
Logical Methods in Computer Science
Volume 15, Issue 4, 2019, pp. 12:1–12:32
https://lmcs.episciences.org/

Submitted Dec. 07, 2018
Published Dec. 04, 2019

SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO:

TREEWIDTH AND NEIGHBORHOOD DIVERSITY

DUŠAN KNOP, MARTIN KOUTECKÝ, TOMÁŠ MASAŘÍK, AND TOMÁŠ TOUFAR

Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
e-mail address: knop@kam.mff.cuni.cz

Faculty of IE&M, Technion – Israel Institute of Technology, Haifa, Israel
Computer Science Institute, Charles Univesity, Prague, Czech Republic
e-mail address: koutecky@iuuk.mff.cuni.cz

Department of Applied Mathematics, Charles University, Prague, Czech Republic
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
e-mail address: masarik@kam.mff.cuni.cz

Computer Science Institute, Charles University, Prague, Czech Republic
e-mail address: toufi@iuuk.mff.cuni.cz

Abstract. This paper settles the computational complexity of model checking of several
extensions of the monadic second order (MSO) logic on two classes of graphs: graphs of
bounded treewidth and graphs of bounded neighborhood diversity.

A classical theorem of Courcelle states that any graph property definable in MSO
is decidable in linear time on graphs of bounded treewidth. Algorithmic metatheorems
like Courcelle’s serve to generalize known positive results on various graph classes. We
explore and extend three previously studied MSO extensions: global and local cardinality
constraints (CardMSO and MSO-LCC) and optimizing the fair objective function (fairMSO).

First, we show how these extensions of MSO relate to each other in their expressive power.
Furthermore, we highlight a certain “linearity” of some of the newly introduced extensions
which turns out to play an important role. Second, we provide parameterized algorithms
for the aforementioned structural parameters. On the side of neighborhood diversity,
we show that combining the linear variants of local and global cardinality constraints is
possible while keeping the linear (FPT) runtime but removing linearity of either makes
this impossible assuming FPT 6= W[1]. Moreover, we provide a polynomial time (XP)
algorithm for the most powerful of studied extensions, i.e. the combination of global and
local constraints. Furthermore, we show a polynomial time (XP) algorithm on graphs of
bounded treewidth for the same extension. In addition, we propose a general procedure
for deriving XP algorithms on graphs on bounded treewidth using Constraint Satisfaction
Problems (CSPs). This shows an alternative approach to standard dynamic programming
formulations.

Key words and phrases: MSO extensions, metatheorem, parameterized complexity, neighborhood diversity,
treewidth.

Preliminary version appeared in the proceedings of the WG 2017 conference [29].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(4:12)2019
c© D. Knop, M. Koutecký, T. Masařík, and T. Toufar
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

12:2 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

1. Introduction

It has been known since the ’80s that various NP-hard problems are solvable in polynomial
time by dynamic programming on trees and “tree-like” graphs. This was famously captured
by Courcelle [10] in his theorem stating that any property definable in Monadic Second
Order (MSO) logic is decidable in linear time on graphs of bounded treewidth. Subsequently,
extensions to stronger logics and optimization versions were devised [3, 14] while still keeping
linear runtime.

However, several interesting problems do not admit an MSO description and are unlikely
to be solvable in linear time on graphs of bounded treewidth due to hardness results. In the
language of parameterized complexity, Courcelle’s theorem runs in fixed-parameter tractable
(FPT) time, that is, in time f(||ϕ||, τ)nO(1), where n is the number of vertices of the input
graph, τ its treewidth, ϕ is an MSO formula, and f is a computable function. On the
other hand, unless FPT=W[1], the “hard” (specifically, W[1]-hard) problems have algorithms

running at best in XP time ng(||ϕ||,τ), for some computable function g ∈ ω(1). This led to an
examination of extensions of MSO which allow greater expressive power.

Another research direction was to improve the computational complexity of Courcelle’s
theorem, since the function f grows as an exponential tower in the number of quantifier
alternations of the MSO formula. However, Frick and Grohe [21] proved that this is
unavoidable unless P = NP which raises a question: is there a (simpler) graph class where

MSO model checking can be done in single-exponential (i.e., 2k
O(1)

) time? This was answered
in the affirmative by Lampis [34], who introduced graphs of bounded neighborhood diversity.
The classes of bounded treewidth and bounded neighborhood diversity are incomparable:
for example, paths have unbounded neighborhood diversity but bounded treewidth, and
vice versa for cliques. Bounded treewidth has become a standard parameter with many
practical applications (cf. a survey [6]); bounded neighborhood diversity is of theoretical
interest [1, 2, 7, 19, 22, 24, 38] because it can be viewed as representing the simplest of dense
graphs.

Courcelle’s theorem proliferated into many fields. Originating among automata theorists,
it has since been reinterpreted in terms of finite model theory [37], database programming [25],
game theory [28] and linear programming [32].

1.1. Related work. For a recent survey of algorithmic metatheorems see e.g. Grohe et
al. [26].
Objective functions. A linear optimization version of Courcelle’s theorem was given
by Arnborg, Lagergren and Seese [3]. An extension to further objectives was given by
Courcelle and Mosbah [14]. Kolman, Lidický and Sereni [33] introduce MSO with a fair
objective function (fairMSO) which, for a given MSO formula ϕ(F) with a free edge set
variable F , minimizes the maximum degree in the subgraph given by F , and present an
XP algorithm. This is justified by the problem being W[1]-hard, as was later shown by
Masař́ık and Toufar [38], who additionally gave an FPT algorithm on graphs of bounded
neighborhood diversity for MSO1 and an FPT algorithm on graphs of bounded vertex cover
for MSO2. Those results were extended to graphs of bounded twin cover by Knop, Masař́ık
and Toufar [30].
Extended logics. Along with MSO, Courcelle also considered counting MSO (cMSO)
where predicates of the form “|X| ≡ p mod q” are allowed, with the largest modulus
q constant. Szeider [41] introduced MSO with local cardinality constraints (MSO-LCC)

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:3

and gave an XP algorithm deciding it on graphs of bounded treewidth. MSO-LCC can
express various problems, such as General Factor, Equitable r-Coloring or Minimum
Maximum Outdegree, which are known to be W[1]-hard on graphs of bounded treewidth.
Ganian and Obdržálek [23] study CardMSO, which is incomparable with MSO-LCC in its
expressive power; they give an FPT algorithm on graphs of bounded neighborhood diversity.

1.2. Our contribution. The contribution of the paper is twofold. First, we survey and
enrich the so far studied extensions of MSO logic – fairMSO, CardMSO, and MSO-LCC. We
do this in Section 2.1. Second, we study the parameterized complexity of the associated
model checking problem for various combinations of these MSO extensions. We completely
settle the parameterized complexity landscape for the model checking problems with respect
to the parameters treewidth and neighborhood diversity; for an overview of the complexity
landscape refer to Figures 1 and 1. We postpone formal definitions of logic extensions and
corresponding model checking to Subsection 2.1.

While both MSO-LCC and CardMSO express certain cardinality constraints, the con-
straints of CardMSO are inherently global and linear, yet the constraints of MSO-LCC
are local and non-linear. This leads us to introduce two more fragments and to rename
the aforementioned ones: CardMSO becomes MSOG

lin, MSO-LCC becomes MSOL and we

additionally have MSOG, MSOL
lin, MSOGL

lin and MSOGL. By this we give a complete landscape
for all possible combinations of types of constraints: global/local and linear/non-linear.

In the following, we do not differentiate between the logics MSO1 (allowing quantification
over vertex sets) and MSO2 (additionally allowing quantification over edge sets); see a detailed
explanation in Subsection 2.1. For now, it suffices to say that our positive result for graphs
of bounded treewidth holds for the appropriate extension of MSO2, while all remaining
results (positive for graphs of bounded neighborhood diversity and negative for graphs of
bounded vertex cover number) hold for the appropriate extensions of MSO1.

For graphs of bounded treewidth we give an XP algorithm for the logic MSOGL, which is
a composition of MSOG and MSOL and thus represents the most expressive fragment under
our consideration.

Theorem 1.1. MSOGL model checking is XP parameterized by tw(G) and ||ϕ||.
This result is also significant in its proof technique. We connect a recent result of

Kolman, Koutecký and Tiwary [32] about the polytope of satisfying assignments with an
old result of Freuder [20] about the solvability of the constraint satisfaction problem (CSP)
of bounded treewidth. This allows us to formulate the proof of Theorem 1.1 essentially as
providing a CSP instance with certain properties. We also briefly discuss which problems
can be modeled using MSOGL, deriving the following as a consequence:

Corollary 1.2. Let G be a graph of treewidth τ and with n = |V (G)|.
The following problems have algorithms with runtime nf(τ): General Factor, Mini-

mum Maximum Outdegree, Capacitated Dominating Set, Capacitated Vertex
Cover, Vector Dominating Set, Generalized Domination.

The following problems have algorithms with runtime nf(τ+k):

• Equitable k-Coloring, Equitable connected k-Partition, k-Balanced Parti-
tioning,
• Graph Motif, where k is the number of colors.

Theorem 1.1 is complemented from the negative side by the following hardness result.

12:4 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

MSO

MSOL
lin MSOG

lin

MSOGL
lin

MSOL MSOG

MSOGL

Figure 1: MSO extensions. A partial order of MSO ex-

tensions considered. An arrow denotes generaliza-

tions; e.g., MSOL
lin generalizes MSO and is gener-

alized by MSOGL
lin . Green (dashed) line separates

logics whose model checking is FPT parameterized

by tw(G) (Courcelle [10]) from those whose model

checking is W[1]-hard (both MSOL
lin and MSOG

lin cap-

ture the W[1]-hard Equitable r-Coloring prob-

lem). Orange (dotted) line separates logics whose

model checking is FPT parameterized by nd(G)

(Theorem 1.4) from those whose model checking

is W[1]-hard (Theorems 1.3 and 1.6). The model

checking of all logics below the red (dashed-dotted)

line is XP parameterized by both tw(G) (Theo-

rem 1.1) and nd(G) (Theorem 1.5).

Theorem 1.3. MSOG model checking is W[1]-hard parameterized by vc(G) and ||ϕ||, where
vc(G) is the vertex cover number of the input graph G.

For graphs of bounded neighborhood diversity we give two positive results; the logic
MSOGL

lin is a composition of MSOL
lin and MSOG

lin.

Theorem 1.4. MSOGL
lin model checking is FPT parameterized by nd(G) and ||ϕ||.

Theorem 1.5. MSOGL model checking is XP parameterized by nd(G) and ||ϕ||.
We complement the above results with another hardness result.

Theorem 1.6. MSOL model checking is W[1]-hard parameterized by vc (G) and ||ϕ||.
Interestingly, our finding about hardness being caused by nonlinearity carries over to a

generalization of the Set Cover problem.

Multidemand Set Multicover
Input: Universe U = [k], set of multidemands D1, . . . , Dk ⊆ [n], a covering system
F = {F1, . . . , Ff} ⊆ 2U , an integer r ∈ N
Task: Find integer multiplicities m1 + · · · + mf = r such that for all i ∈ [k],
(
∑

j:ui∈Fj
mj) ∈ Di.

We show that the (non)linearity of the multidemands is crucial. On one hand, we have
the following hardness.

Theorem 1.7. Multidemand Set Multicover is W[1]-hard parameterized by k, already
when |F| = k.

On the other hand, consider the Weighted Set Multicover problem. It is a weighted
variant of Multidemand Set Multicover where each multidemand Di is the interval
[0, δi] for some δi ∈ N. Recently, Bredereck et al. [8] showed that this variant is fixed-
parameter tractable when parameterized by k, which has applications in computational
social choice and elsewhere. Moreover, it is not difficult to see that even the more general
case when each Di is a discrete interval is in FPT, by a small modification of the approach
of Bredereck et al.

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:5

nd, vc

MSO

MSOG
lin

MSOG

MSO fairMSO MSOL
lin MSOL

FPT [34] FPT [38] W[1]-h, Thm 1.6

FPT [23] FPT, Thm 1.4

W[1]-h, Thm 1.3 XP, Thm 1.5

tw

MSO

MSOG
lin

MSOG

MSO fairMSO MSOL
lin MSOL

FPT [10] W[1]-hard [38] XP [41]

W[1]-hard [23]

XP, Thm 1.1

Table 1: Complexity of various logic fragments generalizing MSO parameterized by ||ϕ|| and
in addition by vertex cover (vc), neighborhood diversity (nd), or treewidth (tw).
Positive results (FPT, XP) spread to the left and up. W[1]-hardness spreads to
the right and down. Green background (lighter gray in b-w print) stands for FPT
fragments, while orange (darker gray) stands for W[1]-hard. A cell represents a

union of studied fragments, i.e., the cell indexed by MSOG and MSOL corresponds
to the MSOGL fragment.

