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Abstract

Biró, Hujter, and Tuza (1992) introduced the concept of H-graphs, intersection graphs
of connected subgraphs of a subdivision of a graph H. They are related to and generalize
many important classes of geometric intersection graphs, e.g., interval graphs, circular-arc
graphs, split graphs, and chordal graphs. Our paper starts a new line of research in the
area of geometric intersection graphs by studying several classical computational problems
on H-graphs: recognition, graph isomorphism, dominating set, clique, and colorability.

We negatively answer the 25-year-old question of Biró, Hujter, and Tuza which asks
whether H-graphs can be recognized in polynomial time, for a fixed graph H. We prove
that it is NP-complete if H contains the diamond graph as a minor. On the positive side,
we provide a polynomial-time algorithm recognizing T -graphs, for each fixed tree T . For
the special case when T is a star Sd of degree d, we have an O(n3.5)-time algorithm.

We give FPT- and XP-time algorithms solving the minimum dominating set problem on
Sd-graphs and H-graphs, parametrized by d and the size of H, respectively. The algorithm
for H-graphs adapts to an XP-time algorithm for the independent set and the independent
dominating set problems on H-graphs.

If H contains the double-triangle as a minor, we prove that the graph isomorphism
problem is GI-complete and that the clique problem is APX-hard. On the positive side, we
show that the clique problem can be solved in polynomial time if H is a cactus graph. Also,
when a graph has a Helly H-representation, the clique problem is polynomial-time solvable.

Further, we show that both the k-clique and the list k-coloring problems are solvable in
FPT-time on H-graphs, parameterized by k and the treewidth of H. In fact, these results
apply to classes of graphs with treewidth bounded by a function of the clique number.

We observe that H-graphs have at most nO(‖H‖) minimal separators which allows us
to apply the meta-algorithmic framework of Fomin, Todinca, and Villanger (2015) to show
that for each fixed t, finding a maximum induced subgraph of treewidth t can be done in
polynomial time. In the case when H is a cactus, we improve the bound to O(‖H‖n2).

∗This paper is the combination and extension of the conference versions which appeared at WG 2017 [CTVZ17]
and Eurocomb 2017 [CZ17].

†Supported by GAUK 1224120 and by GAČR 19-17314J.
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1 Introduction

An intersection representation R of a graph G is a collection of sets {Rv : v ∈ V (G)} such
that Ru ∩ Rv 6= ∅ if and only if uv ∈ E(G). Many important classes of graphs arise from
restricting the sets Rv to geometric objects (e.g., intervals, circular-arcs, convex sets, planar
curves). The study of these geometric representations has been motivated through various
application domains. For example, intersection graphs of planar curves relate to circuit layout
problems [Sin66, BS90], interval graphs relate to scheduling problems [Rob78] and can be used
to model biological problems (see, e.g., [JMT92]), and intersection representations of convex sets
relate to the study of wireless networks [HS95].

We study H-graphs, intersection graphs of connected subgraphs of a subdivision of a fixed
graph H, introduced by Biró, Hujter, and Tuza [BHT92]. We answer their open question
concerning the problem of recognition of H-graphs and further start a new line of research
in the area of geometric intersection graphs, by studying H-graphs from the point of view
of fundamental computational problems of theoretical computer science: recognition, graph
isomorphism, dominating set, clique, and colorability. We begin by discussing several closely
related graph classes.

Interval graphs (INT) form one of the most studied and well-understood classes of intersection
graphs. In an interval representation, each set Rv is a closed interval of the real line; see
Fig. 1a. A primary motivation for studying interval graphs (and related classes) is the fact
that many important computational problems can be solved in linear time on them; see for
example [BL76, Cha98, LB79].

Chordal graphs (CHOR) were originally defined as the graphs without induced cycles of length
greater than three. Equivalently, as shown by Gavril [Gav74b], a graph is chordal if and only
if it can be represented as an intersection graph of subtrees of some tree; see Fig. 1b. This
immediately implies that INT is a subclass of the chordal graphs.

The recognition problem can be solved in linear time for CHOR [RTL76], and such algorithms
can be used to generate an intersection representation by subtrees of a tree. However, asking
for special host trees can be more difficult. For example, when the desired tree T is a part
of the input, deciding whether G is a T -graph is NP-complete [KKOS15]. Additionally, some
other important computational problems, for example the dominating set [BJ82] and graph
isomorphism [LB79], are harder on chordal graphs than on interval graphs.

One can ask related questions about having “nice” tree representations of a given chordal
graph. For example, for a given graph G, if one would like to find a tree T with the fewest
leaves such that G is a T -graph, it can be done in polynomial time [HS12], this is known as the
leafage problem. However, for any fixed d ≥ 3, if one would like to find a tree T where G is a T -
graph and, for each vertex v, the subtree representing v has at most d leaves, the problem again
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Figure 1: (a) An interval graph and one of its interval representations. (b) A chordal graph
and one of its representations as an intersection graph of subtrees of a tree.
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becomes NP-complete [CS14], this is known as the d-vertex leafage problem. The minimum
vertex leafage problem can be solved in nO(`)-time via a somewhat elaborate enumeration of
minimal1 tree representations of G with exactly ` leaves where ` is the leafage of G [CS14].

Split graphs (SPLIT) form an important subclass of chordal graphs. These are the graphs
that can be partitioned into a clique and an independent set. Note that every split graph can be
represented as an intersection graph of subtrees of a star Sd, where Sd is the complete bipartite
graph K1,d.

Circular-arc graphs (CARC) naturally generalize interval graphs. Here, each set Rv cor-
responds to an arc of a circle. The Helly circular-arc graphs form an important subclass of
circular-arc graphs. A graph G is a Helly circular-arc graph if the collection of circular-arcs
R = {Rv}v∈V (G) satisfies the Helly property, i.e., in each sub-collection of R whose sets pair-
wise intersect, the common intersection is non-empty. Interestingly, it is NP-hard to compute a
minimum coloring for Helly circular-arc graphs [Gav96].

1.1 H-graphs

Biró, Hujter, and Tuza [BHT92] introduced H-graphs. Let H be a fixed graph. A graph G is
an intersection graph of H if it is an intersection graph of connected subgraphs of H, i.e., the
assigned subgraphs Hv and Hu of H share a vertex if and only if uv ∈ E(G).

A subdivision H ′ of a graph H is obtained when the edges of H are replaced by internally
disjoint paths of arbitrary lengths. A graph G is a topological intersection graph of H if G is an
intersection graph of a subdivision H ′ of H. We say that G is an H-graph and the collection
{H ′v : v ∈ V (G)} of connected subgraphs of H ′ is an H-representation of G. The class of
all H-graphs is denoted by H-GRAPH. Alternatively, we can view H-graphs geometrically as
intersection graphs of connected subregions of a one-dimensional simplicial complex (this is a
topological definition of a graph). We have the following relations:

INT = K2-GRAPH, CARC = K3-GRAPH,

SPLIT (
∞⋃
d=2

Sd-GRAPH, CHOR =
⋃

Tree T

T -GRAPH.

Motivation. It is easy to see that every graph G is an H-graph for an appropriate choice of H
(e.g., by taking H = G). In this sense, the families of H-graphs provide a parameterized view
through which we can study all graphs. We also mentioned that several important computational
problems are polynomial on interval (the most basic class of H-graphs), but are hard on chordal
graphs. This inspires the question of when we can use this parameterization to provide a refined
understanding of computational problems. Of course, to approach this problem, we first need
to observe some relations among the classes of H-graphs and related well-studied graph classes.

For any pair of (multi-)graphs H1 and H2, if H1 is a minor of H2, then H1-GRAPH ⊆
H2-GRAPH. Moreover, if H1 is a subdivision of H2, then H1-GRAPH = H2-GRAPH. Specifically,
we have an infinite hierarchy of graph classes between interval and chordal graphs since for every
tree T with at least one edge, INT ⊆ T -GRAPH ( CHOR. This motivates the study of the above
mentioned problems on T -graphs, for a fixed tree T .

We note a dichotomy regarding computing a minimum coloring on H-GRAPH. Namely, if
H contains a cycle, then computing a minimum coloring on H-GRAPH is already NP-hard even

1where each node of T corresponds to a maximal clique of G
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for the subclass of Helly H-graphs [Gav96]. On the other hand, when H is acyclic, a minimum
coloring can be computed in linear time since H-GRAPH is a subclass of CHOR.

Biró, Hujter, and Tuza originally introducedH-graphs in the context of the (p, k) pre-coloring
extension problem (PrColExt(p, k)). In this problem, the input is a graph G together with
a p-coloring of W ⊆ V (G), and the goal is to find a proper k-coloring of G extending this
pre-coloring. Biró, Hujter, and Tuza [BHT92] provide an XP (in k and ‖H‖) algorithm to solve
PrColExt(k, k) on H-graphs. Biró, Hujter, and Tuza asked the following question which we
answer negatively.

[Biró, Hujter, and Tuza [BHT92], 1992] Let H be an arbitrary fixed graph. Is there
a polynomial algorithm testing whether a given graph G is an H-graph?

1.2 Our results

We give a comprehensive study of H-graphs from the point of view of several important prob-
lems of theoretical computer science: recognition, graph isomorphism, dominating set, clique,
and colorability. We focus on five collections of classes of graphs. In particular, Sd-GRAPH,
T -GRAPH, C-GRAPH, Helly H-GRAPH, and H-GRAPH, where Sd is the star of degree d, T is
a tree, C is a cactus, and H is an arbitrary graph. Our results are displayed in Table 1. The
following list provides a summary of our results and should help the reader to navigate through
the paper:

• Recognition. In Section 3 we negatively answer the question of Biró, Hujter, and Tuza.
We prove that recognizing H-graphs is NP-complete if H is not a cactus (Theorem 1).
Equivalently this means that H contains the diamond graph as a minor. We do this
by a reduction from the problem of testing whether the interval dimension of a partial
order of height 2 is at most 3. On the positive side, in Section 4, we give an O(n3.5)-time
algorithm for recognizing Sd-graphs (Theorem 3), and we give a polynomial-time algorithm
for recognizing T -graphs (Theorem 4), for a fixed tree T .

• Dominating set. In Section 5, we solve the problem of finding a minimum dominating
set for Sd-graphs in time O(dn(n + m)) + 2d(d + 2d)O(1) (Theorem 5) and for H-graphs
in nO(‖H‖)-time (Theorem 6). The latter algorithm can be easily adapted to solve the
maximum independent set problem and minimum independent dominating set problem in
nO(‖H‖)-time for H-graphs (Corollary 7).

• Clique. In Section 6, we study the clique problem. We show that if H contains the double-
triangle ∆2 (see Fig. 5a) as a minor, then the clique problem is APX-hard for H-graphs
(Theorem 8). On the positive side, we solve the clique problem in polynomial time for
Helly H-graphs (Theorem 9), and in the case when H is a cactus (Theorem 10).

• Graph isomorphism. Theorem 8 also gives that if H contains the double-triangle ∆2 (see
Fig. 5a) as a minor, then graph isomorphism problem is GI-complete for H-graphs.

• k-coloring and k-clique. In Section 7, we use treewidth based methods to provide an
FPT-time algorithm for finding a k-clique in an H-graphs (Theorem 11) and an FPT-
time algorithm for k-coloring of H-graphs (Theorem 12). In fact, these results apply
to more general graph classes formalized via the concept of a clique-treewidth property

5



Open

Open

Open

OpenOpenFPT in d

O(n3.5) nO(‖T‖2)
NP-complete if
H 6= cactus

GI-complete
if ∆2 � H

FPT in d nO(‖T‖) nO(‖C‖) nO(‖H‖) nO(‖H‖)

Polynomial Polynomial APX-hard
if ∆2 � H, FPT

FPT FPT FPT

O(‖C‖n2) nO(‖H‖) nO(‖H‖)

O(n+m) O(n+m)

O(n+m) O(n+m)

≤ n ≤ n

Sd-graphs T -graphs C-graphs Helly H-graphs H-graphs

Recognition

Graph
isomorphism

Dominating
set

Maximum
clique

Coloring

# of minimal
separators

Table 1: The table of the complexity of different problems for the four considered classes. Our
contributions are highlighted. Note: A � B denotes that A is a minor of B, and ∆2 denotes the
double-triangle (see Fig. 5).

(which is defined as in the parameter-treewidth properties of bidimensionality theory ; see,
e.g.,[DFHT04]) and may be of independent interest.

• Minimal Separators. Finally, in Section 8, we show that each H-graph has nO(‖H‖)

minimal separators (Theorem 13) and, when H is a cactus, we improve this bound to
O(‖H‖n2) (Theorem 15). Thus, by the algorithmic framework of Fomin, Todinca, and
Villanger [FTV15], on H-graphs, we obtain a large class of problems (including, e.g., feed-
back vertex set) which can be solved in XP-time (parameterized by ‖H‖) and polynomial
time (in both ‖H‖ and the size of the input graph) when H is a cactus.

Open problems. Since all the sections are mostly self-contained, instead of including a separate
section for open problems and conclusions, we decided to include the open problems and possible
future research directions in the corresponding sections.

Recent developments. After the publication of the two conference articles [CTVZ17, CZ17]
(which this paper includes and extends), there have already been further developments regarding
H-graphs [FGR20, JKT20]. The results contained in these articles complement and build on our
work regarding combinatorial optimization problems. For instance, to complement our XP-time
algorithms for minimum dominating set and maximum independent set, Fomin, Golovach, and
Raymond [FGR20] show that these problems are W[1]-hard, when parameterized by ‖H‖ and
the desired solution size. They additionally tighten our result regarding the fixed parameter
tractability of the k-Clique problem on H-graphs by showing that this problem admits a poly-
nomial size kernel in terms of both ‖H‖ and the solution size. Jaffke, Kwon, and Telle [JKT20]
adapt the W[1]-hardness proof from [FGR20] for maximum independent set to additionally show
that feedback vertex set is also W[1]-hard. Only recently, the problem of testing isomorphism
of Sd graphs was solved in FPT time [AH20].
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2 Preliminaries

We assume that the reader is familiar with the following standard and parameterized computa-
tional complexity classes: NP, XP, and FPT (see, e.g., [CFK+15] for further details).

Let G be an H-graph. For a subdivision H ′ certifying G ∈ H-GRAPH, we use H ′v to denote
the subgraph of H ′ corresponding to v ∈ V (G). The vertices of H and H ′ are called nodes. By
‖H‖ we denote the size of H, i.e., ‖H‖ = |V (H)|+ |E(H)|.

We refer to the degree one nodes of H as leaves and the nodes degree at least three as
branching points. Note that, while we sometimes speak of degree two nodes in H, they are
actually redundant since their presence or absence does not change H-GRAPH. As such, by
thinking of H as a multi-graph with loops one can nearly always avoid the need for any nodes
of degree two (by contracting edges where one end point has degree two). The exception here
is the case of H being a cycle which leads to the true H simply being a single vertex with one
loop, i.e., this vertex has degree two. Of course, when H is a tree, this works without the need
for H to be a multi-graph.

We have some special notation for the case when H is a tree. Let a, b be two nodes of H ′.
By P[a,b] we denote the path from a to b. Further, we define P(a,b] := P[a,b] − a, and P[a,b), P(a,b)

analogously.
Let S ⊆ G. Then G[S] is the subgraph of G induced by S, and G− S is the graph obtained

from G by deleting the vertices in S (together with the incident edges). For a graph G, we
assume G has n vertices and m edges.

In 1965, Fulkerson and Gross proved the following fundamental characterization of interval
graphs by orderings of maximal cliques. It is used implicitly in several proofs.

Lemma 2.1 (Fulkerson and Gross [FG65]). A graph G is an interval graph if and only if there
exists a linear ordering � of the maximal cliques of G such that for every u ∈ V (G) the maximal
cliques containing u appear consecutively in �.

A remark on the size of subdivisions and membership in NP. As membership in
H-GRAPH is certified through the existence of an appropriate subdivision of H, one might
wonder just how large subdivision H ′ is necessary to ensure that any n-vertex H-graph G has a
representation by connected subgraphs of H ′. Note that as long as the size of this subdivision
is bounded by a polynomial in n, H-graph recognition does indeed belong to NP. We observe
that it suffices to subdivide every edge of H 2n times to accommodate an n-vertex H-graph,
i.e., without loss of generality the size of H ′ is at most |V (H))|+ 4n|E(H)|.

To see this, we consider an edge ab of H, and its corresponding path a, c1, . . . , c`, b in H ′.
Observe that, for each vertex v ∈ V (G), H ′v has at most two leaves on this path. Thus, if
` > 2n, there must be a ci which does not contain any leaf of any H ′v. In particular, this ci can
be contracted into its neighbour on the path while preserving the representation of G. Therefore,
it suffices to consider subdivisions of size |V (H))| + 4n|E(H)| and, in particular, for every H,
recognition of H-graphs is in NP.

3 Recognition is hard if H is not a cactus

In this section, we negatively answer a question posed by Biró, Hujter, and Tuza [BHT92,
Problem 6.3]. Namely, we prove that testing whether a graph is an H-graph is NP-complete

7



when the diamond graph2 D is a minor of H. Note that this sharply contrasts the polynomial
time solvability of the recognition problem for circular-arc graphs (i.e., whenH is a cycle). Before
getting to the hardness proof itself, we first establish a technical (though rather straightforward
to prove) lemma regarding the essentially unique (up to automorphism) H-representability of
the 3-subdivision H3 of H as an H-graph. Namely, H3 is obtained from H by subdividing each
edge exactly 3 times, that is, in H3 we have one vertex xv for each vertex v of H, and for each
edge e = uv of H we have the path xu,xue,xe,xve,xv.

Lemma 3.1. Let H be any multi-graph without vertices of degree 2, and let H3 be the 3-
subdivision of H. The graph H3 is an H-graph and, for every subdivision H ′ certifying H3 ∈
H-GRAPH (via the representation {H ′x : x ∈ V (H3)}, we have:

• For each non-leaf vertex v of H, the representation H ′xv of the corresponding vertex xv
in H3 contains exactly one branching point p of H where the degree of v (and xv) and p
coincide.

• For each edge e = uv of H and the corresponding path xuxue,xe,xve,xv in H3, the repre-
sentation H ′xe of xe is strictly contained within the subdivision of a single edge zz′ of H
such that for distinct edges e, f of H with corresponding “middle” vertices xe,xf in H3,
H ′xe and H ′xf are contained within subdivisions of distinct edges of H.

Moreover, each H-representation of H3 defines an automorphism of H.

Proof. We first note that this holds trivially for the case when H is K1 or K2.
We now observe that H3 is indeed an H-graph. Let H ′ be the 4-subdivision of H, that is, in

H ′ the edge e = uv of H becomes the path yuyue, zue, zve, yve, yv. For each vertex v of H with
incident edges {e1, . . . , ek}, we represent xv by the star H ′v = H ′[{yv, yve1 , yve2 , . . . , yvek}]. For
each edge uv of H, we represent:

• xue by H ′xue = the edge yuezue,

• xe by H ′xe = the edge zuezve, and

• xve by H ′xve = the edge zveyve.

It is easy to see that this collection of subgraphs of H ′ is indeed H-representation of H3.
So, we now consider an arbitrary H-representation {H ′x : x ∈ V (H3)} of H3, where H ′ is the

subdivision of H and establish the claimed properties.
Suppose that there is a vertex v of H where v has degree at least three (with incident edges

e1, . . . , ek) and H ′xv does not contain a branching point, i.e., all nodes in H ′xv have degree at
most two. Now, since the neighborhood {xve1 , . . . ,xvek of xv is an independent set (and k ≥ 3),
this implies that (without loss of generality), Hxve1

is contained within H ′xv . However, this now
makes it impossible to represent xe1 since H ′xe1 should intersect H ′xve1 but should not intersect
H ′xv . Thus, for each vertex v of H with degree at least three, H ′xv contains a branching point.
Note that no branching point can occur in two such H ′xu and H ′xv , thus, the vertices of degree
at least three are bijectively mapped to the branching points. Finally, since we now know that
H ′xv contains exactly one branching point, we remark that the degree of this branching point
must match be at least the degree of xv as otherwise some H ′xvei would be contained in H ′xv

2The diamond graph is obtained by deleting an edge from a 4-vertex clique.
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contradicting the H-representation at hand. Thus, indeed the degree of this branching point
must coincide with the degree of xv (and v).

Now consider any edge e = uv of H. Observe that H ′xe cannot contain any branching points
since each branching point is contained in a representation H ′xv where xv is not a neighbor of xe.
Thus, H ′xe is indeed contained within the subdivision of an edge pq of H, and in particular when
p (q) is a branching point, then without loss of generality H ′xu (H ′xv) contains u (p). Observe
that, when u has degree at least three, H ′xu ∪H

′
xue ∪H

′
xe consists of a subpath of the subdivision

of pq in H ′ that includes p and as such, for any edge f distinct from e, H ′xf must be contained
within the subdivision of a different edge of H. Moreover, this means that for each edge e = uv
connecting two vertices of degree at least three, xe is indeed represented on the subdivision of
an edge connecting the corresponding branching points. Also, when one of u or v, say v has
degree one (i.e., v is a leaf of H and u has degree at least three), then H ′xe is contained in the
subdivision of an edge pq incident to the branching point p contained in H ′xu where q has degree
one in H. In particular, here we also have that H ′xv is contained in the subdivision of pq.

Finally, based on these properties, we indeed have an automorphism of H as required.

Our hardness proof stems from the NP-hardness of testing whether a partial order (poset)
with height one has interval dimension at most three; shown by Yannakakis [Yan82]. We denote
this problem by IntDim(1,3). Note that having height one means that every element of the
poset is either minimal or maximal.

Consider a collection I of closed intervals on the real line. A poset PI = (I,<) can be
defined on I by considering intervals x, y ∈ I and setting x < y if and only if the right endpoint
of x is strictly to the left of the left endpoint of y. A partial order P is called an interval order
when there is an I such that P = PI . The interval dimension of a poset P = (P ,<), is the
minimum number of interval orders whose intersection is P, i.e., for elements x, y ∈ P , x < y if
and only if x is before y in all of the interval orders. Finally, the incomparability graph GP of a
poset P = (P ,<) is the graph with V (G) = P and uv ∈ E(GP) if and only if u and v are not
comparable in P.

Note that if P has height one, then GP is the complement of a bipartite graph. The vertices
V (GP) naturally partition into two cliques Kmax and Kmin, containing the maximal and the
minimal elements of P, respectively. An example depicting a D-representation of a specific P is
provided in Fig. 2, where D is the diamond graph. With these definitions and the prior lemma
in place, we now prove the theorem of this section.

Theorem 1. Testing if G is an H-graph is NP-complete if the diamond graph D is a minor of
H.

Proof. The proof is split into two parts. In the Part 1, we prove the essential case which shows
that testing whether G is an D-graph is NP-hard. This argument is generalized in Part 2 to the
case when H contains D as a minor.

Part 1: H is the diamond. First, we summarize the idea behind our proof. As stated above,
we will encode an instance P of IntDim(1,3) as an instance of membership testing inD-GRAPH.
For a given height 1 poset P, we construct its incomparability graph GP , slightly augment GP
to get a graph G, and show that G is in D-GRAPH if and only if the interval dimension of P is
at most 3. In particular, a “middle” part of the three paths connecting the two degree 3 vertices
in D will encode the three interval orders whose intersection is P.

Note that, we consider H as the multi-graph consisting of three parallel edges ea, eb, ec
between two nodes vmin and vmax To construct G, we use the graph H3 which the 3-subdivision

9



of H. Namely, H3 has two vertices umin and umax of degree three and nine vertices a1, a2, a3,
b1, b2, b3, c1, c2, c3 of degree two where umin,ℵ1,ℵ2,ℵ3,umax is a path for each ℵ ∈ {a, b, c}. Note
that, by Lemma 3.1, without loss of generality,H3 is anH-graph where in everyH-representation
of H3, say on a subdivision H ′ of H, we have:

• H ′umin
contains vmin and H ′umax

contains vmax,

• For each ℵ ∈ {a, b, c}, H ′ℵ2 is contained in the subdivision of eℵ.

