Skip to main content

The Minimum Conflict-Free Row Split Problem Revisited

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

Abstract

Motivated by applications in cancer genomics and following the work of Hajirasouliha and Raphael (WABI 2014), Hujdurović et al. (IEEE TCBB, to appear) introduced the minimum conflict-free row split (MCRS) problem: split each row of a given binary matrix into a bitwise OR of a set of rows so that the resulting matrix corresponds to a perfect phylogeny and has the minimum number of rows among all matrices with this property. Hajirasouliha and Raphael also proposed the study of a similar problem, referred to as the minimum distinct conflict-free row split (MDCRS) problem, in which the task is to minimize the number of distinct rows of the resulting matrix. Hujdurović et al. proved that both problems are NP-hard, gave a related characterization of transitively orientable graphs, and proposed a polynomial-time heuristic algorithm for the MCRS problem based on coloring cocomparability graphs.

We give new formulations of the two problems, showing that the problems are equivalent to two optimization problems on branchings in a derived directed acyclic graph. Building on these formulations, we obtain new results on the two problems, including: (i) a strengthening of the heuristic by Hujdurović et al. via a new min-max result in digraphs generalizing Dilworth’s theorem, (ii) APX-hardness results for both problems, (iii) two approximation algorithms for the MCRS problem, and (iv) a 2-approximation algorithm for the MDCRS problem.

This work is supported in part by the Slovenian Research Agency (I0-0035, research program P1-0285 and research projects N1-0032, J1-5433, J1-6720, J1-6743, and J1-7051) and by the Academy of Finland (grant 274977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237(1–2), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-58412-1

    Book  MATH  Google Scholar 

  3. Cheriyan, J., Jordán, T., Ravi, R.: On 2-coverings and 2-packings of laminar families. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 510–520. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48481-7_44

    Google Scholar 

  4. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  5. Estabrook, G.F., et al.: An idealized concept of the true cladistic character. Math. Biosci. 23(3–4), 263–272 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frank, a.: Finding minimum weighted generators of a path system. In: Contemporary Trends in Discrete Mathematics (Štiřín Castle, 1997), DIMACS Series in Discrete Mathematics and Theoretical Computur Science, vol. 49, pp. 129–138. American Mathematical Society, Providence (1999)

    Google Scholar 

  7. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered sets. Proc. Amer. Math. Soc. 7, 701–702 (1956)

    MathSciNet  MATH  Google Scholar 

  8. Gabow, H.N., Manu, K.S.: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Math. Program. 82, 83–109 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier Science B.V., Amsterdam (2004)

    MATH  Google Scholar 

  10. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21(1), 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Hajirasouliha, I., Raphael, B.J.: Reconstructing mutational history in multiply sampled tumors using perfect phylogeny mixtures. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 354–367. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44753-6_27

    Google Scholar 

  13. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hujdurović, A., Husić, E., Milanič, M., Rizzi, R., Tomescu, A.I.: Reconstructing perfect phylogenies via branchings in acyclic digraphs and a generalization of Dilworth’s theorem. https://arxiv.org/abs/1701.05492

  15. Hujdurović, A., Kačar, U., Milanič, M., Ries, B., Tomescu, A.I.: Complexity and algorithms for finding a perfect phylogeny from mixed tumor samples. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017, to appear). For an extended abstract, see Proceedings of WABI 2015, LNCS 9289, pp. 80–92 (2015)

    Google Scholar 

  16. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm Design. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  18. Moonen, L.S., Spieksma, F.C.R.: Partitioning a weighted partial order. J. Comb. Optim. 15(4), 342–356 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sakashita, M., Makino, K., Fujishige, S.: Minimizing a monotone concave function with laminar covering constraints. Discrete Appl. Math. 156(11), 2004–2019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Milanič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hujdurović, A., Husić, E., Milanič, M., Rizzi, R., Tomescu, A.I. (2017). The Minimum Conflict-Free Row Split Problem Revisited. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics