On strongly chordal graphs that are not leaf powers

Manuel Lafond ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada
mlafond2@uOttawa.ca

Abstract

A common task in phylogenetics is to find an evolutionary tree representing proximity relationships between species. This motivates the notion of leaf powers: a graph $G=(V, E)$ is a leaf power if there exist a tree T on leafset V and a threshold k such that $u v \in E$ if and only if the distance between u and v in T is at most k. Characterizing leaf powers is a challenging open problem, along with determining the complexity of their recognition. Leaf powers are known to be strongly chordal, but few strongly chordal graphs are known to not be leaf powers, as such graphs are difficult to construct. Recently, Nevries and Rosenke asked if leaf powers could be characterized by strong chordality and a finite set of forbidden induced subgraphs. In this paper, we provide a negative answer to this question, by exhibiting an infinite family \mathcal{G} of (minimal) strongly chordal graphs that are not leaf powers. During the process, we establish a connection between leaf powers, alternating cycles and quartet compatibility. We also show that deciding if a chordal graph is \mathcal{G}-free is NP-complete.

1 Introduction

In phylogenetics, a classical method for inferring an evolutionary tree of species is to construct the tree from a distance matrix, which depicts how close or far each species are to one and another. Roughly speaking, similar species should be closer to each other in the tree than more distant species. In some contexts, the actual distances are ignored (e.g. when they cannot be trusted due to errors), and only the notions of "close" and "distant" are preserved. This corresponds to a graph in which the vertices are the species, and two vertices share an edge if and only if they are "close". This motivates the definition of leaf powers, which was proposed by Nishimura et al. in [16]: a graph $G=(V, E)$ is a leaf power if there exist a tree T on leafset $V(G)$ and a threshold k such that $u v \in E$ if and only if the distance between u and v in T is at most k. Hence the tree T, which we call a leaf root, is a potential evolutionary history for G, as it satisfies the notions of "close" and "distant" depicted by G. It is also worth noting that this type of similarity graph is also encountered in the context of gene orthology inference, which is a special type of relationship between genes (see e.g. [12|21]). A similarity graph G is used as a basis for the inference procedure, and being able to verify that G is a leaf power would provide a basic test as to whether G correctly depicts similarity, as such graphs are known to contain errors [11.

A considerable amount of work has been done on the topic of leaf powers (see [6] for a survey), but two important challenges remain open: to determine
the computational complexity of recognizing leaf powers, and to characterize the class of leaf powers from a graph theoretic point of view. Despite some interesting results on graph classes that are leaf powers 4510], both problems are made especially difficult due to our limited knowledge on graphs that are not leaf powers. Such knowledge is obviously fundamental for the characterization of leaf powers, but also important from the algorithmic perspective: if recognizing leaf powers is in P, a polynomial time algorithm is likely to make usage of structures to avoid, and if it is NP-hard, a hardness reduction will require knowledge of many non-leaf powers in order to generate "no" instances.

It has been known for many years that leaf powers must be strongly chordal (i.e. chordal and sun-free). Brandstädt et. al exhibited one strongly chordal non-leaf power by establishing an equivalence between leaf powers and NeST graphs 315. Recently [15, Nevries and Rosenke found seven such graphs, all identified by the notion of bad 2-cycles in clique arrangements, which are of special use in strongly chordal graphs [14]. These graphs have at most 12 vertices, and in [13], the authors conjecture that they are the only strongly chordal nonleaf powers. This was also posed as an open problem in [6]. A positive answer to this question would imply a polynomial time algorithm for recognizing leaf powers, as strong chordality can be checked in $O\left(\min \left\{m \log n, n^{2}\right\}\right)$ time [17|19].

In this paper, we unfortunately give a negative answer to this question. We exhibit an infinite family \mathcal{G} of strongly chordal graphs that are not leaf powers, and each graph in this family is minimal for this property (i.e. removing any vertex makes the graph a leaf power). This is done by first establishing a new necessary condition for a graph G to be a leaf power, based on its alternating cycles (which are cyclic orderings of vertices that alternate between an edge and a non-edge). Namely, there must be a tree T that can satisfy the edges/nonedges of each alternating cycle C of G after (possibly) subdividing some of its edges (see Section 3 for a precise definition). This condition has two interesting properties. First, every graph currently known to not be a leaf power fails to satisfy this condition. And more importantly, this provides new tools for the construction of novel classes of non-leaf powers. In particular, alternating cycles on four vertices enforce the leaf root to contain a specific quartet, a binary tree on four leaves. This connection lets us borrow from the theory of quartet compatibility, which is well-studied in phylogenetics (see e.g. [1218|20). More precisely, we use results from [18] to create a family \mathcal{G} of strongly chordal graphs whose 4-alternating cycles enforce a minimal set of incompatible quartets. We then proceed to show that deciding if a chordal graph G contains a member of \mathcal{G} as an induced subgraph is NP-complete. Thus, \mathcal{G}-freeness is the first known property of non-leaf powers that we currently ignore how to check in polynomial time. This result also indicates that if the problem admits a polynomial time algorithm, it will have to make use of strong chordality (or some other structural property), since chordality alone is not enough to identify forbidden structures quickly.