It is within these H ′ℵ2 paths that we will see the interval orders.
We are now ready to construct our graph G from H3 and the graph GP of a given height

one poset P = (P ,<), recall that Kmin and Kmax denote cliques on the minima and maxima of
P respectively. Let Vmin = {umin, a1, a2, b1, b2, c1, c2} and let Vmax = {umax, a3, a2, b3, b2, c3, c2}.
The graph G is the union of GP and H3 where, additionally, each vertex of Kmin is adjacent to
each vertex of Vmin and each vertex of Kmax is adjacent to each vertex of Vmax.

Claim 3.1. P has interval dimension at most 3 if and only if G is a H-graph.

Proof. For the reverse direction, consider an H-representation of G on a subdivision H ′ of H.
As remarked above, by Lemma 3.1, H ′umin

contains the node vmin and H ′umax
contains the node

vmax. The minimal elements of P are not adjacent to the vertices of umax. Therefore, for each
x ∈ Kmin, H ′x cannot contain vmax, i.e., H ′x is a subtree of H ′ − {vmax}. In particular, for each
of the three (vmin, vmax) paths A,B,C in H ′, H ′x defines one (possibly empty) subpath/interval
(originating in vmin). Similarly, for each y ∈ Kmax, H ′y cannot contain vmin and as such H ′y
defines, for each of A,B,C, one subpath (originating in vmax). It is easy to see that these
intervals provide the interval orders PIA , PIB , and PIC such that PIA ∩ PIB ∩ PIC = P.

For the forward direction, let I1, I2, I3 be sets of intervals such that P = PI1 ∩PI2 ∩PI3 . We
assume that each interval in Ii is labelled according to the corresponding element of P. Further,
we assume that the intervals corresponding to the minimal elements have their left endpoints
at 0 and their right endpoints are integers in the range [0,n − 1]. Similarly, we assume that
the intervals corresponding to the maximal elements have their right endpoints at n and their
left endpoints are integers in the range [1,n]. With this in mind, for each minimal element x
and each i ∈ {1, 2, 3}, we use xi to denote the right endpoint of its interval in Ii, and for each

a b c

d e f

(a) (b) b1 c1 d1 a1 e1 f1

a2 c2 e2 b2 d2 f2

a3 b3 f3 c3 d3 e3
Ta Td

vmin vmax

Figure 2: (a) A partially ordered set P = (P ,<) of height 1, interval dimension 3, but not 2. We
define the following interval orders: I1 = lalblcrbrcldralelfrdrerf , I2 = lalblcrarclerbldlfrdrerf ,
and I3 = lalblcrarblfrcldlerdrerf , where [la, ra] represents an interval corresponding to a ∈ P .
Note that PI1 ∩ PI2 ∩ PI3 = P. (b) An illustration of part of the D-representation. Here, Ta
and Tb indicate the subgraphs representing the elements a and b.
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maximal element y and each i ∈ {1, 2, 3}, we use yi to denote the left endpoint of its interval in
Ii.

Let H ′ be the subdivision of H obtained by subdividing the three vminvmax edges n+5 times.
We label the three (vmin, vmax)-paths in H ′ as follows:

• vmin,αmin,α′min,α0,α1, . . . ,αn,α′max,αmax, vmax,

• vmin,βmin,β′min,β0,β1, . . . ,βn,β′max,βmax, vmax, and

• vmin, γmin, γ′min, γ0, γ1, . . . , γn, γ′max, γmax, vmax.

We are now ready to describe an H-representation of G on H ′. Each minimal element x is
represented by the minimal subtree of H ′ which includes the nodes vmin,αx1 ,βx2 , γx3 . Similarly,
each maximal element y is represented by the minimal subtree of H ′ which includes the nodes
vmax,αy1 ,βy2 , γy3 . We can now see that the comparable elements of P are represented by disjoint
subgraphs of H ′ and that the incomparable elements map to intersecting subgraphs. Finally,
the vertices of H3 are represented as follows:

• umin is represented by the subtree induced by vmin, αmin. βmin, and γmin; analogously,
umax is represented by the subtree induced by vmax, αmax, βmax, and γmax

• a1, b1, and c1 are represented by the edges αminα
′
min, βminβ

′
min, and γminγ

′
min, respec-

tively; analogously, a3, b3, and c3 are represented by the edges αmaxα
′
max, βmaxβ

′
max, and

γmaxγ
′
max, respectively, and

• a2 is represented by the path α′min,α0, . . . ,αn,α′max, and

• b2 is represented by the path β′min,β0, . . . ,βn,βmin, and

• c2 is represented by the path γ′min, γ0, . . . , γn, γ′max.

Clearly, in this construction, the graph H3 is correctly represented. Moreover, the subtree
corresponding to every minimal element includes all of the nodes vmin, αmin, α′min, βmin, β′min,
γmin, γ′min, but none of the opposite max-nodes. Thus, each minimal element is universal to Vmin

and non-adjacent to the vertices of Vmax \ {a2, b2, c3}, as needed. Symmetrically, each maximal
element is universal to Vmax and non-adjacent to the vertices of Vmin \ {a2, b2, c3}. It follows
that G is an H-graph. �

This completes the first part of the proof.

Part 2: H contains the diamond graph D as a minor. The argument here follows very
similarly to the proof shown in Part 1. We again use the 3-subdivision H3 of H which, by
Lemma 3.1, canonically “covers” H. Again, H3 will be used as part of the graph G we will
construct from GP so that G ∈ H-GRAPH if and only if P has interval dimension at most 3.
Importantly, H3 also allows us to, with a careful choice of Vmin and Vmax, appropriately restrict
the representations of the minima and maxima to only use a chosen diamond minor of H (up
to automorphism of course) as before.

Observe that, since H contains D as a minor (and the maximum degree of D is three),
a subdivision of D (or D itself) is a subgraph of H. Let D∗ be a subgraph of H that is a
subdivision of D. In particular, D∗ consists of two nodes dmin and dmax of degree 3 and three
(dmin, dmax)-paths A,B,C that are edge disjoint and whose internal vertices are of degree 2. Let

11



α = dmind
α
max ∈ A, β = dmind

β
max ∈ B, and γ = dmind

γ
max ∈ C denote the three edges incident

to the node dmin in D∗. These three edges will be used equivalently to the three vminvmax edges
as in Part 1, i.e., they will the “location” in H where we will see the three intervals certifying
that our original poset has interval dimension 3.

Now, let D∗3 be the subgraph of H3 corresponding to D∗ (D∗3 is also a subdivision of D). Let
zmin, zmax be the vertices in D∗3 corresponding (via the subdivision of H to H3) to dmin, dmax in
D∗ respectively, and further:

• let zmin, a1, a2, a3, amax be the path in D∗3 corresponding to the subdivision of the edge α
of D∗, and

• let zmin, b1, b2, b3, bmax be the path in D∗3 corresponding to the subdivision of the edge β
of D∗, and

• let zmin, c1, c2, c3, cmax be the path in D∗3 corresponding to the subdivision of the edge γ
of D∗.

We are now ready to construct our graph G from H3 and the graph GP of a given height
one poset P = (P ,<) so that G ∈ H-GRAPH if and only if P has interval dimension three.
Recall that Kmin and Kmax denote cliques on the minima and maxima of P respectively. As
in Part 1, we let Vmin = {zmin, a1, a2, b1, b2, c1, c2}. Similarly to Part 1, we let Vmax be the
vertex set of the minimal subgraph of D∗3 containing {zmax, a2, b2, c2}. In other words Vmax =
V (D∗3) \ Vmin ∪ {a2, b2, c2} = V (D∗3) \ {zmin, a1, b1, c1}. Now, as in Part 1, the graph G is the
union of GP and H3 where, additionally, each vertex of Kmin is adjacent to each vertex of Vmin

and each vertex of Kmax is adjacent to each vertex of Vmax.
The completion of the proof now follows nearly identically to the proof of the claim in

Part 1. Namely, by Lemma 3.1, H3 has a unique up to automorphism H-representation, and
the vertices of Kmin and Kmax can essentially only be represented on the D∗ part of H (due to
their adjacency with the vertices of H3)3. Moreover, within the three edges α,β, γ, there will
be the representations of a2, b2, c2 and within these representations we will indeed have the (at
most) 3 interval models.

The next section gives a positive answer for the following problem in the case when H is a
tree. Also, recall that when H is a single cycle, H-GRAPH is the class of circular-arc graphs and
as such can be recognized in linear time. This leaves the following problem.

Problem 1. For a non-tree fixed cactus graph H (other than a single cycle), is there a
polynomial-time time algorithm testing whether G is an H-graph?

4 Polynomial-time recognition algorithms

We present an O(n3.5)-time algorithm recognizing Sd-graphs and an XP-time algorithm recog-
nizing T -graphs (parametrized by the size of the tree T ). We begin with a lemma that motivates
our approach. It implies that if G is a T -graph, then there exists a representation of G such
that every branching point is “contained" in some maximal clique of G.

3While the representation of a vertex of GP might “reach out” beyond D∗ onto an incident edge, it can never
traverse all of such an edge because, by Lemma 3.1, there is a vertex xe of H3 occupying the “middle” of that
edge and, by construction, xe is not adjacent to any vertex of GP .
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Lemma 4.1. For any T -graph G and T -representation R of G, R can be modified such that for
every branch node b ∈ V (T ′), we have b ∈

⋂
v∈C V (T ′v), for some maximal clique C of G.

Proof. For every node x of the subdivision T ′, let Vx = {u ∈ V (G) : x ∈ V (T ′u)} be the set of
vertices of G corresponding to the subtrees passing through x. Let b be a branching point such
that Vb is not a maximal clique.

We pick a maximal clique C with C ) Vb. Since R satisfies the Helly property, there is a
node a ∈

⋂
{V (T ′v) : v ∈ C}. Note that for every node x of P[a,b], we have Vx ⊇ Vb. Let x be

the node of P(b,a] closest to b such that Vx 6= Vb. Then, for each v ∈ Vx \ Vb, we update T ′v to be
T ′v ∪ P[b,x]. Thus, we obtain a correct representation of G with Vb = Vx.

We repeat the process described in the previous paragraph until Vb is a maximal clique.

Remark on subdivisions. For convenience, we assume throughout the whole section that
we already have a sufficiently large subdivision T ′ of T . At the end, it will be clear that a
subdivision T ′ of T with |V (T ′)| ≤ cn+ |V (T )|, for some constant c, suffices. In fact, it suffices
to have c = 3.

General idea. It is well-known that chordal graphs, and therefore also T -graphs, have at most
n maximal cliques and that they can be listed in linear time. Let B be the set of branching
points of T and let C be the set of all maximal cliques of G. The main part of our algorithm
attempts, for a given f : B → C, to construct a T -representation satisfying Vb =

⋂
v∈f(b) V (T ′v),

for every b ∈ B, where Vb = {u ∈ V (G) : b ∈ V (T ′u)}. By Lemma 4.1, there always exists such a
representation.

To this end, we try find interval representations of the connected components ofG−
⋃
b∈B f(b)

on the paths T ′ − B such that the following conditions hold:

(i) If interval representations of the connected components X1, . . . ,Xk are on a path P(b,l],
where b ∈ B and l is a leaf of T ′, then the induced subgraph G[f(b)∪V (X1)∪· · ·∪V (Xk)]
has an interval representation on P[b,l] in which f(b) is the leftmost clique.

(ii) If interval representations of the connected components X1, . . . ,Xk are on a path P(b,b′),
where b, b′ ∈ B, then the induced subgraph G[f(b) ∪ V (X1) ∪ · · · ∪ V (Xk) ∪ f(b′)] has an
interval representation on P[b,b′] in which f(b) and f(b′) are the rightmost and leftmost
cliques, respectively.

4.1 Recognition of Sd-graphs

In the case when T = Sd, we have B = {b} and V (T ) = {b} ∪ {l1, . . . , ld}. The number of
mappings f : {b} → C is exactly the same as the number of maximal cliques of G, which is at
most n (otherwise it is not an Sd-graph). For every maximal clique C of G, we try to construct
a T -representation R such that b ∈

⋂
v∈C V (T ′v).