2. Preliminaries

For two integers a, b we define a set [a, b] = {x ∈ Z | a ≤ x ≤ b}; we use [b] to denote the
set [1, b]. We write vectors in bold font, i.e., x ∈ Rn, and denote by xi, i ∈ [n], its i-th
coordinate.

For a vertex v ∈ V of a graph G = (V,E), we denote by NG(v) the set of neighbors of
v in G, that is, NG(v) = {u ∈ V | {u, v} ∈ E}; the subscript G is omitted when clear from

the context. For a rooted tree T , N↓T (v) denotes the down-neighborhood of v, i.e., the set of
children of v. For a graph G = (V,E) a set U ⊆ V is a vertex cover of G if for every edge
e ∈ E it holds that e∩U 6= ∅. The size of a minimum vertex cover of graph G is denoted by
vc(G). For more graph theory notation cf. the book of Matoušek and Nešetřil [39].

2.1. MSO and its Extensions. Let us shortly introduce MSO over graphs. In first-order
logic (FO) we have variables for the elements (x, y, . . .), equality for variables, quantifiers ∀,∃
ranging over elements, and the standard Boolean connectives ¬,∧,∨, =⇒ . The monadic
second order logic (MSO) extends first order logic using so called monadic variables. Graph
MSO has the binary relational symbol E encoding edges, and traditionally comes in two
flavors, MSO1 and MSO2, differing by the objects we are allowed to quantify over: in MSO1

these are the vertices and vertex sets, while in MSO2 we can additionally quantify over edges
and edge sets. For example, the 3-colorability property can be expressed in MSO1 as follows:

∃X1, X2, X3 [∀x (x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3)∧∧
i=1,2,3

∀x, y (x 6∈ Xi ∨ y 6∈ Xi ∨ {x, y} 6∈ E)]

12:6 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

For a formula ϕ, we denote by ||ϕ|| the size of ϕ, that is, the number of symbols in a chosen
encoding of ϕ.

Regarding MSO1 and MSO2. We use standard notation for relational structures (cf. Libkin [37]):
a vocabulary σ is a collection of constant and predicate symbols, and a σ-structure is a tuple
A =

(
A, {ci}, {Pi}

)
, where the set A is the universe, {ci} are constant symbols (ci ∈ A) and

{Pi} are finitely many relations (or predicates), each of arity ri (Pi ⊆ Ari). (More precisely,
ci and Pi are the realizations of the symbols in the vocabulary σ, but we identify a symbol
and its realization to avoid notational overload.) Then, a graph G = (V,E) is typically
modeled as a σ1-structure

(
V, ∅, {E}

)
with σ1 containing one binary relation E. We can

view G as a σ2-structure A =
(
V ∪ E, ∅, {I, LV , LE}

)
, where σ2 contains a binary relation

I representing incidence in G and two unary predicates LV , LE distinguishing vertices and
edges, respectively, with realizations defined as I = {{v, e} | v ∈ e, e ∈ E}, LV = V and
LE = E. Given a vocabulary σ, we define the logic MSO[σ] inductively as usual by letting its
terms be the variables and constant symbols, its atomic formulae (atoms) be either t1 = t2
for two terms t1, t2, or P (t1, . . . , tk) for any k-ary predicate P and terms t1, . . . , tk, and its
formulae be quantified boolean combinations of atoms. Thus, MSO[σ1] is the logic with a
binary predicate E, and MSO[σ2] is the logic with two unary predicates LV , LE and one
binary predicate I. For short, we denote MSO1 = MSO[σ1] and MSO2 = MSO[σ2]. The
treewidth of a relational structure A is the treewidth of its Gaifman graph G(A) = (V A, EA)
where V A = A and EA = {{u, v} | ∃Pi∃r ∈ Pi : u, v ∈ r}. It is known that the treewidth
of a graph does not change when viewed as a σ1-structure, and increases by at most 1
when viewed as a σ2-structure [31]. Even though MSO2 is strictly stronger than MSO1

(hamiltonicity is expressible in MSO2 but not in MSO1 [37]), on graphs with bounded
treewidth their power is equal [11, 12].

For this reason, when considering graphs of bounded treewidth, we will focus on MSO2,
and all the extended logics such as MSOGL

lin etc. will be extensions of MSO2. On the other
hand, on graphs of bounded neighborhood diversity, MSO2 is strictly more powerful than
MSO1. However, because model checking of an MSO2 formula already over a clique is not
even in XP unless E = NE [13, 35], when dealing with graphs of bounded neighborhood

diversity we will always refer to MSO1 and MSOGL
lin will stand for an extension of MSO1.

We consider two orthogonal ways to extend MSO logic. In what follows ϕ is a formula
with ` free set-variables.

Global cardinality constraints. We introduce a new type of atomic formulae called global car-
dinality constraints (global constraints for short). An MSO formula with c global cardinality
constraints contains `-ary predicates R1, . . . , Rc where each predicate takes as argument
only the free variables of ϕ. The input to the model checking problem is a graph G = (V,E)
on n vertices and an implicit representation (see below) of a tuple (RG1 , . . . , R

G
c), where

RGi ⊆ [n]`.
To define the semantics of the extension, it is enough to define the truth of the

newly introduced atomic formulae. A formula Ri(X1, . . . , X`) is true under an assign-
ment µ : {X1, . . . , X`} → 2V if and only if (|µ(X1)|, . . . , |µ(X`)|) ∈ RGi . We allow a relation
RGi to be represented either as a linear constraint a1|X1| + · · · + am|Xm| ≤ b, where
(a1, . . . , am, b) ∈ Rm+1, or, much more generally, by an arbitrary algorithm A(RGi) such that

A(RGi) decides whether (|X1|, . . . , |X`|) ∈ RGi in time nO(1) for any tuple in [0, n]`.

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:7

For example, suppose we want to satisfy a formula ϕ(X1, X2) with two sets for which

|X1| ≥ |X2|2 holds. Then, we solve the MSOG model checking problem with a formula
ϕ′ := ϕ ∧ [|X1| ≥ |X2|2], that is, we write the relation as a part of the formula, as this is a
more convenient way to think of the problem. However, formally the relation is a part of
the input, represented by the obvious algorithm computing |X2|2, comparing it with |X1|,
and returning the result.

Local cardinality constraints. Local cardinality constraints are additional cardinality require-
ments such that every variable assignment has to satisfy the cardinality constraint for every
vertex and for every free variable. Specifically, we want to control the size of µ(Xi) ∩N(v)
for every v; we define a shorthand S(v) = S ∩N(v) for a subset S ⊆ V and vertex v. Local
cardinality constraints for a graph G = (V,E) on n vertices and a formula ϕ with ` free

variables are mappings α1, . . . , α`, where each αi is a mapping from V to 2[n].
We say that an assignment µ obeys local cardinality constraints α1, . . . , α` if for every

i ∈ [`] and every v ∈ V it holds that |µ(Xi)(v)| ∈ αi(v).

The logic that incorporates both of these extensions is denoted MSOGL. Let ϕ be an
MSOGL formula with c global cardinality constraints. Then the MSOGL model checking
problem has input:

• graph G = (V,E) on n vertices,
• relations RG1 , . . . , R

G
c ⊆ [n]`, and,

• mappings α1, . . . , α`.

The task is to find an assignment µ that obeys local cardinality constraints and such that ϕ
is true under µ by the semantics defined above.

The MSOGL logic is very powerful and, as we later show, it does not admit an FPT
model checking algorithm neither for the parameterization by neighborhood diversity, nor
for the parameterization by treewidth. It is therefore relevant to consider the following
weakenings of the MSOGL logic:

MSOG : Only global cardinality constraints are allowed.
MSOL(originally MSO-LCC [41]): Only local cardinality constraints are allowed.

MSOG
lin(originally CardMSO [22]): The cardinality constraints can only be linear; that is, we

allow constraints in the form [e1 ≥ e2], where ei is a linear expression over |X1|, . . . , |X`|.
MSOL

lin : Only local cardinality constraints are allowed; furthermore every local cardinality
constraint αi must be of the form αi(v) = [lvi , u

v
i], (i.e., an interval) where lvi , u

v
i ∈ [n].

Those constraints are referred to as linear local cardinality constraints.
fairMSO : Further restriction of MSOL

lin; now we only allow αi(v) = [uvi].

MSOGL
lin : A combination of MSOL

lin and MSOG
lin; both local and global constraints are allowed,

but only in their linear variants.

The model checking problem for the considered fragments is defined in a natural way
analogously to MSOGL model checking.

Pre-evaluations. Many techniques used for designing MSO model checking algorithms fail
when applied to MSO extensions. A common workaround is first transforming the given
MSOGL formula into an MSO formula by fixing the truth values of all global constraints to
either true or false. Once we determine which variable assignments satisfy the transformed
MSO formula, we can by other means (e.g. integer linear programming or constraint

12:8 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

satisfaction) ensure that they obey the constraints imposed by fixing the values to true

or false. This approach was first used for CardMSO by Ganian and Obdržálek [23]. We
formally describe this technique as pre-evaluations:

Definition 2.1 (Pre-evaluation). Let ϕ be an MSOGL formula. Denote by C(ϕ) the list
of all global constraints. A mapping β : C(ϕ) → {true, false} is called a pre-evaluation
function on ϕ. The MSO formula obtained by replacing each global constraint ci ∈ C(ϕ) by
β(ci) is denoted by β(ϕ) and is referred to as a pre-evaluation of ϕ.

Definition 2.2 (Assignment and Pre-evaluation Compliance). A variable assignment µ of

an MSOGL formula ϕ complies with a pre-evaluation function β if every global constraint
ci ∈ C(ϕ) evaluates to β(ci) under the assignment µ.

2.2. Treewidth and Neighborhood Diversity.

Treewidth. For notions related to the treewidth of a graph and nice tree decompositions, in
most cases we stick to the standard terminology as given by Kloks [27]; the only deviation is
in the leaf nodes of the nice tree decomposition where we assume that the bags are empty.

Definition 2.3 (Tree decomposition, Treewidth). A tree decomposition of a graph G =
(V,E) is a pair (T,B), where T is a tree and B is a mapping B : V (T)→ 2V satisfying

• for any {u, v} ∈ E, there exists a ∈ V (T) such that u, v ∈ B(a),
• if v ∈ B(a) and v ∈ B(b), then v ∈ B(c) for all c on the a-b path in T .

We call the vertices of the tree nodes and the sets B(a) we call bags.
The treewidth tw((T,B)) of a tree decomposition (T,B) is the size of the largest bag of

(T,B) minus one. A graph G has treewidth τ (tw(G) = τ) if it has a tree decomposition of
treewidth τ .

Observe that for every graph G we have tw(G) ≤ vc(G), since it admits a tree decom-
position with T being a path P|V (G)|−vc(G). In this decomposition we have (in any order)
bags of the form U ∪ {v} for each vertex v ∈ V \ U , where U is a vertex cover of G with
|U | = vc(G). It is easy to verify that the constructed decomposition is a tree decomposition
of G. Thus, the class of graphs of bounded treewidth is more general than the class of graphs
of bounded vertex cover.

Definition 2.4 (Nice tree decomposition). A nice tree decomposition is a tree decomposition
with T rooted and binary, where the root is denoted r and each node is one of the following
types:

• Leaf node: a leaf a of T with B(a) = ∅.
• Introduce node: an internal node a of T with one child b for which B(a) = B(b)∪ {v} for

some v ∈ B(a); for short we write a = b ∗ (v)
• Forget node: an internal node a of T with one child b for which B(a) = B(b) \ {v} for

some v ∈ B(b); for short a = b † (v)
• Join node: an internal node a with two children b and c with B(a) = B(b) = B(c); for

short a = Λ(b, c).

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:9

For a vertex v ∈ V , we denote by top(v) the topmost node of a nice tree decomposition
that contains v in its bag. For any graph G on n vertices, a nice tree decomposition of G
with width tw(G) and at most 8n nodes can be computed in time O(n) [5, 27]. (This is
done by first using Bodlaender’s algorithm [5] to compute an optimal tree decomposition
with at most n nodes in linear time, and then transforming it into a nice decomposition
using an algorithm of Kloks [27] while keeping the number of nodes bounded by 8n.)

Given a graph G = (V,E) and a subset of vertices V ′ = {v1, . . . , vd} ⊆ V , we denote
by G[V ′] the subgraph of G induced by V ′. Given a tree decomposition (T,B) and a node
a ∈ V (T), we denote by Ta the subtree of T rooted in a, and by Ga the subgraph of G
induced by all vertices in bags of Ta, that is, Ga = G[

⋃
b∈V (Ta)

B(b)].

Neighborhood diversity. We say that two (distinct) vertices u, v are of the same neighborhood
type if they share their respective neighborhoods, that is when N(u) \ {v} = N(v) \ {u}.
Let G = (V,E) be a graph. We call a partition of vertices T = {T1, . . . , Tν} a neighborhood
decomposition if, for every i ∈ [ν], all vertices of Ti are of one neighborhood type.

