 2013b]. Unlike n-grams only consider the estimation of condi-
tional probability, the objective f(w1, · · · , wt−n+1) = P̂ (wt|w1, · · · , wt−1) in NLM is a
composition of the two mappings C and g. Specifically, C is a mapping from each el-
ement i ∈ V to a real vector C(i), where i is a word and V is the vocabulary. The
vector represents the distributed feature vector associated with each word in the vo-
cabulary. g is a neural network with one hidden layer to map an input sequence of
feature vectors for words in context, i.e. (C(wt−n+1), · · · , C(wt−1)), to the conditional
probability for the next word wt. The input vectors are first concatenate to form a
word features layer activation vector x = (C(wt−1), C(wt−2), · · · , C(wt−n+1)). The hid-
den layer after an activation function will output tanh(bh + Hx), where H is he hid-
den layer weights with h hidden units, bh is the hidden bias, and tanh stands for the
hyperbolic tangent activation function. The hidden layer output is further combined
with the linear compositions of word features to form the input of softmax layer, i.e.
y = b+Wx+Utanh(bh+Hx), where U is the hidden-to-output weight, W is the weight
of word features to output, and b is the output bias. Finally, a softmax output layer is
defined to output the probability as follows:

P (wt|wt−1, · · · , wt−n+1) =
eywt∑
i e

yi
,

where yi stands for the score of word i.

1N-grams with up to 5 (i.e. 4 words of context) have been reported, though, but due to data scarcity, most
predictions are made with a much shorter context
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We can see that the free parameters of this model can be expressed by θ =
(b, bh,W,U,H,C). They are all learned simultaneously. Training is achieved by look-
ing for θ that maximizes the training corpus penalized log-likelihood:

Ln =
1

T

T∑
i=1

log f(wt, · · · , wt−n+1; θ) +R(θ),

where R(θ) is a regularization term. For example, in NLM [Bengio et al. 2003], R is a
weight decay penalty applied only to the weights of the neural network and to the C
matrix. Stochastic gradient ascent[LeCun et al. 1998] is usually used for optimization.

3.2. Word2vec
NLM is computationally expensive for training. Therefore, many more simple and ef-
ficient architecture is proposed, examples include [Tomas et al. 2013; Mikolov et al.
2013; Tomas et al. 2010; Bengio et al. 2015; Hochreiter and Schmidhuber 1997]. Among
these methods, word2vec is the most successful one in terms of both efficiency and ef-
fective. Therefore, we choose it as the second representative neural language model.

Mikolov [Tomas et al. 2013; Mikolov et al. 2013] proposed two new model archi-
tecture for learning distributed representations of words that try to minimize com-
putational complexity, namely CBOW and Skip-Gram. These models both follow the
paradigm that the continuous word vectors are learned using simple model, and the
n-gram model is trained on top of these distributed vectors. When applying word2vec
for language modeling, we can modify the above context C(wt) to indicate the previous
L words, i.e. C ′(wt) = (wt−L, · · · , wt−1). The others are keep the same as the original
word2vec. We can see that the corresponding architecture of CBOW and skip-gram can
be modified to only consider half words in the context window. For simplicity, we still
use the name ‘word2vec’. In this paper we only use CBOW for the our study, since it is
more accordant with the language modeling task than skip-gram.

Specifically, given a word wt and its surrounding contexts C ′(wt) = (wt−L, · · · , wt−1),
where L stands for the size of the window, the conditional probability is given by:

P (wt|C ′(wt)) =
exp{vwt

u(C ′(wt))}∑
v∈V exp{vwu(C ′(wt))}

,

where vw stands for the word vector of each word w ∈ V , and u(C ′(wt)) is the con-
text vector of word wt. Specifically, u(C ′(wt)) can be sum, average, concatenate or max
pooling of context word vectors, defined as follows.

u(C ′(wt)) = F (vc(wt−L), · · · , vc(wt+L)),

where vc(w) stands for the context vector of each word w ∈ V . In this paper, we use
average as the function F , as that of word2vec tool.