Assume that G has such an Sd-representation, for some maximal clique C. Then the con-
nected components of G − C are interval graphs and each connected component can be rep-
resented on one of the paths P(b,li], which is a subdivision of the edge bli; see Fig. 3a and 3c.
However, some pairs of connected components of G − C cannot be placed on the same path
P(b,li], since their “neighborhoods” in C are not “compatible”. The idea is to define a partial
order . on the components of G−C such that for every linear chain X1 . · · · . Xk, the induced
subgraph G[C,V (X1), . . . ,V (Xk)] can be represented on some path P(b,li]; see Fig. 3b.
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Figure 3: (a) An example of an Sd-graph G with a maximal clique C = {1, 2, 3, 4}. (b) The
partial ordering . on the connected components of G − C with chain cover of size 3: X2 . X1,
X5 . X4 . X3, and X6. (c) The connected components placed on the paths P(b,l1], P(b,l2], and
P(b,l3], according to the chain cover of .. (d) The subtrees T ′1,T ′2,T ′3,T ′4 corresponding to the
vertices of the maximal clique C give an Sd-representation of G with b ∈

⋂
v∈C V (T ′v).

We define NC(u) and NC(X) to be the neighbourhoods of the vertex u in C and of the
components X in C, respectively. Formally,

NC(u) = {v ∈ C : vu ∈ E(G)} and NC(X) =
⋃
{NC(u) : u ∈ V (X)}.

Note that, if we have two components X and X ′ on the same branch where NC(X ′) ⊆ NC(u)
for every u ∈ V (X), then X must be closer to C than X ′ if they are represented on the same
path P(b,li].

We say that components X and X ′ are equivalent, X ∼ X ′, if there is a subset C ′ of C such
that NC(u) = C ′ for every u ∈ V (X) and NC(u′) = C ′ for every u′ ∈ V (X ′). Note that equiva-
lent componentsX andX ′ can be represented in an interval representation of G[C,V (X),V (X ′)]
in an arbitrary order and they can be treated as one component. We denote the set of the equiv-
alence classes G− C/ ∼ by X . For X,X ′ ∈ X , we put:

X .X ′ if for every u ∈ V (X),NC(X ′) ⊆ NC(u) or if X = X ′. (1)

Lemma 4.2. The relation . is a partial ordering on X .

Proof. The relation . is reflexive by definition. Suppose that X . X ′ and X ′ . X. For every
u ∈ V (X) and u′ ∈ V (X ′), we have

NC(u′) ⊆ NC(X ′) ⊆ NC(u) and NC(u) ⊆ NC(X) ⊆ NC(u′).

Therefore, NC(u) = NC(u′) for every u ∈ V (X) and u′ ∈ V (X ′) and X and X ′ are equivalent.
We assume that X contains only non-equivalent components. So, X = X ′ and the relation . is
asymmetric. It can be easily checked that . is also transitive.
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Lemma 4.3. Let X1, . . . ,Xk ∈ X . Then the induced subgraph G[C,V (X1), . . . ,V (Xk)] has an
interval representation with C being the leftmost clique if and only if X1 . · · · . Xk and each
G[C,Xi] has an interval representation with C being the leftmost clique.

Proof. Suppose that there is an interval representation R of G[C,V (X1), . . . ,V (Xk)] with C
being the leftmost maximal clique. Since each Xi is a connected components of G − C, their
representations in R cannot overlap. Without loss of generality, we assume that the components
X1, . . . ,Xk are ordered such that i < j if and only if Xi is placed closer to C in R than Xj . Let
u ∈ V (Xi) and v ∈ NC(Xj). The vertex v is adjacent to at least one vertex of Xj . Therefore, the
representation of v covers the whole component Xi in R, i.e., we have v ∈ NC(u) and Xi . Xj .

For the converse, we assume that X1, . . . ,Xk form a chain in . and every G[C,Xi] has an
interval representation Ri with C being the leftmost clique. Since Xi.Xj , for i < j, every vertex
in NC(Xj) is adjacent to every vertex of Xi. We now construct an interval representation of
G[C,V (X1), . . . ,V (Xk)]. We first place the interval representations of all Xi’s (i.e., we use Ri
restricted to the intervals of V (Xi)) on the real line according to ., with X1 being the leftmost.
Let x1, . . . ,xk+1 ∈ R be the points of the real line such that Xi is represented on the interval
(xi,xi+1) ⊆ R.

It remains to construct a representation for every vertex v ∈ C. Let

Ck = NC(Xk) and Ci = NC(Xi) \
k⋃

j=i+1

NC(Xj), i = 0, . . . , k − 1 where X0 = C.

Let x0 ∈ R be a point left of x1. All the vertices in C0 are represented by the interval [x0, y],
for some y < x1. The intervals representing vertices in Ci are constructed inductively, for
i = k, k − 1, . . . , 1. For i ≤ k, we assume that we constructed the representations of vertices in
Ci+1, . . . ,Ck. Note, if Xj .Xi, then for every u ∈ V (Xj), we have NC(Xi) ⊆ NC(u). Therefore,
every vertex in Ci is represented by an interval of the form [x0, z], where z ∈ (xi,xi+1) is a
suitable point given by the representation Ri of G[C,Xi].

The following theorem gives a characterization of Sd-graphs. It generalizes the characteriza-
tion of interval graphs due to Fulkerson and Gross; see Lemma 2.1.

Theorem 2 (Characterization of Sd-graphs). A graph G is an Sd-graph if an only if there is a
maximal clique C of G such that the following hold:

(i) For every connected component X of G−C, the induced subgraph G[C,X] has an interval
representation with C being the leftmost clique.

(ii) The partial order . on X = G− C/ ∼ has a chain cover of size at most d.

Proof. Suppose that G is an Sd-graph with a representation satisfying b ∈
⋂
v∈C V (T ′v); such

a representation always exists by Lemma 4.1. The representation of a connected component
X ∈ X can not pass through the node b since otherwise C would not be a maximal clique.
Clearly, the conditions (i) is satisfied. The representations of every two components in X have
to be placed on non-overlapping parts of the subdivided Sd. By Lemma 4.3, we have that the
components placed on some path P(b,li] of the subdivided Sd form a linear chain in .. Therefore,
the partial order . has a chain cover of size at most d and the condition (ii) is satisfied; see
Fig. 3b.
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Suppose that the conditions (i) and (ii) are satisfied. We put the components in X on the
paths P(b,l1], . . . ,P(b,ld] according to the chain cover of the partial order . which has size at most
d, i.e, every chain of . is placed on one P(b,li]. By Lemma 4.3, for every chain X1, . . . ,Xk in .,
we can find an interval representation of the graph G[C,V (X1), . . . ,V (Xk)] with C being the
leftmost maximal clique.

Algorithm. By combining Lemmas 4.3 and Theorem 2 we obtain an algorithm for recognizing
Sd-graphs. For a given graph G and its maximal clique C, we do the following:

1. We delete the maximal clique C and construct the partial order . on the set of non-
equivalent connected components X .

2. We test whether the partial order . can be covered by at most d chains.

3. For each linear chain Xi
1 . · · · . Xi

k, 1 ≤ i ≤ d, we construct an interval representation
Ri of the induced subgraph G[C,V (Xi

1), . . . ,V (Xi
k)], with C being the leftmost maximal

clique, on one of the paths of the subdivided Sd.

4. We complete the whole representation by placing each Ri on the path P[b,li] so that b ∈⋂
v∈C V (T ′v).

Theorem 3. Recognition of Sd-graphs can be solved in O(n3.5) time.

Proof. Every chordal graph has at most n maximal cliques, where n is the number of vertices,
and they can be listed in linear time [RTL76]. For every clique C, our algorithm tries to find an
Sd-representation with b ∈

⋂
v∈C V (T ′v). The partial order . can be constructed in time O(n2).

By forgetting the orientation in the partial order ., we get a comparability graph, and every
clique in the comparability graph induces a linear chain in .. A relatively simple algorithm finds
a minimum clique-cover of a comparability graph in time O(n3) [Gol77]. An algorithm that
runs in time O(n2.5) can by obtained by a combination of [Ful56] and [HK73]. Testing whether
G[C,V (Xi

1), . . . ,V (Xi
k)] has an interval representation with C being the leftmost maximal clique

can be done in linear time. Thus, the overall time complexity of our algorithm is O(n3.5).

Problem 2. Can we recognize Sd-graphs in time O(n2.5)? In particular, can we find the clique
that can be placed in the center of Sd efficiently?

4.2 Recognition of T-graphs

The algorithm for recognizing T -graphs is a generalization of the algorithm for recognizing Sd-
graphs described above. Let f : B → C be an fixed assignment of cliques.

Assumption (connectedness of G). Suppose that G is disconnected. Then it can be written
as a disjoint union of some X and Ĝ, where X is a connected component of G. Let CX and Ĉ
be the maximal cliques of X and Ĝ, respectively. The sets f−1(CX) and f−1(Ĉ) induce subtrees
TX and T̂ of T separated by the branch ab, where a ∈ V (TX) and b ∈ V (T̂ ) (otherwise f is
invalid). We subdivide the branch ab by nodes c1 and c2. Then we try to find a representation
of X on the tree TX ∪ ac1 and a representation of Ĝ on T̂ ∪ c2b. Therefore, we may assume that
G is connected.
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Assumption (injectiveness of f). Suppose that f is not injective, i.e., f(b) = f(b′). Then
for every branching point b′′ which lies on the path from b to b′, we must have f(b) = f(b′′) = f(b′)
(otherwise f is invalid). For C ∈ f(B), the branching points in f−1(C), together with the paths
connecting them, have to form a subtree TC of T . In this case the whole subtree TC can be
contracted into a single node a. Note that if there is a component X of G −

⋃
b∈B f(b) where

every vertex of X adjacent to every vertex of C, then X can be represented on any branch
incident to a by subdividing it appropriately. Thus, we may assume that f is injective.

Step 1 (components between branching points). The first step of our algorithm is to
find for b, b′ ∈ E(T ), which components have to be represented on the path P(b,b′) of T ′.

Lemma 4.4. Let X be a connected component of G−
⋃
b∈B f(b) and bb′ ∈ E(T ). If the sets

(f(b) \ f(b′)) ∩Nf(b)(X) 6= ∅ and (f(b′) \ f(b)) ∩Nf(b′)(X) 6= ∅,

then X has to be represented on P(b,b′) of T ′.

Proof. Let v ∈ (f(b) \ f(b′)) ∩Nf(b)(X) and u ∈ (f(b′) \ f(b)) ∩Nf(b′)(X). Since v /∈ f(b′), we
have b′ /∈ V (T ′v). Similarly we have b /∈ V (T ′u). Putting it together, we have that b ∈ V (T ′v)
and b′ /∈ V (T ′v), and b /∈ V (T ′u) and b′ ∈ V (T ′u). Since X is adjacent to both u and v, the only
possible path where X can be represented is P(b,b′); see Fig. 4a and 4b.

We do the following for each b, b′ ∈ B such that bb′ ∈ E(T ). Let Xb,b′ be the disjoint union
of the components satisfying the conditions of Lemma 4.4. If the induced interval subgraph
G[C ∪ V (Xb,b′) ∪ C ′] has a representation such that the cliques C and C ′ are the leftmost and
the rightmost, respectively, then we can represent Xb,b′ in the middle of the path P(b,b′). If no
such representation exists, then G does not have T -representation for this particular f : B → C.
This means that the representation of Xb,b′ is constructed on a proper subpath of P(b,b′) – recall
that we are assuming that the subdivision T ′ is sufficiently large.

Next, we do the following for every b ∈ B. Let l1, . . . , lp and b1, . . . , bq be the leaves of T
and the branching points of T , respectively, such that bli ∈ E(T ), for every i = 1, . . . , p, and
bbj ∈ E(T ), for every j = 1, . . . , q. Let a1, . . . , aq and a′1, . . . , a

′
q be the points of the paths

P[b,b1], . . . ,P[b,bq ], respectively, such that Xb,bi is represented on the subpath P(ai,a′i)
. We define

S(b) to be the subdivided star consisting of the paths P[b,l1], . . . ,P[b,lp],P[b,a1), . . . ,P[b,aq). Note
that if a vertex u ∈ V (Xb,bi) is adjacent to a vertex v in f(b), then the representation of T ′v of
v contains the whole subpath P(b,ai). This means that a component X, which does not satisfy
the condition of Lemma 4.4, can be represented on P(b,ai) only if Nf(b)(Xb,bi) ⊆ Nf(b)(X). We
remove the subpaths P(ai,a′i)

(together with the representations of Xb,b′i
) and we are left with

disjoint subdivided stars with restrictions; see Fig 4c.