Definition 2.5 (Neighborhood diversity [34]). A graph G = (V,E) has neighborhood
diversity ν (nd(G) = ν) if its unique minimal neighborhood decomposition is of size ν.
Moreover, this decomposition can be computed in linear time.

We call the sets T1, . . . , Tν types. Note that every type induces either a clique or an
independent set in G and two types are either joined by a complete bipartite graph or no
edge between vertices of the two types is present in G. We call a type which is a clique a
clique type and a type which is an independent set an independent type. Thus, we introduce
the notion of a type graph TT (G). The vertices of TT (G) are the types T1, . . . , Tν and two
types Ti, Tj are joined by an edge if Ti and Tj are joined by a complete bipartite graph in G.
If the decomposition T is clear from the context, we omit the subscript T .

Observe that for every graph G = (V,E) we have nd(G) ≤ 2vc(G) + vc. Indeed, we
can construct a decomposition T witnessing this as follows. Let U be a vertex cover
of G with |U | = vc(G). We put singleton {u} to T for every u ∈ U and then we add
sets {v ∈ V \ U | NG(v) = X} to T for every X ⊆ U . It is easy to verify that T is a
neighborhood decomposition of G. Thus, neighborhood diversity is a more general structural
graph parameter than vertex cover, since the class of cliques has neighborhood diversity 1
while unbounded size vertex cover.

2.3. Parameterized Complexity. Let Σ be a finite alphabet. A parameterized language
is a language P ⊆ Σ∗ × N. The associated parameterized problem is then to decide whether
the input (x, k) belongs to P or not; the value k is the parameter. A parameterized language
P belongs to the class FPT (is fixed-parameter tractable) if there is an algorithm deciding
P in f(k) · poly(|x|) time, where f : N → N is a computable function. A parameterized

language P belongs to the class XP if there is an algorithm deciding P in |x|f(k) time for a
computable function f : N→ N. Clearly, FPT is a subclass of XP.

Let P and Q be two parameterized languages. A parameterized reduction from P to Q
is an algorithm that on input (x, k) computes an instance (y, `) in f(k) · poly(|x|) time such
that

• (x, k) ∈ P if and only if (y, `) ∈ Q and
• ` ≤ g(k) for some computable function g : N→ N.

12:10 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

Roughly speaking, a parameterized problem Q is W[1]-hard if there exists a parameterized
from Clique parameterized by the solution size to Q. Under a common assumption
FPT 6= W[1] if a parameterized problem is W[1]-hard, then it is unlikely to be in FPT. For
further detail please refer to e.g. [15].

3. Graphs of Bounded Neighborhood Diversity

For graphs of bounded neighborhood diversity we prove two negative results (Theorems 1.3
and 1.6) and two positive results (Theorems 1.4 and 1.5).

3.1. Theorems 1.3 and 1.6: W[1]-hardness of MSOL and MSOG. We begin with a
definition of an auxiliary problem:

Local Cardinality Constrained Subset (LCC Subset)

Input: Graph G = (V,E) with |V | = n and a function f : V → 2[0,n−1].
Task: Find a set U ⊆ V such that |U(v)| ∈ f(v) for each vertex v ∈ V .

Obviously LCC Subset is equivalent to MSOL with an empty formula ϕ. We call an LCC
Subset instance uniform if, on G with neighborhood decomposition T , the demand function
f can be written as f : T → 2[0,n−1], that is, the vertices of the same type have the same
demand set. We show that already uniform LCC Subset is W[1]-hard by a reduction from
the W[1]-hard k-Multicolored Clique problem [15].

k-Multicolored Clique Parameter: k
Input: k-partite graph G = (V1∪̇ · · · ∪̇Vk, E), where Va is an independent set for
every a ∈ [k].
Task: Find a clique of size k.

We refer to a set Va as to a colorclass of G. We may assume that all of the colorclasses are
of the same size and that the number of edges between any two colorclasses is the same.
This follows from the reduction from k-Clique to k-Multicolored Clique, where we
take k copies of the vertex set of the original graph and connect two vertices in the new
instance if and only if they are in different copies and their pre-images are adjacent (i.e., the
degree of every vertex to any other colorclass is the same as in the original graph).

Our proof is actually a simplified proof of W[1]-hardness for the Target Set Selection
problem [16] for the parameter neighborhood diversity.

Theorem 3.1. LCC Subset is W[1]-hard parameterized by the vertex cover number already
in the case when f(v) = {0} for all v not belonging to the vertex cover.

Proof. Let G = (V1 ∪ · · · ∪ Vk, E) be the instance graph for k-Multicolored Clique. We
naturally split the set of edges E into sets E{a,b} by which we denote the edges between
colorclasses Va and Vb. We denote n the (common) size of colorclasses in G, and we denote
m the number of edges between any two colorclasses. Fix N > n, say N = n2, and distinct
a, b ∈ [k].

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:11

n
Sa

0
1

Incab

Iab

mN

T{a,b}

0

1

Mult{a,b}

{tN | t ∈ [m]}

Figure 2: An overview of the decomposition of a gadget used in the proof of Theorem 3.1.
Numbers inside nodes denote the number of vertices in the independent set rep-
resented by the node. Below each node a description of the respective set of
admissible numbers is shown.

Description of the reduction. We numerate vertices in each color class Va for a ∈ [k] using
numbers in [n], that is, we fix a bijection µa : Va → [n] for each a ∈ [k]. We also numerate
the edges between color classes a and b by numbers in [m]. Let ε{a,b} : E{a,b} → [m] be the
numeration function for distinct a, b ∈ [k]. We set

Iab =
{
µa(v) +N · ε{a,b}(e) | v ∈ e, e ∈ E{a,b}

}
.

We build the graph H using the following groups of vertices (refer to Figure 2):

• an independent set Sa of size n for each color class Va and set f(v) = {0} for every v ∈ Sa,
• an independent set T{a,b} of size mN for each edge set E{a,b}, with f(v) = {0} for every
v ∈ T{a,b},
• a single vertex Mult{a,b} with f(Mult{a,b}) = {tN | t ∈ [m]} for each {a, b} ∈

(
[k]
2

)
, and

• a single vertex Incab with f(Incab) = Iab for each a, b ∈ [k] with a 6= b.

Finally, we add all possible edges between Sa and Incab, between Incab and T{a,b}, and between
T{a,b} and Mult{a,b}, thus forming complete bipartite subgraphs between the respective sets

of vertices. It is straightforward to check that the
(
k
2

)
vertices Mult{a,b} together with k(k−1)

vertices Inc
ab

form a vertex cover of H. It follows that vc (H) =
(
k
2

)
+ k(k − 1). For an

overview of the reduction please refer to Figure 2.
Correctness of the reduction. Suppose there is a clique of size k in G with vertex set
{v1, . . . , vk}. We assume that vi ∈ Vi for all i ∈ [k]. We select µa(va) vertices in the set Sa
and N · ε{a,b}({va, vb}) vertices in the set T{a,b} for all distinct a, b ∈ [k]. It is straightforward
to check that this is a solution respecting the demands in H.

For the opposite direction suppose there is a solution U respecting demands in H. First
note that none of vertices Mult{a,b}, Incab is selected as their neighborhood demands are set
to 0. Denote sa = |U ∩ Sa| and t{a,b} = |T{a,b} ∩ U |. Now observe that since the demand of
vertex Mult{a,b} is fulfilled, there are t{a,b} = tN vertices for some t ∈ [m]. Let eab denote
the edge in E{a,b} with numeration ε{a,b}(eab) = t for each distinct a, b ∈ [k]. Let va denote
the vertex in Va with numeration µa(va) = sa for every a ∈ [k]. We now want to prove that
respecting demands of Incab vertices implies that {va, vb} ∈ E{a,b} for all a, b ∈ [k], that is,
the vertices {va | a ∈ [k]} for a (multicolored) clique in G. Since the demand of vertex Incab
is fulfilled, it follows that the vertex va must be incident to the edge eab. Symmetrically,
since the demand for the vertex Incba is fulfilled, we get that the vertex vb is incident to the
edge eab. Combining all of these together we infer that {v1, . . . , vk} defined in this way form
a clique in the graph G. This concludes the proof.

12:12 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

Note that Theorem 1.6 follows easily from Theorem 3.1, since the LCC Subset problem
is expressed by an empty MSOL

lin formula. Furthermore, we get the following consequence of
the presented proof.

Corollary 3.2. LCC Subset is W[1]-hard parameterized by neighborhood diversity even if

• the instance of LCC Subset is uniform for the given decomposition and
• all of the types in the given decomposition are independent sets.

Proof. Observe that neighborhood diversity of the graph resulting from the construction
presented in the proof of Theorem 3.1 has neighborhood diversity at most

(
k
2

)
+ k(k− 1) +(

k
2

)
+ k. To see this note that we can introduce a type with one vertex for every vertex in

the vertex cover of the constructed graph (recall there are
(
k
2

)
+ k(k − 1) many of these).

Furthermore, all of the vertices in (independent sets) Incab (for distinct fixed a, b ∈ [k])
have the same neighborhood (in the vertex cover) and thus form a single type; which is an
independent set and recall that for all such vertices v we have f(v) = 0. The same holds
for vertices in Mult{a,b} (again for fixed a, b ∈ [k]). This finishes the proof.

As we mentioned in the introduction, our hardness result has consequences for the
hardness of the Multidemmand Set Multicover problem. We now use Corollary 3.2 as
the basis of our reduction.

Proof of Theorem 1.7. Given a uniform instance of LCC Subset on a graph G with
nd(G) = ν with every type being an independent set, let U = [ν], F = {N(v) | ∀v ∈ T (G)}
and let Di = f(i). Now, if there exists an r ∈ [n] such that (U,F , (D1, . . . , Dν), r) is a Yes
instance of Multidemand Set Multicover, then the given LCC Subset instance is
a Yes instance, and otherwise it is a No instance. Consequently, one can test all of the
possible values of r in polynomial time and thus obtain the answer for the graph G.

Having showed the hardness of MSOL parameterized by nd(G), let us now turn our

attention to the proof of Theorem 1.3, i.e., hardness of MSOG parameterized by nd(G).

Proof of Theorem 1.3. Let (G = (V,E), f, k) be an instance of the LCC Subset problem
parameterized by the vertex cover number resulting from Theorem 3.1. Let C ⊆ V be the
vertex cover in G. Note that it follows from the proof of Theorem 3.1 that we may assume
that the independent set V \ C is divided into O(k) groups, where each group shares the
neighborhood in C. Observe further that indeed the graph G is bipartite (i.e., the set C is
also an independent set), in particular, the largest clique subgraph of G is of size 2.

By Theorem 3.1 we know that it is W[1]-hard to find a subset X ⊆ V \ C such that

|X(v)| ∈ f(v) for all v ∈ C. Our goal now is to build an MSOG formula expressing exactly
this.

First we take G and construct a graph G′ by, for each v ∈ C, attaching a K2+η(v) to
N(v), where η : C → [k] is a bijective mapping. We will call the clique K2+η(v) a marker
because it will allow us to recognize exactly the vertices of N(v). Note that markers are
the only cliques present in G′ of size at least 3. Note further that by this we have added
O(k) cliques of size O(k) and thus the resulting graph has vertex cover of size O(k2).

Let us describe some auxiliary formulae which we then use to define the desired for-
mula ϕ. We reserve X for the set that will represent the set X from the LCC Subset
problem.

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:13

• Z is a clique:

clique(Z) := (∀x, y ∈ Z)(x 6= y =⇒ xy ∈ E)

• u and v are of the same neighborhood type:

same(u, v) := (∀w ∈ V)(w = u ∨ w = v ∨ (wu ∈ E ⇐⇒ wv ∈ E))

• Z is a type:

type(Z) := (Z 6= ∅) ∧ (∀u, v ∈ Z)(same(u, v)) ∧ (∀u ∈ Z, v /∈ Z)(¬same(u, v))

• Z is η(v)-th marker:

markerv(Z) := (|Z| = 2 + η(v)) ∧ clique(Z) ∧ type(Z)

• Z is N(v):

neighv(Z) := type(Z) ∧ (∃Q ⊆ V)(markerv(Q) ∧ (∀u ∈ Z,w ∈ Q)(uw ∈ E))

• Z is exactly Xv:

sel-neighv(Z,X) := (∃Zv)(neighv(Zv) ∧ Z = Zv ∩X)

Now ϕ(X, (Xv)v∈C) :=
∧
v∈C
(
sel-neighv(Xv, X) ∧ |Xv| ∈ f(v)

)
.

3.2. Theorem 1.4: FPT algorithm for MSOGL
lin on neighborhood diversity. Essen-

tially, we are modifying the algorithm of Ganian and Obdržálek [23] for MSOG
lin model

checking so that it can deal with the additional constraints introduced by MSOL
lin. We

use integer linear programming (ILP). By the result of Lenstra [36] ILP can be solved in
FPT-time parameterized by the number of integral variables.