Instead of using softmax for optimization, word2vec propose to use hierarchical soft-
max or negative sampling[Goldberg and Levy 2014; Levy and Goldberg 2014] to save
computation complexity. In this paper, we use the negative sampling approach. The ba-
sic idea is to random select some words as the negative instances instead of all other
words in language. Therefore, the log-likelihood function in CBOW can be represented
as:

Lc =
∑N

n=1

∑
wn

t
[log σ(vwn

t
u(C ′(wn

t )))

+lEw′ log σ(vw′u(C
′(wn

t )))],

where wn
t stands for the t-th word of the n-th sentence, σ(x) = 1

1+e−x , l is the number
of ‘negative’ samples, w′ denotes the sampled negative words, which are sampled ac-
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cording to distribution Pnw. Stochastic gradient descent can be used for optimization,
and the gradient is calculated via back-propagation algorithm.

3.3. Recurrent Neural Network
Both NLM and word2vec have two shortcomings. (1)They directly compress the history
to a single vector, without distinguishing the orders of different words in the history.
However, the word order is usually crucial for this task. For example, the represen-
tations of ‘上天(up to the skies)’and ‘天上(heaven)‘are quite different. (2) They can
not capture the long term dependencies of contexts, which is usually important for the
next word prediction. For example, given a context ‘在(on) 海边(seaside) 旅游(travel),
我(I)去(go to)抓(catch)’, the next word is ‘螃蟹(crab)’ in the real data. We can see that
the context ‘海边(seaside)’ is crucial information for predicting the correct next word ‘螃
蟹(crab)’. However, the NLM and word2vec are usually modeling the dependencies of
contexts with a fixed-length window size, which may lose the long term dependencies.

To tackle this problem, Mikolov[Tomas et al. 2010] used recurrent neural net-
works(RNN) as a language model. It can not only learn to compress the whole history
to a low dimensional space, but also capture the sequence information and long term
dependencies of the whole sentence. RNN first combines the current word embedding
with the last-time context embedding(a hidden layer which accumulate all the con-
text information) as an input. And secondly, updates the current context embedding.
Finally, according to the current context, RNN will output the probability of the next
word with a softmax function.

Specifically, the recurrent neural network consists of an input layer xt−1, hidden
layer ht−1 and output layer yt−1, where xt−1 is the input to the network at time t-
1, yt−1 is the output and ht−1 is the state of the network. At first, the input vector
xt−1 is defined as a combination of vector C(wt−1) representing the current word and
the hidden layer ht−2 representing the historical context. That is to say, the network
joints the history state at the late time t-2 and the current word representation as
input to change the hidden state at current time t-1. Secondly, the hidden layer ht−1
is represented as a function of the input vector xt−1, where the hidden layer ht−1 is
set to be zero when t=1 is at the beginning of a sentence. Finally, the output layer yt−1
is produced by the hidden state ht−1. Mathematically, the recurrent neural network
language model can be described as follows:

xt−1 = C(wt−1) + ht−2

ht−1 = f(HRxt−1)

yt−1 = ORht−1

where HR is the hidden matrix and f is the sigmoid function to capture the non-linear
information. OR is the output matrix. The output probability is a softmax function as:

P (wt|wt−1, · · · , w1) =
eywt∑
i e

yi

Given the previous context w1, · · · , wt−1, the output layer yt−1 represents the proba-
bility distribution of the next word wt. At the training step, weights are updated by the
backpropagation algorithm and the error is computed according to the cross entropy.
That is to say, the log-likelihood function is defined as:

Lt−1 = ~wt − ~yt−1

3.4. Long Short Term Memory
Though RNN is capable to capture the long term dependencies of contexts, it usu-
ally faces the problem of gradient vanishing and gradient explosion for long sentences
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Table I. The distribution of word length on CIR.

word length 1 2 3 4 5 >5
frequency(%) 49.3 37.2 10.1 2.5 0.6 0.3

Table II.
The
dis-
tri-
bu-
tion
of
sen-
tence
length
on
CIR.

word length 2 3 4 5 >5
frequency(%) 27.1 20.3 14.5 10.3 27.4

[Hochreiter and Schmidhuber 1997; Bengio et al. 1994]. The long short term mem-
ory(LSTM) is an advanced type of Recurrent Neural Network by using memory cells
and gates to learn long term dependencies[Hochreiter and Schmidhuber 1997; Gers
et al. 2000]. In LSTM, the cell stores the information state and the gates control
whether the cell information should be transmited to other neural nodes or not.