Step 2 (disjoint stars with restrictions). We reduced the problem of recognizing T -graphs
to the following problem. Let H be a fixed graph formed by the disjoint union of k stars
S(b1), . . . ,S(bk) with branching points b1, . . . , bk. On the input we have a graph G, an injective
mapping f : {b1, . . . , bk} → C, and for every edge of S(bi) a subset of f(bi), called restrictions. We
want to find a representation of G on H such that bi ∈

⋂
v∈f(bi) V (H ′v), and for every connected

component X of G −
⋃k
i=1 f(bi), the vertices V (X) have to be adjacent to every vertex in the

restrictions corresponding to the path on which X is represented.
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Figure 4: (a) A T -graph G, where T is the tree shown on the right. We have f(b) = C1 and
f(b′) = C2. (b) Component X4 with C1 \ C2 ∩ NC1(X) 6= ∅ and C2 \ C1 ∩ NC2(X) 6= ∅. In
this case, Xb,b′ = X4. (c) A segment of the star corresponding to the clique is labeled by
{1, 3, 4} ⊆ C1. A component X can be represented on this segment only if {1, 3, 4} ⊆ NC1(X).

To solve this problem, we define a partial ordering on the connected components of G− C,
where C =

⋃
f(bi). The notions NC(u) and NC(X) are defined as in the same way as in the

algorithm for recognizing Sd-graphs. We get a partial ordering . on the set of non-equivalent
connected components X of G − C. Moreover, to each component X ∈ X , we assign a list
of colors L(X) which correspond to the subpaths from a branching point to a leaf in the stars
S(b1), . . . ,S(bk), on which they can be represented. Each list L(X) has size at most d =

∑k
i=1 di,

where di is the degree of bi.
Suppose that there exists a chain cover of . of size d such that for every chain X1 . · · · . X`

in this cover we can pick a color belonging to every
⋂`
j=1 L(Xj) such that no two chains get

the same color. In that case a representation of G satisfying the restrictions can be constructed
analogously as in the proof of Lemma 4.3 and 2.

The partial ordering . on the components X defines a comparability graph P with a list of
colors L(v) assigned to every vertex v ∈ V (P ). If we find a list coloring c of its complement P ,
i.e., a coloring that for every vertex v uses only colors from its list L(v), then the vertices of the
same color in P correspond to a chain (clique) in P . Therefore, we have reduced our problem
to list coloring co-comparability graphs with lists of bounded size.

Step 3 (bounded list coloring of co-comparability graphs). We showed that to solve the
problem of recognizing T -graphs we need to solve the `-list coloring problem for co-comparability
graphs where ` = 2 · |E(T )|. In particular, given a co-comparability graph G, a set of colors
S such that |S| ≤ `, and a set L(v) ⊆ S for each vertex v, we want to find a proper coloring
c : V (G)→ S such that for every vertex v, we have c(v) ∈ L(v).

In [BMO11], the authors consider the capacitated coloring problem for co-comparability
graphs. Namely, given a graph G, an integer s ≥ 1 of colors, and positive integers α∗1, . . . ,α∗s,
a capacitated s-coloring c of G is a proper s-coloring such that the number of vertices assigned
color i is bounded by α∗i , i.e., |c−1(i)| ≤ α∗i . The authors prove that the capacitated coloring
of co-comparability graphs can be solved in polynomial time for fixed s. In the next section,
we modify their approach to solve the s-list coloring problem on co-comparability graphs in
O(ns

2+1s3) time. This provides the following theorem.

Theorem 4. Recognition of T -graphs can be solved in nO(‖T‖2).

Problem 3. Is there an FPT algorithm for recognizing T -graphs?
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4.3 Bounded list coloring of co-comparability graphs

Here, we provide a polynomial time algorithm for the problem of bounded list coloring of co-
comparability graphs. Our result can be seen as a generalization of the polynomial time algo-
rithm of Enright, Stewart, and Tardos [EST14] for bounded list coloring on a class which includes
both interval graphs and permutation graphs. However, they [EST14] explicitly state that their
approach does not extend to co-comparability graphs. To prove this also for co-comparability
graphs, we slightly modify the approach in [BMO11].

In [BMO11], the problem of capacitated coloring is solved for a more general class of graphs,
so called k-thin graphs. A graph G is k-thin if there exists an ordering v1, . . . , vn of V (G) and
a partition of V (G) into k classes V 1, . . . ,V k such that, for each triple p, q, r with p < q < r,
if vp, vq belong to the same class and vrvp ∈ E(G), then vrvq ∈ E(G). Such ordering and
partition are called consistent. The minimum k such that G is k-thin is called the thinness of
G. Graphs with bounded thinness were introduced in [MORC07] as a generalization of interval
graphs. Note that interval graphs are exactly the 1-thin graphs.

Recall that a graph G is a comparability graph if there exits an ordering v1, . . . , vn of V (G)
such that, for each triple p, q, r with p < q < r, if vpvq and vqvr are edges of G, then so is vpvr.
Such an ordering is a comparability ordering.

Lemma 4.5 (Theorem 8, [BMO11]). Let G be a co-comparability graph. Then the thinness of
G is at most χ(G), where χ is the chromatic number. Moreover, any vertex partition given by a
coloring of G and any comparability ordering for its complement are consistent.

Let G be k-thin graph, and let v1, . . . , vn and V 1, . . . ,V k be an ordering and a partition of
V (G) which are consistent. Note that the ordering induces an order on each class V j . For each
vertex vr and class V j , let N(vr, j)< be the set of neighbors of vr in V j that are smaller than vr,
i.e., N(vr, j)< = V j ∩ {v1, . . . , vr−1} ∩N(vr). For each class V j let ∆(j)< be the maximum size
of N(vr, j)< over all vertices vr. The following lemma gives an alternative definition of k-thin
graphs.

Lemma 4.6 (Fact 7, [BMO11]). For each vertex vr ∈ {v1, . . . , vn} and each j ∈ {1, . . . , k}, the
set N(vr, j)< is such that:

• the vertices in N(vr, j)< are consecutive, with respect to the order induced on V j.

• if N(vr, j)< 6= ∅, then it includes the vertex with largest index in V j ∩ {v1, . . . , vr−1}.

Bounded List Coloring On k-thin Graphs. In [BMO11], the problem of capacitated color-
ing is reduced to a reachability problem on an auxiliary acyclic digraph.4 We obtain an algorithm
for bounded list coloring on k-thin graphs by slightly modifying the algorithm for capacitated
coloring in [BMO11]. The only difference is that we do not have a restriction on how many
times we can use a particular color and for every vertex we can only use the colors from the list
assigned to it. Otherwise, everything is the same as in [BMO11]. We include it here for the sake
of completeness.

Let G be a k-thin graph with an ordering v1, . . . , vn and a partition V 1,V 2, . . . ,V k of V (G).
Let S be a set of colors, s = |S|, and L : V (G) → P(S) be a function that assigns a list of
allowed colors to a vertex. Consider an instance (G,L) of list coloring. We reduce the problem

4Note that this is just a representational convenience for dynamic programming.
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to a reachability problem on an auxiliary acyclic digraph D(N ,A). We will refer to the elements
of N and A as nodes and arcs while the elements of V (G) and E(G) will be referred to as
vertices and edges (as we did so far).

The digraph D will be layered, i.e., the set N is the disjoint union of subsets (layers)
N0,N1, . . . ,Nn and all arcs in A have the form (u,w) with u ∈ Nr and w ∈ Nr+1, for some
0 ≤ r ≤ n− 1. Note for each vertex vr ∈ V , there is a layer Nr with r 6= 0. We denote by j(r)
the class index q such that vr ∈ V q.

We first describe the set of nodes in each layer. The first layer consists of colors which can
be assigned to the first vertex, i.e., N0 = L(v1). For the layers N1, . . . ,Nn−1, there is a one-to-
one correspondence between nodes at layer Nr and (sk + 1)-tuples (r, {βji }i=1,...,s,j=1,...,k) with
0 ≤ βji ≤ ∆(j)<, for each i, j. The last layer Nn has only one node t corresponding to the tuple
(n, 0, . . . , 0).

We associate with each node u /∈ N0 a suitable list coloring problem with additional con-
straints, that we call the constrained sub-problem associated with u. As we show in the following,
u is reachable from a node z ∈ N0 if and only if this constrained sub-problem has a solution.
Namely, we will show that the following property holds:

(∗) a node (r, {βji }i=1,...,s,j=1,...,k) is reachable from a node z ∈ N0 if and only if the induced
subgraph G[{v1, . . . , vr}] admits a list coloring with the lists given by L and with additional
constraint that, for each i = 1, . . . , s and j = 1, . . . , k, color i is forbidden for the last βji
vertices in V j ∩ {v1, . . . , vr}.

In this case, G admits a list coloring if and only if the node t is reachable from a node z ∈ N0.
Property (∗) will follow from the definition of the set of arcs A given as follows. Let u =

(r, {βji }i=1,...,s,j=1,...,k). Note that the problem associated with u has a solution where the vertex
vr gets color i only if βj(r)i = 0. Let C(u) = {i ∈ L(r) : β

j(r)
i = 0}. We will make exactly |C(u)|

arcs entering into u, and give each such arc a color i ∈ C(u) (exactly one color from C(u) per
arc). Each arc (u′,u) ∈ A, with u′ ∈ Nr−1 and i ∈ C(u), will then have the following meaning:
if the constrained sub-problem associated with u′ has a solution, i.e., a coloring ϕ′, then we can
extend ϕ′ into a solution ϕ to the constrained sub-problem associated with u by giving color i
to vertex vr.

We now give the formal definition of the set A. We start with the arcs from N0 to N1.
Let u = (1, {βji }i=1,...,s,j=1,...,k) ∈ N1. There is an arc from zi (where i ∈ L(1)), to u if and
only if i ∈ C(u); moreover, the color of its arc is i. We now deal with the arcs from Nr−1
to Nr, with 2 ≤ r ≤ n. Let u = (r, {βji }i=1,...,s,j=1,...,k) ∈ Nr. As we discussed above, for
each i∗ ∈ C(u), there will be an arc from a node ui∗ ∈ Nr−1 to u, with color i∗. Namely,
ui∗ = (r − 1, {β̃ji }i=1,...,s,j=1,...,k), where:

β̃ji =


max{|N(vr, j)<|,βji } i = i∗

max{0,βji − 1} i 6= i∗, j = j(r)

βji i 6= i∗, j 6= j(r)

(2)

Note that ui∗ is indeed a node of Nr−1, as the (sk + 1)-tuple (r − 1, {β̃ji }i=1,...,s,j=1,...,k) is
such that 0 ≤ β̃ji ≤ ∆(j)<, for each i, j (in fact, βji ≤ ∆(j)<, since u is a node of Nr).

Lemma 4.7. G admits an L list coloring if and only if D contains a directed path from a node
z ∈ N0 to t. Moreover, if such a path exists, then a list coloring of G can be obtained by assigning
each node vr (r ∈ {1, . . . ,n}) the color of the arc of the path entering into layer Nr.
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Proof. The proof is analogous to the proof of Lemma 10 in [BMO11] and we omit it here.

Lemma 4.8. Suppose that for a (k-thin) graph G with n vertices we are given an order-
ing and a partition of V (G) into k classes that are consistent. Further consider an instance
(G,L) of the list coloring problem. Let s =

∣∣⋃
v∈V (G) L(v)

∣∣. Then (G,L) can be solved in
O(ns2k

∏
j=1,...,k ∆(j)s<)-time, i.e., O(nks+1s2k)-time.