3.2.1. Signatures and Shapes. Before we move on to proving Theorem 1.4 we first need to
introduce some notation.

Definition 3.3. Let ϕ be an MSOGL
lin formula with free set variables X1, . . . , X`, let G =

(V,E) be a graph with nd(G) = ν and types T1, . . . , Tν , and let µ : {X1, . . . , X`} → 2V be a

variable assignment. The signature of µ is the mapping Sµ : [ν]× 2[`] → N defined by

Sµ(j, I) =

∣∣∣∣∣⋂
i∈I

µ(Xi) ∩ Tj

∣∣∣∣∣
for j ∈ [ν] and I ⊆ [`].

Clearly, if we have two variable assignments µ and µ′ with the same signature, then
G,µ |= ϕ if and only if G,µ′ |= ϕ.

However, for MSO formulae and graphs of bounded neighborhood diversity, much more
is true. Informally speaking, the formula cannot distinguish between two cardinalities if both
of them are large. This is formally stated in the next lemma, which is a direct consequence
of [34, Lemma 5]:

Lemma 3.4. Let ϕ be an MSO formula with free set variables X1, . . . , X` that has qS set
quantifiers and qe element quantifiers. Let G be a graph with nd(G) = ν and let t = 2qS · qe.
Suppose that µ and µ′ are two variable assignments such that for every I ⊆ [`], j ∈ [ν] we
have either

12:14 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

• Sµ(j, I) = Sµ′(j, I), or
• both Sµ(j, I), Sµ′(j, I) > t.

Then G,µ |= ϕ if and only if G,µ′ |= ϕ.

The last lemma leads to the following definition.

Definition 3.5 (Shape). Let ϕ, G, and t be as before. A shape of a variable assignment

µ : {X1, . . . , X`} → 2V is the mapping shµ : [ν]× 2[`] → [0, t] ∪ {↑} defined by

shµ(j, I) =

{
Sµ(j, I) if Sµ(j, I) ≤ t
↑ if Sµ(j, I) > t

.

Since t depends only on the formula ϕ, the total number of shapes can be bounded by
some function of ||ϕ|| and nd(G). Note that there are mappings from [ν]× 2[`] to [0, t]∪ {↑}
that do not correspond to a shape of any variable assignment µ for a particular graph G.
For example, if sh(j, I) = ↑ for some j and I but |Tj | < t, clearly there is no assignment of
such a shape sh.

It is worth noting that Lemma 3.4 cannot be used directly, as the global linear constraints
allow us to distinguish small differences in cardinalities, even if the cardinalities are large;
consider for example the constraint [|X1| = |X2|+ 1]. We use the approach outlined in
Subsection 2.1, Pre-evaluations. This approach relies on Definitions 2.1 and 2.2. We simply
guess all possible outcomes of the (global) cardinality constraints (the number of such

outcomes is clearly bounded by 2||ϕ||) and later ensure that our assignment obeys those
constraints by an Integer Linear Program.

Definition 3.6. A shape sh is admissible with respect to a pre-evaluation β if for any
variable assignment µ of the shape sh we have G,µ |= β(ϕ).

3.2.2. Unifying Local Linear Constraints. Here we show how to change the local linear
constraints and the neighborhood diversity decomposition in a such way that

• the new instance is equivalent to the former one,
• the size of the new decomposition is bounded in terms of nd(G) and ‖ϕ‖, and
• vertices of the same type in the newly obtained neighborhood diversity decompostion also

have exactly the same local linear constraints.

This, in turn, allows us to prove the main theorem in a much simpler setting.

Single Local Cardinality Constraint. We first show how to alter the given decompostion with
respect to one local cardinality constraint α which is the core of the represented reduction.
Then, we show how this can be used to alter the neighborhood diversity decomposition when
more local cardinality constraints (α1, . . . , α`) are given.

Let G be a graph and T its neighborhood diversity decomposition. A type T ∈ T is
said to be nonuniform with respect to local linear cardinality constraint α if there exist
vertices u, v ∈ T with α(u) 6= α(v), otherwise T is said to be uniform. As already mentioned,
the purpose of this section is to alter the given instance into an equivalent uniform one.
In order to be able to do so we have to change the neighborhood diversity decomposition
(i.e., the type graph). A neighborhood diversity decomposition T̂ is a refinement of T if for

every T̂ ∈ T̂ there exists a type T ∈ T such that T̂ ⊆ T . We define να(T) as the number of
nonuniform types in T with respect to α.

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:15

Proposition 3.7. Let G = (V,E) be a graph and let T be a neighborhood diversity decom-
position of G. For every T ∈ T and for every X ⊆ V there exists a nonnegative integer z
such that for every vertex w ∈ T
• it holds that |X(w)| = z if T is an independent set and
• it holds that |X(w)| ∈ {z, z + 1} if T is a clique.

Proof. First assume that T is an independent set, then N(v) = N(w) for all v, w ∈ T .
For the second case assume that T is a clique and let M = N(v) \ {w}. Now N(v) =

M ∪ {w} and N(w) = M ∪ {v} and, as the number |M ∩X| contributes to both X(v) and
X(w),

∣∣|X(v)| − |X(w)|
∣∣ ≤ 1 must hold.

Now, we show how to refine the neighborhood diversity decomposition with respect to
one local linear cardinality constraint.

Lemma 3.8. Given a graph G = (V,E), neighborhood diversity decomposition T of G,
and local linear cardinality constraint α. Let T ∈ T be a nonuniform type. There exists a
partition T ′ of T and local linear cardinality constraint α′ such that the following holds

(1) |T ′| ≤ 4,
(2) if T ′ ∈ T \{T} is a uniform type with respect to α, then T ′ remains uniform with respect

to α′,
(3) να′((T \ {T}) ∪ T ′) < να(T), and
(4) for each X ⊆ V , X satisfies α if and only if X satisfies α′.

Proof. Let us first argue about an independent type T . In this case it suffices to set α′(u) =⋂
v∈T α(v) for each u ∈ T . Now X ⊆ V satisfies α if and only if X satisfies α′ as the value
|N(T)∩X| has to be the same for all vertices of T and thus has to be in α′(v) for v ∈ T by
Proposition 3.7.

Let T be a clique type of T . We define

l = max
v∈T

minα(v) and (3.1)

u = min
v∈T

maxα(v) . (3.2)

If u ≤ l − 2, then α cannot be satisfied by Proposition 3.7. Define the new local linear
constraint α′(v) = α(v) ∩ [l − 1, u + 1] for every v ∈ T and define α′(v) = α(v) for every
v ∈ V \ T . We get that:

• α′(v) ⊆ [l− 1, u + 1] for each v ∈ T and
• [l, u] ⊆ α′(v) for each v ∈ T .

This yields at most four possibilities for α′(v) for v ∈ T ; namely α′(v) is one of the sets
[l−1, u], [l−1, u+ 1], [l, u], or [l, u+ 1]. We can refine T into at most 4 subtypes such that
all the vertices of a subtype of T have the same α′(v). As all newly introduced types are
uniform with respect to α′, we have replaced a nonuniform type T with at most 4 uniform
types (while we have kept all other types untouched). We have proven (1)–(3); in order to
prove (4) we use the following claim.

Clearly, all subtypes of T are uniform with respect to α′ and for each X ⊆ V it holds
that if X satisfies α′, then X satisfies α, since α′(v) ⊆ α(v) for every vertex v ∈ V . Thus,
it remains to show the converse.

Claim 3.9. Let p ∈ [n] and let l be defined as in (3.1). If there exists v ∈ T such that the
following conditions are fulfilled

12:16 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

• p ∈ α(v) and
• p ≤ l− 2,

then for each X satisfying α it holds that p 6= |X(v)|.

Proof of Claim 3.9. Let z be as in Proposition 3.7, that is, each w ∈ T must have z or
z + 1 in α(w). Suppose for a contradiction that |X(v)| = p and let s be a vertex with
α(s) ⊆ {l, . . .} (such s exists from the definition of l). As p ≤ l − 2, it follows that X
cannot satisfy α(s). There are two possible options {p − 1, p} and {p, p + 1} for the value
of z from Proposition 3.7. Observe that {p− 1, p, p+ 1} ∩α(s) = ∅. This finishes the proof
of the claim.

Let X ⊆ V satisfy α; otherwise there is nothing to prove. By the above claim and its
symmetric version for p ≥ u + 2 it follows that l− 1 ≤ X(v) ≤ u + 1. By the definition of
α′ it follows that X satisfies α′.

Local Cardinality Constraints. We now apply the above lemma to all local cardinality
constraints (α1, . . . , α`) in the given instance.

Lemma 3.10. Given a graph G = (V,E) with nd(G) = ν and with local linear cardinality
constraints (α1, . . . , α`), there exists a neighborhood decomposition T of G of size at most
ν4` and local linear cardinality constraints (α′1, . . . , α

′
`) such that:

• each type T ∈ T is uniform with respect to αi for all i ∈ [`], and,
• for each (X1, . . . , X`) ⊆ V `, Xi satisfies αi for all i ∈ [`] if and only if Xi satisfies α′i for

all i ∈ [`].

Proof. The proof goes by repeatedly applying Lemma 3.8. We start with the neighborhood
decomposition T̂ of size ν that is guaranteed by nd(G) = ν, and with the local linear
cardinality constraints (α1, . . . , α`).

First let i = 1, and as long as there is a type T ∈ T̂ that is nonuniform with respect
to α1 we do the following. We apply Lemma 3.8 to the type T , the local linear cardinality
constraint α′1 and decomposition T ′ resulting from the previous application of the lemma

(using α1 and T̂ in the first iteration). Note that in such an iteration we leave all of the
other local cardinality constraints (α2, . . . , α`) intact. Clearly, after we are done we have a
neighborhood decomposition T ′ of size at most 4 · ν and local linear cardinality constraints
(α′1, α2, . . . , α` such that every type T ∈ T ′ is uniform with respect to α′1.

Then, continuing with i ∈ [2, `], we do the same, finally resulting in a decomposition
T of size ν4` and local linear cardinality constraints (α′1, . . . , α

′
`). Note that the only side

effect of an invocation of Lemma 3.8 is a refinement of some type T and observe that if T is
uniform with respect to α′j , then so is any of its subtypes in the refinement. Consequently,

every type T ∈ T is uniform with respect to α′i for all i ∈ [`].

Uniform Instance. Let G be a graph and let (α1, . . . , α`) be local cardinality constraints.
For a given neighborhood diversity decomposition T we say that (α1, . . . , α`) are uniform if
ναi(T) = 0 for all T ∈ T and all i ∈ [`].

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:17

3.2.3. Uniform Instance Theorem.

Theorem 3.11. There exists an algorithm that, for given an MSOGL
lin formula ϕ with free

set variables X1, . . . , X`, graph G = (V,E) with neighborhood diversity decomposition T ,
and uniform local linear constraints (α1, . . . , α`) decides whether there exists an assignment
µ such that G,µ |= ϕ and |µ(Xi) ∩ N(v)| ∈ αi(v) for every v ∈ V and every i ∈ [`]. The

algorithm terminates in time f(‖ϕ‖, ν)nO(1) for some computable function f . Moreover, if
such an assignment exists, the algorithm outputs one.

Proof. Let ν be the size of T .
The algorithm works as follows. For every pre-evaluation function β and every mapping

sh : [ν]×2[`] → [0, t]∪{↑}, we test whether sh is admissible. This can be done by picking an
arbitrary variable assignment µ of shape sh (if there exists such an assignment) and testing
whether G,µ |= β(ϕ) by an FPT model checking algorithm for MSO formulae [34].

If the shape sh is admissible with respect to β, we need to find a variable assignment
µ such that

• µ complies with β,
• µ has shape sh, and
• µ satisfies the local linear constraints.

We find such an assignment µ by the following integer linear program (which is infeasible if
µ does not exist). We begin the description of the integer linear program with a description
of all its variables:

• for every I ⊆ [`], j ∈ [ν], we introduce an integer variable xjI (these correspond to Sµ(j, I)
of the variable assignment µ we are about to find),

• for every i ∈ [`], j ∈ [ν], we introduce an auxiliary variable yji corresponding to |µ(Xi)∩Tj |,
and
• for every i ∈ [`], we add an auxiliary variable zi corresponding to |µ(Xi)| (technically

variables yji and zi are redundant as they are projections of the x variables, but they will
simplify the presentation).

To ensure that µ has the required properties, we add the following constraints:∑
I⊆[`]

xjI = |Tj | for every j ∈ [ν] (0)

yji =
∑

{i}⊆I⊆[`]

xjI for every j ∈ [ν] and every i ∈ [`] (a1)

zi =

ν∑
j=1

yji for every i ∈ [`] (a2)

xjI = sh(I, j) for every j ∈ [ν], I ⊆ [`] such that sh(I, j) 6= ↑ (sh1)

xjI > t for every j ∈ [ν], I ⊆ [`] such that sh(I, j) = ↑ (sh2)

We note that if the variables x are integral, then all auxiliary variables are integral as well
(as we obtain them only by summing up integers). Thus, these variables can be real and
thus do not contribute to the total number of integral variables (i.e., only the x variables

do). The constraints (0) ensure that variables xjI encode a variable assignment µ(x) for

12:18 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

the graph G. This is as follows: There are exactly xjI vertices form type Tj in the set⋂
i∈I µ(Xi). Now, it is not hard to see that constraints (0) ensure that every vertex of type

Tj is placed (possibly to none of Xi’s). The constraints (a1) and (a2) set auxiliary variables

yji and zi to the desired values. The constraints (sh1) and (sh2) guarantee that µ(x) has
the shape sh.

We for convenience denote the i-th linear cardinality constraint for type Tj by αi,j and

furthermore we set lbij := min{αi,j(v) | v ∈ Tj} and ubij := max{αi,j(v) | v ∈ Tj}.
If Tj is an independent type, we need to ensure that for every v ∈ Tj we have |µ(Xi) ∩

N(v)| ∈ αi,j(v). It is easy to see that the quantity |µ(Xi) ∩ N(v)| is the same for every
v ∈ Tj and it can be expressed as ∑

j′:{j′,j}∈E(TG)

∣∣µ(Xi) ∩ Tj′
∣∣ .

By the definition of auxiliary variables yjI , we have that |µ(Xi) ∩ Tj′ | = yj
′

i , so the local
linear condition for the variable Xi can be rewritten as

lbij ≤
∑

j′:{j′,j}∈E(TG)

yji ≤ ubij . (lli)

If Tj is a clique type, we have to be slightly more careful, since the quantity |µ(Xi) ∩
N(v)| depends on whether v is in µ(Xi) or not. The set N(v) does not include v itself, so if
|µ(Xi)∩N(v′)| = |µ(Xi)∩N(v)|+1 for every v ∈ Tj ∩µ(Xi), then v′ ∈ Tj \µ(Xi). Similarly
as before, we have equations

|µ(Xi) ∩N(v)| =

 ∑
j′:{j′,j}∈E(TG)

∣∣µ(Xi) ∩ Tj′
∣∣− 1

for v ∈ Tj ∩ µ(Xi), and

|µ(Xi) ∩N(v)| =
∑

j′:{j′,j}∈E(TG)

∣∣µ(Xi) ∩ Tj′
∣∣

for v ∈ Tj \ µ(Xi).
This means that we need to add the constraint

lbij ≤
∑

j′:{j′,j}∈E(TG)

yj
′

i ≤ ubij (llc1)

if |µ(Xi) ∩ Tj | ≥ 1 and add the constraint

lbij ≤
∑

j′:{j′,j}∈E(TG)

yj
′

i − 1 ≤ ubij (llc2)

if |Tj \ µ(Xi)| ≥ 1.
Fortunately, we can deduce whether the conditions |µ(Xi)∩ Tj | ≥ 1 or |Tj \ µ(Xi)| ≥ 1

hold already from the shape sh. If we have∑
I : I3i

sh(I, j) > 0 (∀i ∈ [`]) , (cllc1)

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:19

then µ(Xi) necessarily intersect Tj , whereas if we have∑
I : I 63i

sh(I, j) > 0 (∀i ∈ [`]) , (cllc2)

then there exists vertex in Tj \ µ(Xi).
This means that the local linear constraints for type Tj and variable Xi can be enforced

by adding constraint (llc1) if (cllc1) holds, and by adding constraint (llc2) if (cllc2) holds.
It remains to add all of the constraints arising from the pre-evaluation β. However,

this is not a problem, since we know that every such condition is linear and as such can be
easily added to the so far constructed MILP. Note that any constraint pre-evaluated in β

is of the form
∑`

i=1 ci · |Xi| ≤ b. We can assume that all constants ci are integers, since
otherwise we can multiply all of them by greatest common divisor. Furthermore, observe
that b can be assumed to be integral as well, since the left-hand side is now integral and
thus upper-bounding it by b is the same as upper-bounding it by bbc. Now, based on β we

either add the constraint
∑`

i=1 ci · |Xi| ≤ b or the constraint
∑`

i=1 ci · |Xi| ≥ b + 1 to the
above constructed MILP.

Let us turn our attention to the analysis of the running time of the algorithm. There
are at most

• (t+ 2)ν different shapes and

• 2||ϕ|| pre-evaluation functions.

Since t depends only on the number of quantifiers in the formula ϕ, both numbers can be
bounded by a function of ||ϕ|| and ν. For each such combination of a shape and a pre-
evaluation, we construct an ILP with ν2` integer variables, so this ILP can be solved in
time FPT time with respect to ||ϕ|| and ν by the aforementioned result of Lenstra [36].

Proof of Theorem 1.4. The theorem is a simple consequence of Theorem 3.11 and Lemma 3.10.

3.3. Theorem 1.5: XP algorithm for MSOGL. The main idea behind the proof of The-
orem 1.5 is as follows. We use the advantage of XP time to guess all sizes bTI of the sets
T ∩

⋂
i∈I µ(Xi) for a possible assignment µ, for every type T ∈ T , and for every I ⊆ [`].

Clearly, the number of possible assignments of bTI can be upper-bounded by n|T |2
`
. This

immediately allows us to verify global cardinality constraints and in particular ϕ. Note that
at this point this is possible, since the vertices in T are equivalent with respect to MSO logic
and thus the MSO-model-checking algorithm of Lampis [35] can be used to verify ϕ on the
(now labeled) graph G. Here the labeling represents the assignment µ respecting the guessed
values bTI . If ϕ is satisfied, we proceed in a similar way as in the proof of Theorem 1.4.
Now, we have to check whether there exists an assignment µ that obeys all local cardinality
constraints for each vertex in G. Observe that this can be done locally, as the only thing that
matters in the neighboring types is the number of vertices in the sets X1, . . . , X` (especially
it is independent of the actually selected vertices). This however, results in a computation
of lower- and upper-bounds on bTI in a similar but simpler way to Lemma 3.8. Finally, if all
bTI fulfill both lower- and upper-bounds, we can use these values to computer an assignment
µ that on the one hand satisfies ϕ (and thus the global constraints) and on the other hand
satisfies all the local cardinality constraints (see Lemma 3.12). If such bTI ’s do not exist it is
impossible to simultaneously satisfy the local and the global cardinality constraints.

12:20 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

3.3.1. Extended Numerical Assignments. Fix a formula ϕ with ` free variables X1, . . . , X`.
Let G = (V,E) be a graph and let T be its neighborhood diversity decomposition. The

extended numerical assignment is a function σ : 2{X1,...,X`} × T → [|V (G)|]. We say that σ
is valid for G and T if ∑

I∈2{X1,...,X`}

σ(I, T) ≤ |T |

for each type T ∈ T . The crucial thing is that the extended numerical assignment plays
the same role for the purpose of a design of the XP algorithm as pre-evaluations for the
FPT algorithm presented in Section 3.2. We formalize this by showing that knowing σ it
is possible to decide whether ϕ holds for G or not. Before we do so, we have to introduce
one more formalism. We say that an assignment µ : {X1, . . . , X`} → 2V is a realisation of a
valid extended numerical assignment σ if∣∣∣∣∣

(⋂
i∈I

µ(Xi)

)
∩ T

∣∣∣∣∣ = σ(I, T)

for every I ⊆ {X1, . . . , X`} and every type T ∈ T .

Lemma 3.12. Fix a formula ϕ with ` free variables X1, . . . , X`. Let G be a graph, let T be
its neighborhood diversity decomposition, and let σ be a valid extended numerical assignment.
Then either each realization µ of σ satisfies ϕ or no realization of σ satisfies ϕ.

Proof. Let assignments µ and µ′ be realizations of σ. We will show that G,µ |= ϕ if and
only if G,µ′ |= ϕ. This is not hard to see. Note that the global cardinality constraints
R1, . . . , Rc contained in ϕ depend solely on the number of vertices contained in some Xi’s
and some types of T which is, however, prescribed by σ and thus both µ, µ′ have to agree on
this. Now, it is possible to evaluate the validity of all of the constraints R1, . . . , Rc and (as
in the case of pre-evaluations) replace them by the constants true or false in ϕ yielding a
simplified formula ϕ̃. The lemma now follows from the fact that ϕ̃ is an MSO formula and
both µ and µ′ yield the same labeled graph.

By this we have shown that it makes sense to write G, σ |= ϕ. Observe that there are at

most |V (G)||T |·2` (valid) extended numerical assignments for G.

3.3.2. Satisfying Local Cardinality Constraints. Fix a valid extended numerical assignment
σ with G, σ |= ϕ. Note that in such a case there is at least one realisation of σ. Now, we
would like to resolve whether among all of the possible realizations of σ there is at least one
realization that obeys the local cardinality constraints (α1, . . . , α`).

Fix a type T ∈ T and define the function s : {1, . . . , `} → N by

s(i) =

∣∣∣∣∣∣
⋃

S∈T :{S,T}∈E(TG)

(S ∩ µ(Xi))

∣∣∣∣∣∣ .
Recall that if T is a clique in G, it has a loop in the corresponding type graph TG. Now,
following Proposition 3.7 we say that (α1, . . . , α`) are possibly satisfied by σ if

• s(i) ∈ αi(v) for all i ∈ [`] and v ∈ T , where T is an independent set in G and
• {s(i)− 1, s(i)} ∩ αi(v) 6= ∅ for all i ∈ [`] and v ∈ T , where T is a clique in G.

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:21

Observe that if T is an independent set in G and (α1, . . . , α`) are possibly satisfied by σ, then
every assignment µ realizing σ fulfills (α1, . . . , α`) for every vertex in T . This is, however,
not true when T is a clique in G. In this case we let t+i be the number of vertices in T

with {s(i) − 1, s(i)} ∩ αi(v) = {s(i) − 1}, we let t−i be the number of vertices in T with

{s(i)−1, s(i)}∩αi(v) = {s(i)}, and we let t±i be |T |− (t+i + t−i). Note that t+i is the number

of vertices in T that must belong to Xi, t
−
i is the number of vertices in T that cannot belong

to Xi, and t±i is the number of vertices in T that may or may not belong to Xi (again this
directly follows from Proposition 3.7). Thus, we arrive at the following claim.

Lemma 3.13. If (α1, . . . , α`) are possibly satisfied by σ and for each type T ∈ T forming a
clique in G we have

t+i ≤ s(i) ≤ t
+
i + t±i ,

then there is an assignment µ realizing σ and fulfilling all of (α1, . . . , α`).

Proof of Theorem 1.5. Let G be a graph with n = |V (G)| and neigborhood diversity ν.

There are nν·2
`

possible (valid) extended numerical assignments for G. We loop through all
of them and for each such σ we

(1) check if G, σ |= ϕ,
(2) check if σ possibly satisfies (α1, . . . , α`), and
(3) verify the conditions given in Lemma 3.13.

If all three of the above conditions are satisfied, we accept σ and say Yes, otherwise we
reject σ and proceed to next σ. If there is no σ left, we say No. It is not hard to see that

the above procedure takes O(n · nν·2`) time and can be simply extended so that it actually
returns the sought assignment µ in the same time.

4. Theorem 1.1: XP algorithm for MSOGL on bounded treewidth

We believe that the merit of Theorem 1.1 lies not only in being a very general tractability
result, but also in showcasing a simplified way to prove a metatheorem extending MSO.
Our main tool is the constraint satisfaction problem (CSP). The key technical result of this
section is Theorem 4.6, which relates MSO and CSP on graphs of bounded treewidth. Let
us shortly describe it.

Notice that in the MSOGL model checking problem, we wish to find a satisfying assignment
of some formula ϕ which satisfies further constraints. Simply put, Theorem 4.6 says that
it is possible to restrict the set of satisfying assignments of a formula ϕ ∈ MSO2 with
CSP constraints under the condition that these additional constraints are structured along
the tree decomposition of G. This allows the proof of Theorem 1.1 to simply be a CSP
formulation satisfying this property.

We believe that the key advantage of our approach, when compared with prior work, is
that it is declarative: it only states what a solution looks like, but does not describe how it
is computed. This makes the proof cleaner, and possible extensions easier.

We consider a natural optimization version of MSOGL:

Weighted MSOGL

Input: An MSOGL model checking instance, weights w1, . . . ,w` ∈ Zn.
Task: Find an assignment X1, . . . , X` satisfying the MSOGL model checking instance

and minimizing
∑`

j=1

∑
v∈Xj

wjv.

12:22 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

4.1. CSP, MSO and treewidth.

Definition 4.1 (CSP). An instance I = (V,D,H,S) of CSP consists of
• a set of variables zv, one for each v ∈ V ; without loss of generality we assume that
V = [|V |],
• a set D of finite domains Dv ⊆ Z, one for each v ∈ V ,
• a set of hard constraints H ⊆ {CU | U ⊆ V } where each hard constraint CU ∈ H with a

scope U = {i1, . . . , ik} and i1 < · · · < ik, is a |U |-ary relation CU ⊆ Di1 × · · · ×Dik ,
• a set of weighted soft constraints S ⊆ {wU | U ⊆ V } where each wU ∈ S with a scope
U = {i1, . . . , ik} and i1 < · · · < ik is a function wU : Di1 × · · · ×Dik → R.