The detailed formulation of LSTM is described as follows. Given an input context
(w0,w1,· ,wt−1 ), where C(wt) is the word embedding of input word wt at time t. LSTM
outputs a representation ht for position t as follows.

it = σ(WxiC(wt) +Whiht−1 + bi)

ft = σ(WxfC(wt) +Whfht−1 + bf )

ct = ftct−1 + ittanh(WxcC(wt) +Whcht−1 + bc)

ot = σ(WxoC(wt) +Whoht−1 + bo)

ht = ottanh(ct)

where i, f , o denote the input, forget and output gates respectively, deciding whether
the information of C(wt), ct−1 and ct should be transmited or not . c is the information
stored in the memory cells and h represents the probability distribution of the next
word wt. The weights are updated by the backpropagation algorithm and the error is
computed with the cross entropy. The log-likelihood function is defined as:

Lt−1 = ~wt − ~ht−1

4. EMPIRICAL SETTINGS
We first describe the empirical settings in this section, including the Chinese input
data and parameter settings of different models.

4.1. Data Set
In this paper, we collected a large scale data set from a commercial Chinese input
recommendation(CIR) engine to facilitate our experiments.

The data set, named CIR, contains 20,000,000 word sequences. As we do not want
to be biased by any artificial segmentation in the real application, we did not use any
word segmentation tools to pre-process the data. Instead, we directly use the data seg-
mented by the users themselves. For example, if a user type the word sequence ‘我们’
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as ‘wo(Pinyin of我)’‘space’‘men(Pinyin of们)’, ‘我’ and ‘们’ can be viewed as two dis-
tinct words. Otherwise if another use type the word sequence ‘我们’ as ‘women(Pinyin
of我们)’，the word ‘我们’ can be viewed as a single word.

We made a statistic of the number of Chinese characters in a word on the CIR data,
shown in Table I. We can see that each word contains 1.7 characters on average, and
almost 49.3% of the words in the corpus are with the length of one character, which
means the majority of users prefer to inputting single word. So the n-gram, counting
the co-occurrence frequency, adds bias to predict the most frequent single words based
on the same preceding context.

We also made a statistics of the number of words in a sequence on the CIR data,
shown in Table II. The results show that each sequence has 4.9 words on average, and
the sequences are with various length.

To facilitate the empirical study of language models for Chinese input recommen-
dation, the CIR corpus has been preprocessed by replacing all numbers with one no-
tation ‘NUM’ and ignoring the English words. Furthermore, the word sequence can
be constructed to many (context, predicted word) pairs as follows: Firstly, each sub-
set of previous words can be viewed as a context, and the following word is viewed
as the predicted word. Therefore, a word sequence with length n can be constructed
to n − 1 (context, predicted word) pairs. Secondly, pairs with the same context can be
aggregated together for the language modeling task.For example, given two (context,
predicted word) pairs (‘谢谢(Thanks)你的(your)’, ‘招待(treat)‘) and (‘谢谢(Thanks)你
的(your)’, ‘邀请(invitation)‘), we can obtain the following data by aggregating:
i.e. the context is‘谢谢你的(Thanks your)’, the groundtruth of predicted words are ‘招
待(treat)’and ‘邀请(invitation)’. We can see that such data are suitable for the lan-
guage modeling task after the preprocessing. For our study, we randomly select 80%
sequences from the whole CIR data as training set, 10% sequences as validation set
and the rest 10% as test set.

4.2. Parameter Settings
Now we introduce some parameter settings in n-grams, NLM, RNN, LSTM and
word2vec.

We adopt two statistical language models for comparison, pure n-grams (n-gram
for short), and n-grams with interpolated Kneser-Ney smoothing (n-gram-KN for
short)[Bengio et al. 2003]. For the two models, we use unigram, bigram and trigram
for counting.

For NLM, we make an experiment on the validation data of CIR to test the differ-
ent window size, embedding dimensions and different number of hidden nodes. The
performance results of P@1,10,R@10,F1@10,MAP with different window size, different
embedding dimension and hidden nodes size are reported in Figure 2. Specifically, we
first set the feature dimension as 100 and the hidden nodes as 60, and test the window
size from 3 to 8 with step 1. We can see that the performances first increase and keep
stable as the window size increase. Because of the average sentence length about 4.9
words, the window size more than 6 is good enough for these task. Secondly, we set
the window size as 6 and the hidden nodes as 60 to test the embedding dimension as
60,100,150,200,250. The performance results first increase and then keep stable as the
feature dimension increase. Therefore, the feature dimension is set to 100, and we fur-
ther test the hidden nodes of 60,100,150,200,250 with the window size set to 6. We can
see that the performances will be improved significantly as the hidden nodes increase,
which means that more hidden nodes can represent the meaning more detailed. Con-
sidering the computational cost, the dimension of word embedding, window size and
the number of hidden units is set to be 100, 6, and 200 in the latter experiments.
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Fig. 2. Influences of window size, feature dimension and hidden nodes size for NLM.

For RNN, we test the different embedding dimensions and different number of hid-
den nodes on the validation set. Specifically, we set embedding dimension and hidden
nodes the same, and test them as 60,100,150,200,300. The performances of embedding
dimension and different number of hidden nodes are reported in Figure 3. As we can
see, the P@1,10,R@10,F1 and MAP first increase and then drop as the growth of fea-
ture dimension and hidden nodes size. Therefore, the dimension of word vector and
the number of hidden unite are both set to 200.

For LSTM, we test the different embedding dimensions and different number of hid-
den nodes on the validation set. We choose embedding dimension and hidden nodes
from 60,100,150,200,300, and 500. We report the performances of different feature di-
mensions and different number of hidden nodes in Figure 4. The trend of evaluation
measure is the same as that of RNN. Therefore, the dimension of word vector and the
number of hidden unite are also set to 300.

For word2vec, we test the influences of different window sizes, feature dimensions
and the different number of negative samples on the validation set of CIR. Firstly,
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Fig. 3. Influences of feature dimension and hidden nodes size for RNN.
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Fig. 4. Influences of feature dimension and hidden nodes size for LSTM.

the feature dimension is set to 100, and we test different window sizes varying from
1 to 9 with step 1. The P@1,10, R@10,F1 and MAP scores with different settings are
reported in Figure 5. The results show that the P@10,R@10 and F1 will be improved
as the window size increases, and the P@1 and MAP reach the top with the window
size set to 2, and then keeps stable when the window size is larger than 5. Based on
these observations, we set window size to 5 in the following experiments. After that,
we study the influence of different feature dimensions, i.e. 50,100,150,200,250. The
experimental results are shown is Figure 5. We can see that the performance keeps
stable among P@1,10, F1 and MAP. While for R@10, the performance first increase
then drop, with the growth of the feature dimension. Therefore, we set the feature
dimension as 200 in our experiments. This indicates that word2vec needs an appropri-
ate feature dimension for representing a word, so that the true ‘similar’ words can be
retrieved. As for why the precision is not sensitive to the feature dimension, the ad-
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Fig. 5. Influences of feature dimension and negative samples for word2vec.

vantage of word2vec lies in providing some more similar word to give some reasonable
choices, but not in predicting the accurate words. For the number of negative samples,
we set 1,3,5,7,10,15,20 as the number of negative samples and report the results in
Figure 5. The experimental results show that the performance will consistently first
increase then drop when the negative samples is larger than 3. So we set the number
of negative samples as 3 in our experiments.

5. EXPERIMENTAL RESULTS
In this section, we show our experimental results on the Chinese input recommenda-
tion task. Firstly, we conducted experiments to study the comparison of different ap-
proaches. Secondly, we combined the statistical and neural language models, and found
that better results can be obtained than using a single one. Thirdly, we conducted a
further discussion on different neural methods to provide some more insights.
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Table III. The comparison results among statistical, neural and hybrid language models.

model P@1 P@3 P@5 P@10 R@10 F1 MAP SC
ngram 12.713 7.289 5.369 3.414 29.766 8.391 18.089 29.596

ngram-KN 9.804 6.842 4.971 3.542 28.775 7.743 15.314 28.564
NLM 10.126 6.472 4.892 3.181 29.357 7.902 16.025 29.226

word2vec 6.313 4.073 3.120 2.209 19.675 5.452 10.181 19.454
RNN 8.547 5.796 4.509 3.002 27.710 7.417 14.334 27.586
LSTM 8.672 5.766 4.517 3.078 27.887 7.381 14.499 27.363

NLM+ngram 13.154 7.536 5.554 3.467 30.683 8.545 18.777 30.508
word2vec+ngram 12.938 7.451 5.499 3.487 30.483 8.576 18.473 30.312
weighted+ngram 13.126 7.618 5.522 3.499 30.587 8.605 18.545 30.471

RNN+ngram 12.981 7.429 5.479 3.483 30.412 8.563 18.468 30.234
LSTM+ngram 12.986 7.430 5.470 3.474 30.333 8.542 18.457 30.156

NLM+word2vec+ngram 14.979 7.821 6.34 3.891 31.18 9.407 19.587 30.938

Table IV. The sparsity rate of n-gram and NLM with different number and
average length of context words.

number ngram neural average length ngram neural
1 23.38 1.58 [1,2) 1.04 0.001
2 6.51 0.01 [2,3) 7.42 0.03
3 4.07 0.001 [3,4) 25.54 0.36
4 3.49 0.0002 [4,5) 41.27 1.31
5 2.96 0 [5,) 52.2 2.02

5.1. Comparison Between Statistical and Neural Language Models
We compare all the models on CIR for fair comparison, and the experimental results
are shown in Table III. From the results, we can see that two statistical methods (i.e. n-
gram and n-gram-KN) obtain comparable results. Similar results can be obtained for
the four neural methods (i.e. NLM, word2vec, RNN and LSTM). As for the comparisons
between statistical and neural approaches, we can see that the statistical language
models performs much better than that of the neural ones. Taking MAP as an example,
the best statistical language model (i.e. n-gram/18.09) can improve the best neural
language model (i.e. NLM/16.03) by 12.85%. An exception is R@10, we can see that
NLM performs slightly better than n-gram. We make a further analysis to show the
differences between statistical and neural language models.

5.1.1. Sparsity Rate Analysis.
Firstly, we give some analysis to show how serious the sparsity problem is for statisti-
cal and neural language models, and explain why this happens. Specifically, we define
a measure named sparsity rate as sr = #{no−recommendation}

#{chances−to−recommend} . We made a statistics
on the sparsity rate for different models, and show the results on Table IV. Since the
statistics for neural language models are similar, we only show the results of NLM for
demonstration.

At first, we conduct an analysis on the influence of sparsity rate by the number of
context words. We test different number of context words from 1 to 5 with step 1, and
show the sr in the left of the table. From the results, we can see that the sparsity
rate of n-gram is about 23.4% when the context contains only one word. And it drops
significantly when the context contains more words. The reason is that it can only use
low-order n-gram when the context is short. For example, the context is ‘凳子上(on
stool)’ but the training data only contain bi-grams of ‘椅子上(on chair)+睡(sleep)’ and
‘椅子上(on char)+的(’s)’. However, the sr will drops for neural language models and the
largest one is only 1.58%. That is because the neural language model can seize the
similarities between words(ie. 凳子stool and 椅子chair), and thus largely improve the
sparsity problem than statistical language model.
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Table V. The overlapping rates of the recommendation results between each two models.

overlap ngram ngram-KN NLM word2vec RNN LSTM
ngram 1 0.590726 0.1855 0.143099 0.198572 0.200481

ngram-KN 1 0.201453 0.145458 0.224591 0.228102
NLM 1 0.0858913 0.532115 0.525754

word2vec 1 0.0794111 0.0792779
RNN 1 0.727284

LSTM 1

Secondly, we test the average length of context from [1, 2), [2, 3), · · · , [5,∞), and show
the sr in the right of the table. As we can see, the sr increases as the average length
increases for both statistical and neural language models. Specifically, statistical lan-
guage model can reach to almost 52.2% when the average length is more than 5 chinese
characters, which means that the input behaviors can affect the sparse rate directly.
For the same meaning ‘我明天要去超市(I tomorrow will go to supermarket)’, some users
may input ‘我明天要去(I tomorrow will go to)’ as his first input and other users may
input ‘我(I)’‘明天(tomorrow)’‘要去(will go to)’ step by step. The average length of context
for the former user is 5 and the last user is 1.67. From our experimental results, n-gram
can not performs well for the former users. While for the neural language model, the
sparsity problem can be alleviated by leveraging semantics between different words,
and the largest sr is about 2.02% for NLM, which is much smaller than the n-gram
based statistical language model.