Proof. By definition, for r = 1, . . . ,n − 1, |Nr| =
∏
i=1,...,k(∆(j)< + 1)s. Note that each node

of D has at most s incoming arcs, and each arc can be built in O(sk)-time. Therefore, D
can be built in O(ns2k

∏
i=1..k(∆(j)< + 1)s)-time. Since D is acyclic, the reachability problem

on D can be solved in linear time. Therefore the list coloring problem on G can be solved in
O(ns2k

∏
i=1..k ∆(j)s<)-time, that is O(nks+1s2k)-time.

Lemma 4.9. Let G be a co-comparability graph and (G,L) an instance of the list coloring
problem with the total number of colors s ≥ 2. Then (G,L) can be solved in O(ns

2+1s3)-time,
i.e., polynomial time when s is fixed.

Proof. By Lemma 4.5, the graph G is k-thin. It can be tested in O(n3) time whether G is
s-colorable [Gol77]. If it is s-colorable, then by Lemma 4.5 we get a comparability ordering and
a k-partition of V (G). Moreover, by Lemma 4.5 we know that k ≤ s. Thus, by Lemma 4.8, we
can solve the problem in time O(n3 + ns

2+1s3) = O(ns
2+1s3).

5 Minimum dominating Set

In this section, we discuss the minimum dominating set problem on H-GRAPH. The basic
idea behind our algorithms is to reduce the minimum dominating set problem for H-graphs to
several minimum dominating set problems on interval graphs, obtained as induced subgraphs of
the original graph.

We start with a useful tool (Lemma 5.1) which states that that one can compute a dominating
set of an interval graph G which is minimum subject to including one or two of certain special
vertices of G. This lemma is an essential tool for both of our dominating set algorithms presented
in the subsequent subsections.

Lemma 5.1. Let G = (V ,E) be an interval graph and let C1, . . . ,Ck be the left-to-right ordering
of the maximal cliques in an interval representation of G.

1. For every x ∈ C1, a dominating set of G which is minimum subject to including x can be
found in linear time.

2. For every x ∈ C1 and y ∈ Ck, a dominating set of G which is minimum subject to including
both x and y can be found in linear time.

Proof. We provide the proof for the part 1 (the proof of the part 2 follows analogously). We
construct a new graph G′ = (V ′,E′) where V ′ = V ∪ {u,u′} and E′ = E ∪ {ux,u′x}. Clearly,
G′ is an interval graph as certified by the following linear order of its maximal cliques {u,x} =
C0,C

′
0 = {u′,x},C1, . . . ,Ck. Furthermore, to dominate both u and u′ without using x, we would

need to include both u and u′. Thus, every minimum dominating set of G′ includes x, i.e., we
can find such a dominating set in linear time using the standard greedy algorithm [Gol04].
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5.1 Dominating sets in Sd-graphs

Here, we solve the minimum dominating set problem on Sd-GRAPH in FPT-time, parameterized
by d.

Theorem 5. For an Sd-graph G, a minimum dominating set of G can be found in O(dn(n +
m)) + 2d(d + 2d)O(1) time when an Sd-representation is given. (If such a representation is not
given, we can compute one in O(n3.5) time by Theorem 3.)

Proof. Let G be an Sd-graph and let S′ be a subdivision of the star Sd such that G has an
S′-representation. Let b be the central branching point of S′ and let l1, . . . , ld be the leaves of
S′. Recall that, by Lemma 4.1, we may assume b ∈

⋂
{S′v : v ∈ C}, for some maximal clique C

of G. Let Ci,1, . . . ,Ci,ki be the maximal cliques of G as they appear on the branch P(b,li], for
i = 1, . . . , d.

For each Gi = G[Ci,1, . . . ,Ci,ki ], we use an interval graph greedy algorithm [Gol04] to find
the size di of a minimum dominating set in Gi. Let Bi be the set of vertices of C that can appear
in a minimum dominating set of Gi. By Lemma 5.1, a minimum dominating set Dx

i containing
a vertex x ∈ C can be found in linear time. Note that x ∈ Bi if and only if |Dx

i | = di. Therefore,
every B1, . . . ,Bd can be found in O(d · n · (n+m)) time. Let B = {B1, . . . ,Bd}.

If Bi is empty, then no minimum dominating set of Gi contains a vertex from C. So for Gi,
we pick an arbitrary minimum dominating set Di. Note that Di dominates C ∩ Ci,1 regardless
of the choice of Di. Thus, if

⋃d
i=1Di dominates C, then it is a minimum dominating set of G.

Otherwise, {x} ∪
⋃d
i=1Di is a minimum dominating set of G where x is an arbitrary vertex of

C.
Let us assume now that the Bi’s are nonempty (every branch with an empty Bi can be

simply ignored). Let H be a subset of C such that H ∩ Bi is not empty, for every i = 1, . . . , d,
and |H| is smallest possible. For every branch P(b,bi], we pick a minimum dominating set Di of
Gi containing an arbitrary vertex xi ∈ H ∩ Bi. Now, the union D1 ∪ · · · ∪ Dd is a minimum
dominating set of G. It remains to show how to find the set H in time depending only on d.

Finding the set H can be seen as a set cover problem where B is the ground set. Namely, we
have one set for each vertex x in C where the set of x is simply its subset of B, and our goal is
to cover B. Note, if two vertices cover the same subset of B it suffices to keep just one of them
for our set cover instance, i.e., giving us at most 2d sets over a ground set of size d. Such a set
cover instance can be solved in 2d(d+ 2d)O(1) time (see Theorem 6.1 [CFK+15]).

Thus, we spend O(dn(n+m)) + 2d(d+ 2d)O(1) time in total.

5.2 Dominating sets in H-graphs

We turn to H-GRAPH, for general fixed H. There we solve the problem in XP-time, parameter-
ized by ‖H‖. This latter result can be easily adapted to also obtain XP-time algorithms to find
a maximum independent set and minimum independent dominating set on H-GRAPH (these
algorithms are also parameterized by ‖H‖); see Corollary 7.

Theorem 6. For an H-graph G the minimum dominating set problem can be solved in nO(‖H‖)

time when an H-representation is given as part of the input.

Proof. Recall that, when H is a cycle, H-GRAPH = CARC, i.e., minimum dominating sets can
be found efficiently [Cha98]. Thus, we assume H is not a cycle.
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To introduce our main idea, we need some notation. Consider G ∈ H-GRAPH and let H ′

be a subdivision of H such that G has an H ′-representation {H ′v : v ∈ V (G)}. We distinguish
two important types of nodes in H ′; namely, x ∈ V (H ′) is called high degree when it has at
least three neighbors and x is low degree otherwise. As usual, the high degree nodes play a key
role. In particular, if we know the sub-solution which dominates the high degree nodes of H ′,
then the remaining part of the solution must be strictly contained in the low degree part of H ′.
Moreover, since H is not a cycle, the subgraph H ′≤2 of H ′ induced by its low degree nodes is a
collection of paths. In particular, the vertices v of G where H ′v only contains low degree nodes,
induce an interval graph G≤2 and, as such, we can efficiently find minimum dominating sets on
them. Thus, the general idea here is to first enumerate the possible sub-solutions on the high
degree nodes, then efficiently (and optimally) extend each sub-solution to a complete solution.
In particular, one can show that in any minimum dominating set these sub-solutions consist of
at most 2 · |E(H)| vertices (as in Claim 5.1 below), and from this property it is not difficult to
produce the claimed nO(‖H‖)-time algorithm. These ideas are formalized as follows.

We observe that the size of these sub-solutions is “small”. Let D ⊆ V (G) be a minimum
dominating set of G. For each node x of H ′, let Vx = {v : v ∈ V (G),x ∈ H ′v} and Dx = {v :
v ∈ D,x ∈ H ′v}. We further let D≥3 =

⋃
{Dx : δH(x) ≥ 3}. We now bound the size of D≥3 in

terms of H.

Claim 5.1. If D is a minimum dominating set in an H-graph G, then |D≥3| ≤ 2|E(H)|.

Proof. Consider a high degree node x of H such that x ∈ D≥3. For each edge xx′ in H,
let x = x1, . . . ,xk = x′ be the corresponding path in H ′. We assign a single vertex a in D
to the ordered pair (x,x′) such that H ′a contains the longest subpath of x1, . . . ,xk including
x = x1. Notice that each ordered pair receives precisely one element of D. However, if some
element v of D≥3 was not assigned to an ordered pair, then it is easy to see that D is not a
minimum dominating set (since all adjacencies achieved by this element are already achieved by
the elements we have charged to ordered pairs). �

By Claim 5.1, there are at most n2·|E(H)| possible sets D≥3. We now fix one such D≥3 and
describe how to compute a minimum dominating set of G containing it. Notice that, there can
be some difficult decisions we might need to make in this process. In particular, suppose there is
a high degree node x of H ′ where no vertex from Vx is in D≥3. It is not clear how we might be
able to efficiently choose from “nearby” x to dominate these vertices. To get around this case, we
simply enumerate more vertices. Specifically, for each path P[x,y] = (x,x1, . . . ,xk, y) in H ′ where
x and y are high degree nodes (or where x is high degree and y is a leaf), and the xi’s are low
degree, we will pick a “first” and “last” vertex among the vertices v of G where H ′v is contained
in the subpath (x1, . . . ,xk) of P[x,y]. That is, for a given D≥3 we enumerate all possible subsets
of size 2 · |E(H)| from among the vertices of G≤2 to act as the “first” and “last” vertices of each
path P[x,y]. Clearly, there are at most O(n2·|E(H)|) such subsets. We fix one such subset D≤2.

We now have our candidate sub-solutionsD∗ = D≥3∪D≤2. There are just some simple sanity
checks we must make on D∗ to test if it is a good candidate to be extended to a dominating set.
First, by the definition of D≥3, it must already dominate every vertex of G≥3. Second, if there is
some path P[x,y] where D≤2 contains fewer than two vertices from P[x,y], then D∗ must already
dominate every vertex contained in this path. And finally, for every path P[x,y], for every v with
H ′v contained strictly between x and the “left-end” of the “first” chosen vertex, then v must be
dominated by D≥3. If one of these conditions is violated, we discard this candidate D∗ and go
to the next one.
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Finally, what remains to be dominated consists of a collection of disjoint interval graphs
where possibly some sequence of “left-most” and “right-most” maximal cliques have already been
dominated by D∗. Observe that the partially constructed dominating set will consist of one
vertex which reaches the farthest in from the right and one which does the same from the
left. Namely, we can apply Lemma 5.1, to construct a minimum dominating set for each such
interval graph subject to the inclusion of these two special vertices and as such compute a
minimum dominating set of G which contains our candidate partial dominating set.

This completes the description of the algorithm. From the discussion, we can see that the
algorithm is correct and that the total running time is dominated by the enumeration of the
possible sets D∗ plus some additional polynomial factors. In particular, the algorithm runs in
nO(‖H‖) time.

We further remark that the above approach can also be applied to solve the maximum
independent set and minimum independent dominating set problems in nO(‖H‖) time. This
approach is successful since these problem can be solved efficiently on interval graphs.

Corollary 7. For an H-graph G, the maximum independent set problem and minimum inde-
pendent dominating set problem can both be solved in nO(‖H‖) time.

Finally, as we have stated in Section 1.2, in a recent manuscript [FGR20], W[1]-hardness
has been shown for both the minimum dominating set problem and the maximum independent
set problem. Moreover, both of these results concern parameterization by both ‖H‖ and the
solution size. Thus, this classifies the computational complexity for both of these problems. It
would be interesting to also have W[1]-hardness for the minimum independent dominating set
problem. Additionally, one could make a more fine-grained examination of the running time and
look for lower bounds via ETH.

Problem 4. Is the minimum independent dominating set problem W[1]-hard on H-graphs
(parametrized by ‖H‖ and the solution size)?

Problem 5. Can we obtain some interesting lower bounds using ETH?

6 Finding cliques in H-graphs

We discuss computational aspects of the maximum clique problem for H-graphs, parametrized
by ‖H‖. Let ∆2 be the double-triangle (see Fig. 5a). First, we show that the maximum clique
problem is APX-hard for H-graphs if H contains ∆2 as a minor (Theorem 8). In other words, the
maximum clique problem is para-NP-hard when parameterized only by ‖H‖. As a consequence
of our reduction, we also show that if ∆2 � H, then H-GRAPH is GI-complete (the graph
isomorphism on H-GRAPH is as hard as the general graph isomorphism problem). We then turn
to cases where the clique problem can be solved efficiently. Namely, we consider two cases: one
where we have a “nice” representation but H is arbitrary, and the other where we restrict H to
be a cactus.