For a vector z = (z1, . . . , z|V |) and a set U = {i1, . . . , ik} ⊆ V with i1 < · · · < ik, we define

the projection of z on U as z|U = (zi1 , . . . , zik). A vector z ∈ Z|V | satisfies the hard

constraint CU ∈ H if and only if z|U ∈ CU . We say that a vector z? = (z?1 , . . . , z
?
|V |) is

a feasible assignment for I if z? ∈ D1 × · · · ×D|V | and z? satisfies every hard constraint
C ∈ H, and write Feas(I) = {z? | z? is a feasible assignment for I}. The weight of z? is
w(z?) =

∑
wU∈S wU (z?|U). To solve a CSP instance I means to find a feasible assignment z

which minimizes the weight w(z∗).
We denote by DI the maximum size of all domains, that is, DI = maxu∈V |Du|, and

we omit the subscript I if the instance is clear from the context. We denote by ‖D‖,
‖H‖ and ‖S‖ the length of D, H and S, respectively, and define it as ‖D‖ =

∑
v∈V |Dv|,

‖H‖ =
∑

CU∈H |CU | and ‖S‖ =
∑

wU
|wU |; here |wU | denotes the size of the subset of

Di1 × · · · ×Dik for which the function wU is nonzero.

Definition 4.2 (Constraint graph, Treewidth of CSP). For a CSP instance I = (V,D,H,S)
we define the constraint graph G(I) of I as G = (V,E) where

E = {{u, v} | (∃CU ∈ H) ∨ (∃wU ∈ S) s.t. {u, v} ⊆ U, u 6= v} .
The treewidth of a CSP instance I, tw(I), is defined as tw(G(I)). When we talk about G(I)
we use the terms “variable” and “vertex” interchangeably.

Freuder [20] proved that CSPs of bounded treewidth can be solved quickly. We use a
natural weighted version of this result.

Proposition 4.3 ([20]). For a CSP instance I of treewidth τ and maximum domain size
D, a minimum weight solution can be found in time O(Dτ |V |+ ‖H‖+ ‖S‖).

Modeling after the terminology regarding extended formulations of polytopes [9], we
introduce the notion of a CSP extension.

Definition 4.4 (CSP extension). Let I = (VI ,DI ,HI ,SI) be a CSP instance. We say
that J = (VJ ,DJ ,HJ ,SJ) is an extension of I (or that J extends I) if VI ⊆ VJ and
Feas(I) = {z?|VI | z? ∈ Feas(J)}.

By Proposition 4.3, we can solve CSP instances of small treewidth efficiently. Our
motivation for introducing CSP extensions is that we are able to formulate a CSP instance I
expressing what we need, but having large treewidth. However, if an extension J of I exists
with small treewidth, solving J instead suffices.

Let ϕ be an MSO2 formula with ` free set variables and let G a σ2-structure with a
universe of size n. We say that a binary vector y ∈ {0, 1}n` satisfies ϕ (G,y |= ϕ) if it is
the characteristic vector of a satisfying assignment µ, that is, if v ∈ µ(Xi) ⇔ yiv = 1 and
G,µ |= ϕ. For a vector s, let the support of s be supp(s) = {i | si 6= 0}, that is, the set of

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:23

its nonzero indices. The following definition characterizes sets which are structured along a
given tree decomposition of a graph. The subsequent theorem then shows that, provided a
CSP instance whose constraints are structured in this way along a tree decomposition of G,
there exists a compact and tree-structured CSP extension.

Definition 4.5 (Local scope property). Let `,m ∈ N, G be a σ2-structure, (T,B) be a
nice tree decomposition of G, and S be a set of vectors of elements indexed by U :=
(V (G)× [`]) ∪ (V (T)× [m]). We say that S has the local scope property if

∀s ∈ S ∃a ∈ V (T) : supp(s) ⊆
(
{(v, i) | v ∈ B(a), i ∈ [`]} ∪

{(b, j) | b ∈ N↓T (a), j ∈ [m]}
)
.

We extend the definition to a set S containing not only vectors but also mappings indexed in
the same way, where for U ′ ⊆ U and a mapping wU ′ : ZU ′ → R, we define supp(wU ′) = U ′.

The heart of our proof of Theorem 1.1 is the following theorem.

Theorem 4.6. Let I = (V,D,H,S) be a CSP instance, G a σ2-structure, ϕ an MSO1

formula with ` free variables, (T,B) a nice tree decomposition of G of width τ , an integer
k ∈ N, and a set of hard constraints H′ so that V and H satisfy

V = {yiv | v ∈ V (G), i ∈ [`]} ∪ {xja | a ∈ V (T), j ∈ [k]} and H = {y | G,y |= ϕ} ∪ H′.
If H′ ∪ S have the local scope property, then there is a computable function f and an

algorithm computing in time f(‖ϕ‖, τ) · |V |+‖H′+S‖) a CSP instance J = (VJ ,DJ ,HJ ,SJ)
which extends I, and,

• tw(J) ≤ f(||ϕ||, τ) + 2k,
• ‖HJ‖+ ‖SJ‖ ≤ f(||ϕ||, τ) · |V |+ (‖H′‖+ ‖S‖),
• DJ = DI .

Before giving the proof, we will show how Theorem 4.6 implies Theorem 1.1.

4.2. CSP instance construction.

Proof of Theorem 1.1. As before, we first note that there are at most 2||ϕ|| different pre-
evaluations β(ϕ) of ϕ, so we can try each and choose the result with minimum weight. Let
a pre-evaluation β(ϕ) be fixed from now on.

Let (T,B) be a nice tree decomposition of G. We will now construct a CSP instance I
satisfying the conditions of Theorem 4.6, which will give us its extension J with properties
suitable for applying Freuder’s algorithm (Proposition 4.3).

Let yiv be the variables as described above in Theorem 4.6; we use the constraint
G,y |= β(ϕ) to enforce that each feasible solution complies with the pre-evaluation β(ϕ).
Now we will introduce additional CSP variables and constraints in two ways to assure that
the local and global cardinality constraints are satisfied. Observe that we introduce the
additional CSP variables and constraints in such a way that they have the local scope
property (Definition 4.5), that is, their scopes will always be limited to the neighborhood
of some node a ∈ V (T).

12:24 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

Global cardinality constraints. In addition to the original y variables, we introduce, for each

node a ∈ T and each j ∈ [`], a variable sja with domain [n]. We refer to the set of these

variables as to s-variables. The meaning of this variable is sja = |Xj ∩ V (Ga)|. Thus, in the

root node r, sjr is exactly |Xj |. To enforce the desired meaning of the variables s, we add
the following hard constraints:

sja = 0 ∀ leaves a

sja = sjb + yjv ∀a = b ∗ (v)

sja = sjb ∀a = b † (v)

sja = sjb + sjb′ −
∑

v∈B(a)

yjv ∀a = Λ(b, b′)

To enforce the cardinality constraints themselves, we add:

(s1r , . . . , s
`
r) ∈ R ∀R : β(R) = true

(s1r , . . . , s
`
r) ∈ ([n]` \R) ∀R : β(R) = false

Local cardinality constraints. For every node a ∈ V (T), every j ∈ [`] and every vertex

v ∈ B(a), introduce a variable λvja with domain [n], with the meaning λvja = |NGa(v)∩Xj |.
We refer to these as to λ-variables. Their meaning is enforced by setting:

λvja =
∑

u∈B(a):u6=v
uv∈E

yju ∀a = b ∗ (v)

λuja = λujb + yjv ∀a = b ∗ (v), u ∈ B(a), uv ∈ E

λvja = λvjb ∀a = b † (u), u 6= v, v ∈ B(a)

λvja = λvjb + λvjb′ −
∑

u∈B(a):u6=v
uv∈E

yju ∀a = Λ(b, b′)

Now the local constraints themselves are enforced by setting:

λvjtop(v) ∈ αj(v) ∀v ∈ V, j ∈ [`] .

Objective function. In order to express the objective function we add soft constraints S =

{w{yjv} | v ∈ V, j ∈ [`]} where w{yjv}(y
j
v) = wjv if yjv = 1 and is 0 otherwise.

In order to apply Theorem 4.6, let us determine the parameters of the CSP instance
I we have constructed, namely the number of extra variables per node k, the maximum
domain size DI , and the lengths of the additional constraints ‖H′‖ and ‖S‖.

We have introduced ` s-variables per node, and `τ λ-variables per node. Thus, k =
(τ + 1)`. Since each s- and λ-variable corresponds to a size of some vertex subset, its value
is upper bounded by n, and thus DI = n. Let

N =

c∑
j=1

|RGj |+
∑̀
j=1

∑
v∈V (G)

|αj(v)|

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:25

be the input length of the global and local cardinality constraints.
Let H′ be the set of all CSP constraints defined above to enforce the global and local

constraints of the MSOGL model checking instance. Then, Theorem 4.6 implies that we can
compute a CSP instance J which is an extension of I and has

• tw(J) ≤ f(||ϕ||, τ)+2k ≤ f(||ϕ||, τ)+(τ+1)` ≤ f ′(||ϕ||, τ) for some computable function
f ′,
• ‖HJ‖+ ‖SJ‖ ≤ f(||ϕ||, τ) · |V |+ (‖H′‖+ ‖S‖) ≤ f(||ϕ||, τ) · n+N , and
• DJ = DI = n.

Finally, applying Proposition 4.3 to J solves it in time nf
′(||ϕ||,τ)+N , finishing the proof

of Theorem 1.1.

Conditional cardinality constraints. As Szeider [41] points out, it is easy to extend his

XP result for MSOL in such a way that the local cardinality constraint |X(v)| ∈ α(v) is
conditioned on the fact that v ∈ X. Observe that our approach can be extended in such a
way as well by enforcing

yjv = 1 =⇒ λvjtop(v) ∈ αj(v) ∀v ∈ V, j ∈ [`] .

(Formally, the above is a binary relation of the variables yjv and λvjtop(v) defined as R =

{(0, i) | i ∈ [n]} ∪ {(1, i) | i ∈ αj(v)}.) Moreover, in our setting with multiple set variables,
we can even condition on an arbitrary predicate ψ(v,X1, . . . , Xm) describing how vertex v
relates to the set variables.

4.3. Applications (Corollary 1.2). Let us briefly sketch some consequences of Theo-
rem 1.1. We focus on showing how to encode various W[1]-hard (w.r.t. treewidth) problems
using the notions we have provided. The parameterized complexity statements which follow
are not very surprising and in many cases were known. Still, we believe that our approach
captures and summarizes them nicely.

Local constraints. While introducing MSOL, Szeider [41] points out that the problems
General Factor, Equitable k-Coloring and Minimum Maximum Outdegree are
expressible in MSOL. Let us now observe that using the extension to conditional local con-
straints, we can also express the problems Capacitated Dominating Set, Capacitated
Vertex Cover, Vector Dominating Set and Generalized Domination.

Take for example the Capacitated Dominating Set problem. There, we are given
a graph G = (V,E) together with a capacity function c : V → N, and our goal is to find a
subset D ⊆ V and a mapping f : V \ D → D such that for each v ∈ D, |f−1(v)| ≤ c(v).
Essentially, f(w) = v means that the vertex w is dominated by the vertex v, and the
condition |f−1(v)| ≤ c(v) ensures that the mapping f respects the capacities. Recall that

MSOL here generalizes MSO2, so we view G as the σ2-structure whose universe VI contains
both vertices and edges of the graph it represents. Then, we let ϕ(D,F) and α be a formula
and local cardinality constraints, respectively, enforcing that:

• D ⊆ V ,
• F ⊆ E,
• each v ∈ V is either in D or has a neighbor in F ,
• each e ∈ F has a neighbor in D, and,

12:26 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

• if v ∈ D, then |N(v) ∩ F | ∈ αF (v) = [0, c(v)].

Then D encodes a dominating set and F can be used to construct the mapping f since for
each edge e ∈ F , at most one of its endpoints is not in D, and each v ∈ D sees at most c(v)
edges from F .

Let us define the remaining problems; their MSOL formulations are analogous to the one
above. The Vector Dominating Set problem is similar to Capacitated Dominating
Set, except now each vertex v has a demand d(v) and if v 6∈ D, then it must have at least
d(v) neighbors in D. In Generalized Domination, we are given two sets σ, ρ ⊆ N and
for each vertex v in D or in V \ D, it must hold that |N(v) ∩ D| ∈ σ or |N(v) ∩ D| ∈ ρ,
respectively. Finally, the Capacitated Vertex Cover problem is the following. We are
given a capacitated graph, and the task is to find a vertex cover C ⊆ V and an assignment
f : E → C such that for each v, |f−1(v)| ≤ c(v).

Global constraints. Ganian and Obdržálek [23] introduce MSOG
lin and show that also this

logic expresses Equitable k-Coloring, and moreover the Equitable connected k-
Partition problem. Interestingly, they also discuss the complexity of the k-Balanced
Partitioning problem, where the goal is to find an equitable (all parts of size differing by
at most one) k-partition and, moreover, minimize the number of edges between partites.
They provide an FPT algorithm for graphs of bounded vertex cover, but are unable to
express the problem in MSOG

lin, and thus pose as an open problem the task of finding a
more expressive formalism which would capture this problem. They also state that no
parameterized algorithm exists for graphs of bounded treewidth, but that is no longer true
due to the results of van Bevern et al. [4]. On the other hand, the question of capturing
k-Balanced Partitioning by some MSO extension stands. Here we show that it can be
expressed as an instance of weighted MSOG

lin model checking over σ2-structures (thus this is
not applicable to graphs of bounded neighborhood diversity where we only have algorithms
for σ1-structures).

Let ϕ be an MSOG formula with k free vertex set variables X1, . . . , Xk and one free
edge set variable Y . We use ϕ to express that X1, . . . , Xk is an equitable k-partition; this
is easily done using the global constraints. Furthermore, we enforce that Y is the set of
edges with one endpoint in Xi and another in Xj for any i 6= j. For a satisfying assignment

X1, . . . , Xk, Y , let (x,y) ∈ {0, 1}k|V |×{0, 1}|E| be its characteristic vector. To minimize the
number of edges between partites, it suffices to minimize y. This also clearly extends to the
case studied in the literature when edges are assigned weights.

Fellows et al. [18] study the Graph Motif problem from the perspective of parameter-
ized complexity, especially on graphs with bounded widths. In Graph Motif, we are given
a vertex-colored graph G with χ colors and a multiset of colors M , and the task is to find a
motif, that is, a connected subset of vertices S ⊆ V such that the multiset of colors of S is
exactly M . This problem is most naturally expressed when the vertex-colored graph G is
encoded as a σ-structure with σ = (V ∪ E, ∅, {LV , LE , L1, . . . , Lχ}) (i.e., σ is σ2 extended
by unary predicates L1, . . . , Lχ). Since we have not explicitly phrased our results for such
structures, Graph Motif does not directly fit any of our notions. However, the extension
of our results (specifically, Theorem 1.1) to such structures is straightforward since it is
known that Courcelle’s theorem can be extended and then for example global constraints
over the set S ∩ Li are treated like global constraints over any other set (there is no change
to the CSP constraints required in the proof of Theorem 1.1).

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:27

Then, let us consider the number of colors χ a parameter and introduce additional
unary relations (labels) L1, . . . , Lχ. It is easy to see that Graph Motif is encoded by the

following MSOG
lin formula ϕ(S):

ϕ(S) ≡ connected(S) ∧
χ∧
i=1

[|S ∩ Li| = mult(i,M)],

where connected(S) is a formula which holds if S is connected, and mult(i,M) ∈ N is the
multiplicity of color i in the motif M .

4.4. Proof of Theorem 4.6. Fix objects and quantities as in the statement of Theorem 4.6,
that is, I = (V,D,H,S) is a CSP instance, G is a σ2-structure, n is the size of the universe
of G, ϕ is an MSO2 formula with ` free variables, (T,B) is a nice tree decomposition of

G of width τ , k ∈ N is such that V has ` · |V (G)| variables yiv and k · |V (T)| variables xja,
H = {y | G,y |= ϕ} ∪ H′ and H′ ∪ S has the local scope property.

We give a brief outline of the proof of Theorem 4.6, which proceeds in three stages:

(1) Using a recent result of Kolman, Koutecký and Tiwary [32] we construct a linear program
(LP) whose constraint matrix has bounded treewidth (to be defined) and whose integer
solutions correspond to feasible assignments of ϕ.

(2) We view this LP as an integer linear program (ILP) and construct an equivalent CSP
instance J ′ of bounded treewidth. Thus, J ′ is an extension of I ′ = ([n · `],DI′ ,HI′ , ∅)
where DI′ = {Di | Di = {0, 1}, i ∈ [n · `]} and HI′ = {y | G,y |= ϕ}.

(3) We show that if H′ and S have the local scope property, it is possible to add new
constraints derived from H′ and S to the instance J ′ which results in instance J (with
Feas(J) ⊆ Feas(J ′)), such that J is an extension of I.

Stage 1: LP. We begin by extending our notion of treewidth to matrices.

Definition 4.7 (Treewidth of a matrix). Given a matrix A ∈ Zm×n, we define its Gaifman
graph G = G(A) as follows. Let V (G) = [n]. Let {i, j} ∈ E(G) if and only if there is an
r ∈ [n] with A[r, i] 6= 0 and A[r, j] 6= 0. The (primal or Gaifman) treewidth of a matrix A
is then tw(A) := tw(G(A)).

Let Pϕ(G) = conv{y | G,y |= ϕ} be the polytope of satisfying assignments of ϕ on
G, also called the MSO polytope; conv(X) denotes the convex hull of a set X. A result of
Kolman et al. [32] shows that there exists a polytope closely related to Pϕ(G) with many
useful properties:

Proposition 4.8 ([32, Theorem 4]). Let G = (V,E) be a σ2-structure, let n be the size of
the universe of G, (T,B) be a nice tree decomposition of G of width τ , and ϕ be an MSO2

formula with ` free variables.
Then there exists an LP Ay + Dz + Cw = d, z,w ≥ 0, a set C, a function η :

C×V (T)×V ×[`]→ {0, 1} and a tree decomposition (T,B∗) of the Gaifman graph G(A D C)
such that the following claims hold:

(1) The polytope P = {(y, z,w) | Ay + Dz + Cw = d, z,w ≥ 0} is a 0/1-polytope and
Pϕ(G) = {y | ∃z,w : (y, z,w) ∈ P}.

(2) For any integer point (y, z,w) ∈ P , for any t ∈ C, b ∈ V (T), v ∈ B(b) and i ∈ [`],
equalities ztb = 1 and η(t, b, v, i) = 1 imply that yiv = 1.

12:28 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

(3) (a) The treewidth of (T,B∗) is O(|C|3),
(b) for every node b ∈ V (T),

⋃
t∈C{ztb} ⊆ B∗(b).

(4) There is a computable function f such that |C| ≤ f(τ, ||ϕ||) and A,D,C,d, η can be
computed in time O(|C|3 · n).

Stage 2: Viewing ILP as CSP. By aj we denote the j-th row of a matrix A. Let us connect
ILP and CSP:

Definition 4.9. A CSP instance I is equivalent to an ILP Ax ≤ b x ∈ Zn if

{x ∈ Zn | Ax ≤ b} = Feas(I).

Proposition 4.10. Let Ax ≤ b, x ∈ Zn be an ILP with A ∈ Zm×n, τ = maxmj=1 |supp(aj)|
and D = maxni=1 |ui − `i|, where ui and `i are an upper and lower bound on xi, that is,
u ≤ x ≤ ` holds. Then, an equivalent CSP instance I can be constructed in time O(Dτ ·mn),
and G(A) = G(I).

Proof. Let V = {x1, . . . , xn}. For every i ∈ [n], let Di = [`i, ui] and D = {Di | i ∈ [n]}.
Observe that maxi |Di| = ‖u−`‖∞ = D. Regarding hard constraints H, observe that every
row aj of A contains at most τ non-zeros. Let Uj = supp(aj) = {i1, . . . , ik}, where k ≤ τ ,
and let xc = 0 for all c 6∈ Uj . Let CUj be the set of assignments from Di1 × · · · × Dik to

xi1 , . . . , xik that satisfy ajx ≤ bj ; obviously |CUj | ≤ Dk and it can be constructed in time

O(Dk). Then, H = {CUj | j = 1, . . . ,m}. It is easy to verify that the feasible assignments
of I correspond to integer solutions of Ax ≤ b and that G(A) = G(I).

Proof of Theorem 4.6. We apply Proposition 4.8 to obtain an ILP Ay + Dz + Cw = d,
and use Proposition 4.10 to get an equivalent CSP instance J ′. Recall that (T,B) is a nice
tree decomposition of G and (T,B∗) is a tree decomposition of G(A D C) (and thus G(J ′))
as described in Proposition 4.8, part (3). Let I ′ be a CSP instance over variables y with
H = {y | G,y |= ϕ}. Clearly, J ′ is an extension of I ′ by the fact that the polytope P is an
extension of Pϕ(G).

Now we will add the variables x to J ′ and add constraints in such a way that the
resulting instance J will be an extension of I, and that it satisfies the claim of Theorem 4.6.

Stage 3: Adding variables and constraints. We introduce auxiliary binary variables f i,av for

each a ∈ V (T), i ∈ [`] and v ∈ B(a), and we let f i,av =
∑

t∈C z
t
a · η(t, a, v, i). For any subset

U of variables of I, let Ua be the set U where each variable yiv is replaced by f i,av . Then,
for every constraint CU ∈ H′ and wU ∈ S let a ∈ V (T) be the node in the definition of the
local scope property which satisfies

supp(s) ⊆
(
{(v, i) | v ∈ B(a), i ∈ [`]} ∪ {(b, j) | b ∈ N↓T (a), j ∈ [m]}

)
,

and add to J ′ a constraint obtained by replacing the scope U with Ua. Denote the resulting
instance J .

By property (2) of Proposition 4.8, f i,av = yiv for each a ∈ V (T) with v ∈ B(a). Thus,
for any constraint CU or wU , replacing its scope with Ua does not change the set of feasible
assignments, and J is an extension of I.

By the equivalence of Ay + Dz + Cw = d and J ′, we have that ‖HJ ′‖ + ‖SJ ′‖ ≤
f(||ϕ||, τ) · n, and thus ‖HJ‖+ ‖SJ‖ ≤ f(||ϕ||, τ) · n+ ‖H′‖+ ‖S‖. The variables contained

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:29

in J and not I are the z,w and f variables. Since they are all binary we also have that
DJ = DI . It remains to show that tw(J) ≤ f(||ϕ||, τ) + 2k. A lemma will help us see that:

Lemma 4.11. Let T = (I, F) be a rooted binary tree, let (T,B) be a tree decomposition of
a graph G = (V,E) of width κ, and let H = (V ∪W,E ∪ Y) be a supergraph of G such that:

• W =
⋃
a∈IWa, Y =

⋃
ab∈F Yab, all Wa are pair-wise disjoint, and all Yab are pair-wise

disjoint,
• |Wa| ≤ κ′ for all a ∈ I,
• if a ∈ I has only child b, then

⋃
Yab ⊆ (B(a) ∪Wa ∪Wb), and,

• if a has two children b, b′, then
⋃

(Yab ∪ Yab′) ⊆ (B(a) ∪Wa ∪Wb ∪Wb′).

Then there is a tree decomposition (T,B′) of H of width at most κ+ 2κ′.

Wa

Wb

a

b

Wa

Wb

Wc

Wd

WeWf

(b)
(a)

Figure 3: The situation of Lemma 4.11. Part (a) depicts a single edge ab ∈ F and the
requirement that edges from vertices in Wa only connect to vertices in Wa, Wb,
B(a) or B(b). Part (b) depicts how W and Y relate to the whole of T . Black
points correspond to I, grey edges to F , Wa, . . . ,Wf are self-explanatory, and all
remaining edges correspond to sets of edges Yij .

Proof. Let B′ be obtained from B by, for every edge ab ∈ F , adding Wa to the bags B(a)
and B(b). We will verify that (T,B′) is a tree decomposition of H of width at most κ+ 2κ′;
we shall denote by B′ the bags of (T,B′). The conditions of a tree decomposition obviously
hold for all vertices and edges of G, so we only check it for new vertices and edges.

Edge condition. Let uv ∈ Yab be an edge in H \ G with u ∈ Wa. Either v ∈ B(a)
and then {u, v} ⊆ B(a) ∪Wa ⊆ B′(a), or v ∈Wb and then {u, v} ⊆ B(b) ∪Wa ⊆ B′(b).

Connectedness condition. Let v ∈ Wa and let a have children b, b′, with possibly
b = b′. Notice that v does not appear in the bag of any node above a and any node below
b and b′. Since we have added Wa to all of a, b and b′, the connectedness condition holds.

We have added to each node b (except the root) two sets Wa, Wb where a is the parent
of b, and because |Wa|+ |Wb| ≤ 2κ′, tw((T,B′)) ≤ κ+ 2κ′.

Let us consider how the constraint graph G(J) relates to G(J ′). Since J is obtained
by adding new variables and constraints, this corresponds to G(J) being a supergraph of
G(J ′). The vertices W = V (G(J)) \ V (G(J ′)) can be partitioned into sets Wa for every
node a ∈ V (T), and |Wa| ≤ k. Moreover, the new edges Y = E(G(J)) \ E(G(J ′)) can
also be partitioned into sets Yab for each ab ∈ E(T), such that for each uv ∈ Yab we have

12:30 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

{u, v} ⊆ (Wa ∪Wb), because, for each node a ∈ V (T), the new constraints only contain
variables associated with node a and its neighbors. The tree decomposition (T,B∗) of G(J ′)
is such that we are precisely in the situation of Lemma 4.11 with G := G(J ′), H := G(J),
κ := tw(J ′) = f ′(||ϕ||, τ) and κ′ := k + `τ , which then implies that G(J) has a tree
decomposition (T,B′) of width f ′(||ϕ||, τ)) + 2k + `τ ≤ f(||ϕ||, τ)) + 2k.