5.1.2. Overlapping Rate Analysis.
Secondly, we conduct a qualitative analysis between n-gram and neural language mod-
els. Specifically, we make a statistics on the overlapping rates of the recommenda-
tion results between each two models, among n-gram, n-gram-KN, NLM, word2vec,
RNN and LSTM. The experimental results are shown in Table V. From the re-
sults, we can first see that there is large overlap between n-gram and n-gram-KN
(i.e. 59.07%). This is understandable since n-gram-KN is just a smoothed version of n-
gram. Secondly, there is large overlap rate among some neural language models, such
as NLM, RNN and LSTM. For example RNN and NLM has 53.21% overlap, LSTM
and NLM(i.e. 52.58%), RNN and LSTM(i.e. 72.73%). All these neural language models
may predict the similar results. However, the word2vec is different from other neu-
ral language models, since the overlapping rate between word2vec and others is quite
small, i.e. 8.5%, 7.9% and 7.9%, respectively. This may be caused by the negative sam-
pling strategy used in word2vec. For both NLM and RNN, the likelihood function is
utilized as the loss function. That is to say, the words which is popular will be en-
couraged. However, they will be penalized in word2vec when using negative sampling.
Thirdly, there is small overlap between statistical and neural language models. For
example, the overlap between n-gram and NLM is 18.55%, while that between n-gram
and word2vec is 14.31%. Therefore, statistical and neural language models will pro-
vide different recommendations. These results indicate that we can combine different
approaches to obtain a better results. We will give further investigations on this issue
later.

5.1.3. Case Studies.
Table VI gives some cases of different prediction results for a given word sequence. The
proceeding context is ‘我(I)打(play)’ and ‘商店(store)不能(can’t use)微信(WeChat)’. And
the ground truth is ‘电话(phone) 游戏(games)’ and ‘支付(pay)’, respectively. From the
results, we can see that statistical language models can only give some frequent result,
since they are estimating the probability based on the counting. For example, the n-
gram of ‘打游戏(play games)’ and ‘微信支付(WeChat Pay)’ are rare in the training data,
therefore statistical language models will miss these positive words, and can only out-
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Table VI. The case studies on the comparisons of statistical and neural language models.

ngram ngram-KN NLM word2vec RNN LSTM
电话(phone)

了
的

你(your)
我(my)

电话(phone)
的
了

NUM
你(your)

电话(phone)
疫苗(vaccine)

针(have an injection)
交道(contact)
点滴(transfuse)

羽毛球(badminton)
预防针(vaccine)
小报告(report)
麻将(mahjong)
游戏(games)

电话(phone)
NUM

级(upgrade)
没人接(no answer)
短信(message)

电话(phone)
工(work)
牌(cards)

麻将(mahjong)
你(you)

号(ID)
上(sign in)
红包(money)

了
群(group)

是(is)
的

好友(friend)
群(group)
红包(money)

好友(friend)
群(group)
支付(pay)
红包(money)
你(you)

密码(password)
账号(ID)

下载(download)
支付(pay)

转账(virement)

密码(password)
NUM

给你(give you)
付款(pay)
下单(order)

号(ID)
了

发(give)
NUM

红包(money)

put some popular positive words such as ‘电话(phone)’ and ‘群(group)’. While for neural
language model, we can see that they can output many more reasonable words, such as
‘游戏(games)’,‘疫苗(vaccine)’ for ‘我打(I play(do))’, and ‘密码(password)’,‘账号(ID)’ for ‘微
信(WeChat)’. This is mainly because they can leverage the distributed representations
to construct connections between similar words, thus help to expand the candidates.
Therefore, statistical and neural language models both have their own advantages:
statistical ones can accurately predict the popular words, while neural ones have the
ability to provide more chances to target the rare words to tackle the sparse problem.
Furthermore, the influence of smoothed strategy on the sparse problem is limited,
since n-gram-KN provide exactly the same results with n-gram model, only with dif-
ferent order.

5.2. Combination of Statistical and Neural Language Models
According to the above analysis that statistical and neural language models usually
give different results, we give a hybrid model as follows.

P (wt|C)=λPn(wt|C)+(1−λ)Pd(wt|C),

where Pn and Pd stands for the conditional probability produced by statistical and
neural language models, respectively. λ is a tradeoff factor in the range of [0,1]. When
λ = 1, it reduces to statistical language model. While if λ = 0, it reduces to neural
language model.

We first study the influences of different λ ranging from 0 to 1 with step 0.1, on the
validation set of CIR to see whether the combination will help for the Chinese input
recommendation task. Figure 6 show the results of different λ when combing n-gram
with NLM, word2vec, RNN and LSTM respectively. From the results, we can see that
the performances are changing in a similar trend, i.e. first increase and then drop.
The best λ for combing n-gram and NLM is 0.5, the best one for combing n-gram and
word2vec is 0.8, the best λ for combing n-gram and RNN is 0.9, while the best one for
combing n-gram and LSTM is 0.9. Therefore, we can see that the hybrid model can
indeed obtain better results. These parameters are used for further comparison.