6.1 Clique (and isomorphism) hardness results

To obtain our hardness results we show that there are graphs H such that the complement of a
2-subdivision of every graph is an H-graph. The 2-subdivision G2 of a graph G is the result of
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Figure 5: (a) The double-triangle graph. (b) A graph G. (c) The 2-subdivision G2 of G.
A three-clique cover of G2 is indicated by colors. (d) The 4-wheel graph (which contains the
double-triangle as a minor) and a sketch of our H-representation of G∗. For example, the edges
between the green clique and the blue clique are represented where the green and blue regions
intersect.

subdividing every edge of G exactly two times. The complement of a graph G is denoted by G.
We define

SUBD2 = {G2 : G is a graph}.

In other words, SUBD2 is the class of complements of 2-subdivisions of all graphs.
This seemingly esoteric family of graphs is interesting for two reasons. Firstly, the iso-

morphism relation on graphs is closed under k-subdivision and complement operations. This
implies that G ∼= H if and only if G2

∼= H2. So, the class SUBD2 is GI-complete. Secondly,
the clique problem is APX-hard on SUBD2. More specifically, Chlebík and Chlebíková [CC07]
proved that the maximum independent set problem is APX-hard on the class of 2k-subdivisions
of 3-regular graphs for any fixed integer k ≥ 0; in particular, for 2-subdivisions. Thus, showing
that SUBD2 ⊆ H-GRAPH, for a fixed H, implies that the maximum clique problem is APX-hard
on H-GRAPH and that H-GRAPH is GI-complete.

Theorem 8. If ∆2 � H, then the maximum clique problem is APX-hard for H-graphs and
H-GRAPH is GI-complete.

Proof. As already mentioned, we prove the theorem by showing SUBD2 ⊆ H-GRAPH. Since
∆2 � H, the graph H can be partitioned into three connected subgraphs H1, H2, H3 such that
there are at least two edges connecting Hi and Hj , for each i 6= j. For every graph G, we show
that the complement of its 2-subdivision has an H-representation.

The construction proceeds similarly to the constructions used by Francis et al. [FGO13], and
we borrow their convenient notation. Let G be a graph with vertex set {v1, . . . , vn} and edge
set {e1, . . . , em}. If ek ∈ E(G) and ek = vivj where i < j, we define l(k) = i and r(k) = j (as
if vi and vj were respectively the left and right ends of ek). In the 2-subdivision G2 of G, the
edge ek of G is replaced by the path (vl(k), ak, bk, vr(k)); see Fig. 5a and Fig. 5b.

Note that G2 can be covered by three cliques, i.e., Cv = {v1, . . . , vn}, Ca = {a1, . . . , am}, and
Cb = {b1, . . . , bm}. We now describe a subdivision H ′ of H which admits an H-representation
{H ′v : v ∈ V (G2)} of G2. We obtain H ′ by subdividing the six edges connecting H1, H2, and
H3. Specifically:

• We n-subdivide the edges connecting H1 to H2 to obtain two paths P12 = (α0,α1, . . . ,
αn,αn+1), Q12 = (β0,β1, . . . ,βn,βn+1) where α0,β0 ∈ H1 and αn+1,βn+1 ∈ H2.

• We n-subdivide the edges connecting H1 to H3 to obtain two paths P13 = (γ0, γ1, . . . ,
γn, γn+1), Q13 = (η0, η1, . . . , ηn, ηn+1) where γ0, η0 ∈ H1 and γn+1, ηn+1 ∈ H2.
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• We m-subdivide the edges connecting H2 and H3 to obtain two paths P23 = (µ0,µ1, . . . ,
µm,µm+1), Q23 = (ν0, ν1, . . . , νm, νm+1) where µ0, ν0,µm+1, ηm+1 ∈ H2.

We now describe each Hvi , Haj and Hbj . The idea is that H ′vi will contain H1 and extend
from the “start” of P12 up to the position i, and from the “start” of Q12 up to position (n− i).
From the other side, each H ′aj will contain H2 and extend from the “end” of P12 down to position
(l(j) + 1), and from the end of Q12 down to position (n − l(j) + 1); an example is sketched in
Fig. 5d. In this way, we ensure that H ′aj does not intersect H ′vl(j) while H

′
aj does intersect every

H ′vi for i 6= l(j). The other pairs proceed similarly, and we describe the subgraphs Hvi ,Haj ,Hbj

for each i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m} as follows:

• H ′vi = H1 ∪ {α1, . . . ,αi} ∪ {β1, . . . ,βn−i} ∪ {γ1, . . . , γi} ∪ {η1, . . . , ηn−i}.

• H ′aj = H2 ∪ {αn, . . . ,αl(j)+1} ∪ {βn, . . . ,βn−l(j)+1} ∪ {µ1, . . . ,µj} ∪ {ν1, . . . , νm−j}.

• H ′bj = H3 ∪ {γn, . . . , γr(j)+1} ∪ {ηn, . . . , ηn−r(j)+1} ∪ {µm, . . . ,µj+1} ∪ {νm, . . . , νm−j+1}.

Some interesting cases remain concerning the maximum clique problem. In the next sub-
section we will prove Theorem 10 which states that, for any cactus C, the clique problem can
be solved polynomial time on any C-graph. Thus, the open cases which remain are when H is
not a cactus (i.e., H contains a diamond as a minor), but H does not satisfy the conditions of
Theorem 8 (i.e., H does not contain the double-triangle as a minor).

Problem 6. What is the complexity of the maximum clique problem on H-graphs in the case
when H is not a cactus and ∆2 � H?

On the other hand, while the isomorphism problem can be solved in linear time on interval
graphs and Helly circular-arc graphs [CLM+13], split graphs [LB79] are GI-complete.

Problem 7. Let H be a fixed graph such that ∆2 � H. What is the complexity of the graph
isomorphism problem on H-graphs?

6.2 Tractable cases

Here, we consider two restrictions which allow polynomial-time algorithms for the maximum
clique problem. First, we discuss the case when the H-representation satisfies the Helly property.
This is followed by a discussion of the case when H is a cactus. In both situations, we obtain
polynomial-time algorithms.

Helly H-graphs. A Helly H-graph G has an H-representation {H ′v : v ∈ V (G)} such that
the collection H = {V (H ′v) : v ∈ V (G)} satisfies the Helly property, i.e., for each sub-collection
of H whose sets pairwise intersect, their common intersection is non-empty. Notice that, when
H is a tree, every H-representation satisfies the Helly property. When a graph G has a Helly
H-representation, we obtain the following relationship between the size of H and the number of
maximal cliques in G.

Lemma 6.1. Each Helly H-graph G has at most |V (H)|+ |E(H)| · |V (G)| maximal cliques.
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Proof. Let H ′ be a subdivision of H such that G has a Helly H-representation {H ′v : v ∈ V (G)}.
Note that, for each maximal clique C of G,

⋂
v∈C V (H ′v) 6= ∅, i.e., C corresponds to a node xC

of H ′.
For every edge xy ∈ E(H), we consider the path P = P[x,y] = (x,x1, . . . ,xk, y) in H ′. Let GP

be the subgraph of G formed by the union of the maximal cliques C of G such that xC ∈ V (P ).

Claim 6.1. The graph GP is a Helly circular-arc graph.

Proof. Note that if a restriction of H ′v, for v ∈ V (GP ), to P is disconnected, then it is a disjoint
union of two paths containing the end-vertices x and y, respectively. Let C by cycle obtained
from P by adding the edge xy. We construct a C-representation of GP . If the restriction of
H ′v to P is a subpath of P , then we let Cv to be this subpath. Otherwise, we let Cv to be the
restriction of H ′v to P together with the edge xy. Clearly, this is a Helly C-representation.

Now, since Helly circular-arc graphs have at most linearly many maximal cliques [Gav74a],
G has at most |V (H)|+ |E(H)| · |V (G)| maximal cliques.

We can now use Lemma 6.1 to find the largest clique in G in polynomial time. In fact,
we can do this without needing to compute a representation of G. In particular, the maximal
cliques of a graph can be enumerated with polynomial delay [MU04]. Thus, since G has at most
linearly many maximal cliques, we can simply list them all in polynomial time and report the
largest, i.e., if the enumeration process produces too many maximal cliques, we know that G
has no Helly H-representation. This provides the following theorem.

Theorem 9. The clique problem is solvable in polynomial time on Helly H-graphs.

Note that some co-bipartite circular-arc graphs have exponentially many maximal cliques
and these graphs are not contained in Helly H-GRAPH, for any fixed H. However, the clique
problem is solvable for circular-arc graphs in polynomial time [Hsu85].

Cactus-graphs. The clique problem is efficiently solvable on chordal graphs [Gol04] and
circular-arc graphs [Hsu85]. In particular, when H is either a tree or a cycle, the clique problem
can be solved in polynomial-time, independent of ‖H‖. In Theorem 10, we observe that these
results easily generalize to the case when G is a C-graph, for some cactus graph C. We define,

CACTUS-GRAPH =
⋃

Cactus C

C-GRAPH.

To prove the result we will use the clique-cutset decomposition, which is defined as follows. A
clique-cutset of a graph G is a clique K in G such that G−K has more connected components
than G. An atom is a graph without a clique-cutset. An atom of a graph G is a maximal induced
subgraph A of G which is an atom. A clique-cutset decomposition of G is a set {A1, . . . ,Ak}
of atoms of G such that G =

⋃k
i=1Ai and for every i, j, V (Ai) ∩ V (Aj) is either empty, or

induces a clique in G. Algorithmic aspects of clique-cutset decompositions were studied by
Whitesides [Whi84] and Tarjan [Tar85]. In particular, if k ≤ n, then for any graph G a clique-
cutset decomposition {A1, . . . ,Ak} of G can be computed in O(n2 + nm) [Tar85]. Additionally,
to solve the clique problem on a graph G it suffices to solve it for each atom of G from a
clique-cutset decomposition [Whi84, Tar85]. Theorem 10 now follows from the following easy
lemma and the fact that the clique problem can be solved in polynomial time for circular-arc
graphs [Hsu85].
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Lemma 6.2. Let C be cactus and let G ∈ C-GRAPH. Then each atom A of G is a circular-arc
graph.

Proof. Consider an C-representation {C ′v : v ∈ V (G)} of G. Now, let C|A =
⋃
v∈V (A)C

′
v.

Clearly, if C|A is a path or a cycle, then we are done. Otherwise, C|A must contain a cut-node
x. Let X1, . . . ,Xt be the components of H|A − {x}, and let S be the vertices of A whose
representations contain x. Note that S is a clique in A. Moreover, since A is an atom, S is
not a clique-cutset. Thus, there is a component Xj such that the subgraph C∗ of C induced
by V (Xj) ∪ {x} provides a representation of A. In particular, if C∗ is either a cycle, or a path
we are again done. Moreover, when C∗ is neither a path, nor a cycle, repeating this argument
on C∗ provides a smaller subgraph of C, on which A can be represented, i.e., this eventually
produces either a path, or cycle.

Theorem 10. The clique problem can be solved in polynomial time on CACTUS-GRAPH.

7 FPT results via clique-treewidth graph classes

The concept of treewidth was introduced by Robertson and Seymour [RS84]. A tree decomposi-
tion of a graphG is a pair (X,T ), where T is a tree andX = {Xi | i ∈ V (T )} is a family of subsets
of V (G), called bags, such that (1) for all v ∈ V (G), the set of nodes Tv = {i ∈ V (T ) | v ∈ Xi}
induces a non-empty connected subtree of T , and (2) for each edge uv ∈ E(G) there exists
i ∈ V (T ) such that both u and v are in Xi. The maximum of |Xi| − 1, i ∈ V (T ), is called the
width of the tree decomposition. The treewidth, tw(G), of a graph G is the minimum width over
all tree decompositions of G.