5. Conclusions

Limits of MSO extensions, other logics, and metatheorems. We have defined extensions of
MSO and extended positive and negative results for them. There is still some unexplored
space in MSO extensions: Szeider [41] shows that MSOL where some of the sets of local
cardinality constraints are quantified is NP-hard already on graphs of treewidth 2. We are
not aware of a comparable result for MSOG, and no results of this kind are known for graphs
of bounded neighborhood diversity. Also, we have not explored other logics, as for example
the modal logic considered by Pilipczuk [40]. Also, one merit of algorithmic metatheorems
is in generalizing existing results. However, many problems [19, 22] are FPT on bounded
neighborhood diversity which are not expressible in any of the studied logics. So we ask for
a metatheorem generalizing as many such positive results as possible.

Complementary Parameters and Problems. Unlike for treewidth, taking the complement of a
graph preserves its neighborhood diversity. Thus our results apply also in the complementary
setting, where, given a graph G and a parameter p(G), we are interested in the complexity
(with respect to p(G)) of deciding a problem P on the complement of G. While the complexity
stays the same when parameterizing by neighborhood diversity, it is unclear for sparse graph
parameters such as treewidth. It was shown very recently [17] that the Hamiltonian Path
problem admits an FPT algorithm with respect to the treewidth of the complement of the
graph. This suggest that at least sometimes this is the case and some extension of Courcelle’s
theorem deciding properties of the complement may hold.

Acknowledgements. This research was supported by the project 338216 of GA UK and
the grant SVV–2017–260452. D. Knop acknowledges support by the OP VVV MEYS funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”. M. Koutecký
was partially supported by a postdoctoral fellowship at the Technion funded by the Israel
Science Foundation grant 308/18, by Charles University project UNCE/SCI/004, and by
the project 17-09142S of GA ČR. T. Masař́ık was supported by the project GA17-09142S of
GA ČR.

References

[1] Sancrey R. Alves, Konrad K. Dabrowski, Luérbio Faria, Sulamita Klein, Ignasi Sau, and Uéverton
dos Santos Souza. On the (parameterized) complexity of recognizing well-covered (r, l)-graphs. In
COCOA, volume 10043 of Lecture Notes in Computer Science, pages 423–437. Springer, 2016. doi:
10.1007/978-3-319-48749-6.

[2] N.R. Aravind, Subrahmanyam Kalyanasundaram, Anjeneya S. Kare, and Juho Lauri. Algorithms and
hardness results for happy coloring problems. 2017. arXiv:1705.08282.

[3] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs. Journal
of Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.

http://dx.doi.org/10.1007/978-3-319-48749-6
http://dx.doi.org/10.1007/978-3-319-48749-6
http://arxiv.org/abs/1705.08282
http://dx.doi.org/10.1016/0196-6774(91)90006-K

Vol. 15:4 SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO 12:31

[4] René van Bevern, Andreas E. Feldmann, Manuel Sorge, and Ondřej Suchý. On the parameterized
complexity of computing balanced partitions in graphs. Theory of Computing Systems, 57(1):1–35, 2015.
doi:10.1007/s00224-014-9557-5.

[5] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In
STOC, pages 226–234, 1993. doi:10.1145/167088.167161.

[6] Hans L. Bodlaender. Treewidth: characterizations, applications, and computations. In WG, volume 4271
of Lecture Notes in Computer Science, pages 1–14. Springer, 2006. doi:10.1007/11917496_1.

[7] Édouard Bonnet and Florian Sikora. The graph motif problem parameterized by the structure of the
input graph. Discrete Applied Mathematics, 231:78–94, 2017. doi:10.1016/j.dam.2016.11.016.

[8] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron, and Nimrod Talmon. Elections
with few candidates: Prices, weights, and covering problems. In ADT, volume 9346 of Lecture Notes in
Computer Science, pages 414–431, 2015. doi:10.1007/978-3-319-23114-3_25.

[9] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formulations in combinatorial
optimization. Annals OR, 204(1):97–143, 2013. doi:10.1007/s10479-012-1269-0.

[10] Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[11] Bruno Courcelle. The monadic second-order logic of graphs VI: On several representations of graphs by
relational structures. Discrete Applied Mathematics, 54(2–3):117–149, 1994. doi:10.1016/0166-218X(94)
90019-1.

[12] Bruno Courcelle. The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge
set quantifications. Theoretical Computer Science, 299(1–3):1–36, 2003. doi:10.1016/S0304-3975(02)
00578-9.

[13] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000. doi:10.1007/
s002249910009.

[14] Bruno Courcelle and Mohamed Mosbah. Monadic second-order evaluations on tree-decomposable graphs.
Theoretical Computer Science, 109(1–2):49–82, 1993. doi:10.1016/0304-3975(93)90064-Z.

[15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. doi:10.1007/

978-3-319-21275-3.
[16] Pavel Dvořák, Dušan Knop, and Tomáš Toufar. Target set selection in dense graph classes. In ISAAC,

volume 123 of LIPIcs, pages 18:1–18:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.ISAAC.2018.18.

[17] Pavel Dvořák, Dušan Knop, and Tomáš Masař́ık. Anti-path cover on sparse graph classes. In MEMICS,
volume 233 of Electronic Proceedings in Theoretical Computer Science, pages 82–86. Open Publishing
Association, 2016. doi:10.4204/EPTCS.233.8.

[18] Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane Vialette. Upper and lower
bounds for finding connected motifs in vertex-colored graphs. Journal of Computer and System Sciences,
77(4):799–811, 2011. doi:10.1016/j.jcss.2010.07.003.

[19] Jǐŕı Fiala, Tomáš Gavenčiak, Dušan Knop, Martin Koutecký, and Jan Kratochv́ıl. Parameterized
complexity of distance labeling and uniform channel assignment problems. Discrete Applied Mathematics,
248:46–55, 2018. doi:10.1016/j.dam.2017.02.010.

[20] Eugene C. Freuder. Complexity of K-tree structured constraint satisfaction problems. In AAAI, pages
4–9. AAAI Press, 1990. URL: http://dl.acm.org/citation.cfm?id=1865499.1865500.

[21] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited.
Annals of Pure and Applied Logic, 130(1–3):3–31, 2004. doi:10.1016/j.apal.2004.01.007.

[22] Robert Ganian. Using neighborhood diversity to solve hard problems. 2012. arXiv:1201.3091.
[23] Robert Ganian and Jan Obdržálek. Expanding the expressive power of monadic second-order logic on

restricted graph classes. In IWOCA, volume 8288 of Lecture Notes in Computer Science, pages 164–177.
Springer, 2013. doi:10.1007/978-3-642-45278-9.

[24] Luisa Gargano and Adele A. Rescigno. Complexity of conflict-free colorings of graphs. Theoretical
Computer Science, 566:39–49, 2015. doi:10.1016/j.tcs.2014.11.029.

[25] Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over finite structures with bounded
treewidth. In PODS, pages 165–174, 2007. doi:10.1145/1265530.1265554.

http://dx.doi.org/10.1007/s00224-014-9557-5
http://dx.doi.org/10.1145/167088.167161
http://dx.doi.org/10.1007/11917496_1
http://dx.doi.org/10.1016/j.dam.2016.11.016
http://dx.doi.org/10.1007/978-3-319-23114-3_25
http://dx.doi.org/10.1007/s10479-012-1269-0
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0166-218X(94)90019-1
http://dx.doi.org/10.1016/0166-218X(94)90019-1
http://dx.doi.org/10.1016/S0304-3975(02)00578-9
http://dx.doi.org/10.1016/S0304-3975(02)00578-9
http://dx.doi.org/10.1007/s002249910009
http://dx.doi.org/10.1007/s002249910009
http://dx.doi.org/10.1016/0304-3975(93)90064-Z
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.18
http://dx.doi.org/10.4204/EPTCS.233.8
http://dx.doi.org/10.1016/j.jcss.2010.07.003
http://dx.doi.org/10.1016/j.dam.2017.02.010
http://dl.acm.org/citation.cfm?id=1865499.1865500
http://dx.doi.org/10.1016/j.apal.2004.01.007
http://arxiv.org/abs/1201.3091
http://dx.doi.org/10.1007/978-3-642-45278-9
http://dx.doi.org/10.1016/j.tcs.2014.11.029
http://dx.doi.org/10.1145/1265530.1265554

12:32 D. Knop, M. Koutecký, T. Masař́ık, and T. Toufar Vol. 15:4

[26] Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. Model Theoretic Methods
in Finite Combinatorics, 558:181–206, 2011.

[27] Ton Kloks. Treewidth: Computations and Approximations, volume 842 of Lecture Notes in Computer
Science. Springer, 1994. doi:10.1007/BFb0045375.

[28] Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s theorem – A game-theoretic
approach. Discrete Optimization, 8(4):568–594, 2011. doi:10.1016/j.disopt.2011.06.001.

[29] Dušan Knop, Martin Koutecký, Tomáš Masař́ık, and Tomáš Toufar. Simplified algorithmic metatheorems
beyond MSO: treewidth and neighborhood diversity. In WG, volume 10520 of Lecture Notes in Computer
Science, pages 344–357. Springer, 2017. doi:10.1007/978-3-319-68705-6_26.

[30] Dušan Knop, Tomáš Masař́ık, and Tomáš Toufar. Parameterized complexity of fair vertex evaluation
problems. In MFCS, volume 138 of LIPIcs, pages 33:1–33:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.33.

[31] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint satisfaction.
Journal of Computer and System Sciences, 61(2):302–332, 2000. doi:10.1006/jcss.2000.1713.

[32] Petr Kolman, Martin Koutecký, and Hans R. Tiwary. Extension complexity, MSO logic, and treewidth,
2016. Short version presented at SWAT 2016. URL: http://arxiv.org/abs/1507.04907.

[33] Petr Kolman, Bernard Lidický, and Jean-Sébastien Sereni. On Fair Edge Deletion Problems, 2009. URL:
https://kam.mff.cuni.cz/~kolman/papers/kls09.pdf.

[34] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19–37,
2012. doi:10.1007/s00453-011-9554-x.

[35] Michael Lampis. Model checking lower bounds for simple graphs. Logical Methods in Computer Science,
10(1):1–21, 2014. doi:10.2168/LMCS-10(1:18)2014.

[36] Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of Operations
Research, 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

[37] Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, Berlin, 2004. doi:10.1007/

978-3-662-07003-1.
[38] Tomáš Masař́ık and Tomáš Toufar. Parameterized complexity of fair deletion problems. Discrete Applied

Mathematics, in press, 2019. doi:10.1016/j.dam.2019.06.001.
[39] Jǐŕı Matoušek and Jaroslav Nešetřil. Invitation to Discrete Mathematics (2. ed.). Oxford University

Press, 2009.
[40] Micha l Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: A logical

approach. In MFCS, volume 6907 of Lecture Notes in Computer Science, pages 520–531. Springer, 2011.
doi:10.1007/978-3-642-22993-0.

[41] Stefan Szeider. Monadic second order logic on graphs with local cardinality constraints. ACM Transactions
on Computational Logic, 12(2):12:1–12:21, 2011. doi:10.1145/1877714.1877718.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1016/j.disopt.2011.06.001
http://dx.doi.org/10.1007/978-3-319-68705-6_26
http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.33
http://dx.doi.org/10.1006/jcss.2000.1713
http://arxiv.org/abs/1507.04907
https://kam.mff.cuni.cz/~kolman/papers/kls09.pdf
http://dx.doi.org/10.1007/s00453-011-9554-x
http://dx.doi.org/10.2168/LMCS-10(1:18)2014
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1016/j.dam.2019.06.001
http://dx.doi.org/10.1007/978-3-642-22993-0
http://dx.doi.org/10.1145/1877714.1877718

	1. Introduction
	1.1. Related work
	1.2. Our contribution

	2. Preliminaries
	2.1. MSO and its Extensions
	2.2. Treewidth and Neighborhood Diversity
	2.3. Parameterized Complexity

	3. Graphs of Bounded Neighborhood Diversity
	3.1. Theorems ?? and ??: W[1]-hardness of MSOL and MSOG
	3.2. Theorem ??: FPT algorithm for MSOGLlin on neighborhood diversity
	3.3. Theorem ??: XP algorithm for MSOGL

	4. Theorem ??: XP algorithm for MSOGL on bounded treewidth
	4.1. CSP, MSO and treewidth
	4.2. CSP instance construction
	4.3. Applications (Corollary ??)
	4.4. Proof of Theorem ??

	5. Conclusions
	Acknowledgements.

	References