Table III gives the comparison results between the combination approach with the
single ones. We can see that the combination approach significantly improve the re-
sults. Taking MAP as an example, the improvement of the best combination method
(i.e. NLM+n-gram/18.78) over the best statistical method (i.e. n-gram/18.09) is 3.8%.
While the improvement over the best neural method (i.e. NLM/16.03) is 17.2%. This
is accordant with the experimental findings that neural language models can provide
suitable similar words for candidate to tackle the sparse problem, as shown in the
above case studies.

Considering the above results that word2vec is different from other neural language
models, and the overlapping is very small, we propose to combine n-gram, word2vec,
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Fig. 6. Influences of different λ in combining n-gram and neural model.

and other neural language models. Therefore, we can obtain the following hybrid
model:

P (wt|C)=λ1Pn(wt|C)+λ2Pw(wt|C) + (1− λ1 − λ2)Pd(wt|C),

where Pn, Pw and Pd stands for the conditional probability produced by n-gram
,word2vec and other neural language models, respectively. λ1, λ2 are tradeoff param-
eters in the range of [0,1]. In our experiments, we also tune these parameters in
the validation set, and only report the best results with λ1 = 0.3 and λ2 = 0.2.
The experimental results are shown in Table III. We can see that the performance
is improved significantly. Taking MAP as an example, the improvement(i.e. NLM+n-
gram+word2vec/19.59) over the best statistical method(i.e. n-gram/18.09) is 8.3%.

5.3. Discussions on Different Neural Language Models
Furthermore, we conduct a discussion on different neural language models to provide
some more insights. Since word2vec is proposed as a simplified version of NLM, and
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RNN can be viewed as more complicated than NLM, we conduct the discussions on
word2vec vs. NLM, and RNN vs. NLM, respectively.

5.3.1. Word2Vec vs. NLM. The experiments show that the combination of word2vec+n-
gram works worse than that of NLM+n-gram. We analyzed the data and found that
the failure of word2vec+n-gram may be caused by the fact that word2vec did not con-
sider the orders of the given context, since they are usually using an average oper-
ation to obtain the context vector in word2vec. However, such order information is
usually crucial for the task of language modeling. To reflecting such order information
while keeping the efficiency advantage of word2vec, we propose to modify the original
word2vec to a weighted version. Specifically, the new feature vector of each context
word vc(wj), j = t− L, · · · , t− 1 is defined as the the following form:

vc(wj) =
2(t− j) · vc(wj)

L(1 + L)
,

where vc(wj) stands for the feature vector of wj in original word2vec. The experimental
results in Table III show that the combination of weighted word2vec and n-gram can
perform better than that of word2vec and n-gram.

Specifically, we give a specific case for further explanation. Given a word sequence
‘你(you)没有(not have it)就(is)-行(okay)’, if we adopt weighted word2vec, the predicted
words will be ‘行了(okay)可以了(alright)行(okay)可以(alright)好了(good)’. Compared
with the results produced by word2vec ‘这样(doing this)那么(that)必要(need)发言
权(right to speak)这么(so)’, we can see that the words related to the latter word ‘就(is)’
has been ranked on top positions. Therefore, the order information of contexts have
been taken into account in the model.

5.3.2. NLM vs. RNN. The experiments show that RNN+ngram is worse than
NLM+ngram. We give some explanations as follows. RNN compresses the context
information into a hidden layer, while NLM has a fully connected with the context.
Therefore the advantage of RNN lies in the modeling for long context, since it can
capture the long term dependencies. But in our data, each sentence has 4.9 words on
average and NLM has a window size 6 in our experiments. That is to say, NLM has
ability to control most situations(referred to TableII).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we conduct an empirical study on a large scale real data of Chinese
input recommendation task. The experimental findings show that: (1) Statistical and
neural language models have their own advantages, i.e. statistical ones can provide
more accurate results by utilizing counting as the estimation foundation, while neu-
ral ones can alleviate the sparsity problem by providing more similar results; (2) The
combination of the two approach will improve the results of Chinese input recommen-
dation, since the overlap between them are relatively small; Word2vec is different from
NLM and RNN due to the negative sampling strategy, and the combination of n-gram,
word2vec and other neural language models will further improve the results.

For the future work, we will further investigate the different neural language mod-
els, such as whether word2vec provides some diverse results, which may be helpful for
tail users. We will also study the efficiency issue of different neural language models,
which is more important for the application on mobile.
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