An easy lower bound on the treewidth of a graph G is the size of the largest clique in G,
i.e., its clique number ω(G). This follows from the fact that each edge of G belongs to some
bag of T and that a collection of pairwise intersecting subtrees of a tree must have a common
intersection (i.e., they satisfy the Helly property). With this in mind, we say that a graph class
G has the clique-treewidth property5 if there is a function f : N→ N such that for every G ∈ G,
tw(G) ≤ f(ω(G)). This concept generalizes the idea of G being χ-bounded, namely, that the
chromatic number χ(G) of every graph G ∈ G is bounded by a function of the clique number
of G. In particular, the chromatic number of a graph G is bounded by its treewidth since a
tree decomposition (X,T ) of G is a T -representation of a chordal supergraph G′ of G where
ω(G′) = tw(G) + 1, i.e., χ(G′) = tw(G) + 1 since chordal graphs are perfect. It was recently
shown that the graphs which do not contain even holes (i.e., cycles of length 2k for any k ≥ 2)
and pans (i.e., cycles with a single pendent vertex attached) as induced subgraphs have their
treewidth bounded by f(ω) = 3ω/2−1 [CCH18]. For a function f : N→ N, we use Gf to denote
the class of graphs G where tw(G) ≤ f(ω(G)). Each class H-GRAPH is known to be a subclass
of Gf for certain linear functions f , as in the following lemma.

Lemma 7.1 (Biró, Hujter, and Tuza [BHT92]). For every G ∈ H-GRAPH, tw(G) ≤ (tw(H) +
1) · ω(G)− 1, i.e., H-GRAPH is a subclass of GfH , where fH(ω) = (tw(H) + 1) · ω − 1.

We leverage any clique-treewidth-property (e.g., as in Lemma 7.1) together with some ex-
isting algorithms to to classify the k-coloring and k-clique problems as FPT on the Gf classes
(e.g., on H-GRAPH classes as well). We first consider the k-clique problem.

5In our prior work [CZ17], we referred to this as being treewidth-bounded, but have changed the name to be
consistent with other parameter-treewidth bounds given in bidimensionality theory [DFHT04].

28



Theorem 11. For any monotone computable function f : N → N, the k-clique problem can be
solved in 2O(f(k)) · n time for G ∈ Gf . Thus, for H-GRAPH, the k-clique problem can be solved
in 2O(tw(H)·k) · n time.

Proof. To test if G contains a k-clique, we first try to generate a tree decomposition of G with
width roughly f(k) via a recent algorithm [BDD+16], which, for any given graph G and number
t, provides a tree decomposition of width at most 5 · t or states that the treewidth of G is
larger than t. This algorithm runs in 2O(t) · n time. If this algorithm does not produce a tree
decomposition, then G must contain a k-clique, and we are done. Otherwise, we obtain a tree
decomposition (X,T ) of G of width 5 · f(k). Note that, an easy property of tree decompositions
is that, for every clique K, there is a bag which contains the vertices of K. In particular, to
check if G has a k-clique it suffices to check whether each the subgraph induced by a bag of G
contains a k-clique. This can obviously be done in 2O(f(k)) · n time by brute-force. Thus, we
have 2O(f(k)) · n time in total as needed.

For each fixed k ≥ 3, it is known that testing (k, k)-pre-colouring extension (see Section 1.1
for a definition) for G ∈ H-GRAPH can be done in XP time [BHT92]. The authors combine
Lemma 7.1 together with a simple argument to obtain the result. We use a similar argument
together with a more recent result regarding bounded treewidth graphs to observe that an even
more general problem, list k-coloring (where each list is a subset of {1, . . . , k}), is FPT on graph
class satisfying the clique-treewidth property, and therefore, also on H-GRAPH.

Theorem 12. For any monotone computable function f : N → N, the list-k-coloring problem
can be solved in kO(f(k)) · n time for G ∈ Gf . Thus, for H-GRAPH, the list-k-coloring problem
can be solved in kO(tw(H)·k) · n time.

Proof. For fixed k, clearly, if G contains a clique of size k + 1 then G has no k-coloring, i.e., no
list-k-coloring, regardless of the lists. We use Theorem 11 to test for such a clique, and reject if
one is found. Otherwise, we have a 5 · f(k)-width tree decomposition, and this time we use it to
solve the list-k-coloring problem via the known O(kt+2 · n)-time algorithm when given a width
t tree decomposition [JS97]. Thus, list-k-coloring can be solved in (2O(f(k)) + kO(f(k))) · n time
on Gf .

Some further natural open questions remain regarding these results. For example, what
other problems can be approached on graph classes with the clique-treewidth property? Can we
obtain polynomial-size kernels for the k-clique or list-k-coloring problems on H-GRAPH or more
generally on graph classes with the clique-treewidth property? The kernelization question has
already been partially answered for the k-clique problem. Namely, on H-graphs, it was recently
shown [FGR20] that the k-clique admits a polynomial kernel in terms of ‖H‖ and k, but the
kernelization requires an H-representation to be given as part of the input. In contrast, our
FPT algorithm for k-clique (while also parameterized by both ‖H‖ and k) does not need an
H-representation.

Problem 8. Can the kernelization for k-clique be done without an H-representation a part of
the input?

Problem 9. Can we obtain polynomial-size kernel for the list-k-coloring problem on H-graphs?
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8 Minimal separators

For a connected graph G, a subset S of V (G) is a minimal separator when G has vertices u
and v belonging to distinct components of G − S such that no proper subset of S disconnects
u and v – here, we say that S is minimal (u, v)-separator. We denote the set of all minimal
separators in G by S(G). Minimal separators are a commonly studied aspect of many graph
classes [BT01, GM18, Gol04, KKW98]. Two particularly relevant cases include the fact that
chordal graphs have at most n minimal separators [Gol04], and that circular-arc graphs have at
most 2n2 − 3n minimal separators [KKW98].

Recently, several algorithmic results have been developed, where the runtime depends on
the number of minimal separators in the input graph. The main result in this direction is the
one by Fomin, Todinca, and Villanger [FTV15], which is phrased in terms of potential maximal
cliques, but can also be phrased in terms of minimal separators since the number of potential
maximal cliques in a graph G is bounded by n|S(G)|2 (see Proposition 2.8 in [FTV15]). Roughly,
in [FTV15] the authors show that a large class of problems can be solved in time polynomial in
the number of minimal separators of the input graph. These problems include several standard
combinatorial optimization problems, e.g., maximum independent set and maximum induced
forest6.

The class of problems considered in [FTV15] is formalized as follows. Consider a fixed
integer t ≥ 0, and a formula ϕ expressed in counting extended monadic second order logic
(CMSO)7. For an input graph G, the goal is to find a maximum size subset X ⊆ V (G) satisfying:
there is F ⊆ V (G) such that X ⊆ F , the subgraph G[F ] has treewidth at most t, and the
structure (G[F ],X) models ϕ. The graph G[X] is called maximum induced subgraph of treewidth
≤ t satisfying ϕ. The main result of [FTV15] is that this problem can be solved in time
O(|S|2nt+5f(t, |ϕ|)) where f is a computable function.

Now, we prove that each H-graph has nO(‖H‖) minimal separators; see Theorem 13. We
obtain Corollary 14 by applying the meta-algorithmic result of Fomin, Todinca, and Villanger.
Subsequently, we consider the case of H-graphs when H is a cactus and observe a much smaller
bound on the number of minimal separators, in particular, O(‖H‖n2); see Theorem 15. Similarly,
by applying the meta-algorithmic result we obtain Corollary 16: for cactus-graphs, the maximum
induced subgraph of treewidth t modelling ϕ can be solved in polynomial time.

Theorem 13. Let G be a connected H-graph. Then G has nO(|E(H)|) minimal separators. 8

Proof. We show that each minimal separator arises from vertices of G such that their represen-
tations contain a small number of edges of the subdivision H ′. Then we count all such subsets
of edges of H ′.

Let H ′ be a subdivision of H certifying that G is an H-graph. Let H∗ be the subgraph of
H ′ formed by the union of the representations of the vertices of G, i.e.,

H∗ =
⋃

x∈V (G)

H ′x.

6i.e., minimum feedback vertex set
7Informally, CMSO consists of all logic formulas with quantifiers over vertices, edges, edge sets and vertex

sets, and counting modulo constants. For more information on this logic see, e.g., [CE12]. Note: in [CE12], this
logic is abbreviated by CMS2 instead of CMSO as in [FTV15].

8A similar result with a slightly better bound is given in a recent manuscript, see [FGR20]. Our proof and
theirs seem to follow similar reasoning, but have been obtained independently, as also noted in [FGR20].
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Observe that, since G is connected, H∗ must be also connected. Moreover, for any minimal
(u, v)-separator S, the graph H∗S =

⋃
x∈V (G)\S H

′
x is not connected. Now, since S is an (u, v)-

separator, there are distinct components Z∗u and Z∗v of H∗S such that H ′u is a subgraph of Z∗u
and H ′v is a subgraph of Z∗v .

Observe that, since S is minimal, then if x ∈ S, then the representation H ′x contains an edge
ab of H∗ such that either a ∈ V (Z∗u) and b /∈ V (Z∗u), or a ∈ V (Z∗v ) and b /∈ V (Z∗v ). Namely,
there is a set ES of edges of H∗ such that S is precisely the set of vertices x of G where H ′x
contains an edge of ES . Moreover, for each edge of H, at most two edges from its path in H ′

occur in ES .
To bound the number of all possible minimal separators in G, it suffices to enumerate all

possible subsets E of E(H ′) where, for each edge of H, we pick at most two edges from its
path in H ′. Here, the candidate separator S would simply be all vertices x of G for which H ′x
contains an edge of E. Thus, since each edge of H will be subdivided at most 2n − 1 times
(since 2n nodes are sufficient to accommodate any circular-arc representation), we obtain that
the number of minimal separators in G is at most((

2n

2

)
+

(
2n

1

)
+

(
2n

0

))|E(H)|
= nO(|E(H)|).

Corollary 14. Let H be a fixed graph. For every H-graph G, t ≥ 0, and every CMSO for-
mula ϕ, a maximum induced subgraph of treewidth ≤ t modelling ϕ can be found in time
O(nc|E(H)|nt+5f(t,ϕ)), where c is a constant and f is a computable function.

Theorem 15. Let G be a connected C-graph, where C is a cactus graph. Then G has at most
|E(C)|(2n2 + n) minimal separators.

Proof. The reasoning here follows similarly to the proof of Theorem 13. Namely, if we consider
a minimal (u, v)-separator, we again find the components Z∗u and Z∗v in the subdivision H ′.
However, since H ′ is a cactus, we can now look more closely at the edges which are incident to
Z∗u and Z∗v but contained in neither. In particular, it is easy to see that among all such edges
incident to Z∗u, there are at most two edges e1, e2 which are actually important to ensure that
there is no path from H ′u from H ′v. In other words, our set ES consists of at most two edges of
H ′. Moreover, these two edges must belong to the same cycle of H ′. Finally, since each cycle of
H ′ forms a circular-arc graph, it never needs to contain more than 2n nodes, i.e., also 2n edges.
Thus, since H contains at most |E(H)| cycles, the number of minimal separators in G is at most
|E(H)|

((
2n
2

)
+
(
2n
1

))
≤ |E(H)|(2n2 + n).

Corollary 16. Let C be a cactus. For every G ∈ C-GRAPH, t ≥ 0 and every CMSO for-
mula ϕ, a maximum induced subgraph of treewidth ≤ t modelling ϕ can be found in time
O(|E(C)|2nt+9f(t,ϕ)), where f is a computable function.

As we have mentioned, two recent manuscripts [FGR20, JKT20] have obtained W[1]-hardness
results for both the maximum independent set problem and the minimum feedback vertex set
problem (respectively) when parameterized by ‖H‖ and the solution size. In both results, the
graphs H which are used have progressively larger clique minors. These indicate that the XP-
time results of Corollary 14 are extremely unlikely to be improved to FPT-time, even when
adding the solution size as an additional parameter. On the other hand, as in Corollary 16,
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when H is a cactus (i.e., diamond-minor free), these problems (and many more) can be solved
in polynomial time in both ‖H‖ and the size of the input graph.

Problem 10. For which classes H (besides the cacti), can one similarly bound the number
of minimal separators by a polynomial in terms of ‖H‖ and ‖G‖ where H ∈ H and G is an
H-graph?
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