The paper is organized as follows: in Section 2, we provide some basic notions and facts. In Section 3, we establish the connection between leaf powers, alter-
nating cycles and quartets, along with its implications. In Section 4, we exhibit the family \mathcal{G} of strongly chordal graphs that are not leaf powers. We then show in Section 5 that deciding if a chordal graph is \mathcal{G}-free is NP-complete.

2 Preliminary notions

All graphs in this paper are simple and finite. For $k \in \mathbb{N}^{+}$, we use the notation $[k]=\{1, \ldots, k\}$. We denote the set of vertices of a graph G by $V(G)$, its set of edges by $E(G)$, and its set of non-edges by $\bar{E}(G)$. By $G[X]$ we mean the subgraph induced by $X \subseteq V(G)$. The set of neighbors of $v \in V(G)$ is $N(v)$. The P_{4} is the path of length 3 and the $2 K_{2}$ is the graph consisting of two vertex-disjoint edges. A k-sun, denoted S_{k}, is the graph obtained by starting from a clique of size $k \geq 3$ with vertices x_{1}, \ldots, x_{k}, then adding vertices a_{1}, \ldots, a_{k} such that $N\left(a_{i}\right)=\left\{x_{i}, x_{i+1}\right\}$ for each $i \in[k-1]$ and $N\left(a_{k}\right)=\left\{x_{k}, x_{1}\right\}$. A graph is a sun if it is a k-sun for some k, and G is sun-free if no induced subgraph of G is a sun.

A graph G is chordal if it has no induced cycle with four vertices or more, and G is strongly chordal if it is chordal and sun-free. A vertex v is simplicial if $N(v)$ is a clique, and v is simple if it is simplicial and, in addition, for every $x, y \in N(v)$, one of $N(x) \subseteq N(y) \backslash\{x\}$ or $N(y) \subseteq N(x) \backslash\{y\}$ holds. An ordering $\left(x_{1}, \ldots, x_{n}\right)$ of $V(G)$ is a perfect elimination ordering if, for each $i \in[n], x_{i}$ is simplicial in $G\left[\left\{x_{i}, \ldots, x_{n}\right\}\right]$. The ordering is simple if, for each $i \in[n], x_{i}$ is simple in $G\left[\left\{x_{i}, \ldots, x_{n}\right\}\right]$. It is well-known that a graph is chordal if and only if it admits a perfect elimination ordering [9, and a graph is strongly chordal if and only if it admits a simple elimination ordering [8].

Denote by $\mathrm{L}(T)$ the set of leaves of a tree T. We say a graph $G=(V, E)$ is a k-leaf power if there exists a tree T with $\mathrm{£}(T)=V$ such that for any two distinct vertices $u, v \in V, u v \in E$ if and only if the distance between u and v in T is at most k. Such a tree T is called a k-leaf root of G. A graph G is a leaf power if there exists a positive integer k such that G is a k-leaf power.

A quartet is an unrooted binary tree on four leaves (an unrooted tree T is binary if all its internal vertices have degree exactly 3). For a set of four elements $X=\{a, b, c, d\}$, there exist 3 possible quartets on leafset X which we denote $a b|c d, a c| b d$ and $a d \mid b c$, depending on how internal edge separates the leaves. We say that T contains a quartet $a b \mid c d$ if $\{a, b, c, d\} \subseteq \mathrm{L}(T)$ and the path between a and b does not intersect the path between c and d. We denote $\mathcal{Q}(T)=\{a b \mid c d: T$ contains $a b \mid c d\}$. We say that a set of quartets Q is compatible if there exists a tree T such that $Q \subseteq \mathcal{Q}(T)$, and otherwise Q is incompatible.

For a tree T and $x, y \in V(T), p_{T}(x, y)$ denotes the set of edges on the unique path between x and y. We may write $p(x, y)$ when T is clear from the context. It will be convenient to extend the definition of leaf powers to weighted edges. A weighted tree (T, f) is a tree accompanied by a function $f: E(T) \rightarrow \mathbb{N}^{+}$ weighting its edges. If $F \subseteq E(T)$, we denote $f(F)=\sum_{e \in F} f(e)$. The distance $d_{T, f}(x, y)$ between two vertices of T is given by $f(p(x, y))$, i.e. the sum of the weights of the edges lying on the $x-y$ path in T. We may write $d_{f}(x, y)$ for short. We say that (T, f) is a leaf root of a graph G if there exists an integer k such that $x y \in E(G)$ iff $d_{f}(x, y) \leq k$. We will call k the threshold corresponding
to (T, f). Note that in the usual setting, the edges of leaf roots are not weighted, though arbitrarily many degree 2 vertices are allowed. It is easy to see that this distinction is merely conceptual, since an edge e with weight $f(e)$ can be made unweighted by subdividing it $f(e)-1$ times.

A tree T is unweighted if it is not equipped with a weighting function. We say an unweighted tree is an unweighted leaf root of a graph G if there is a weighting f of $E(T)$ such that (T, f) is a leaf root of G.

A first observation that will be of convenience later on is that, even though the usual definition of leaf powers does not allow edges of weight 0 , they do not alter the class of leaf powers.

Lemma 1. Let G be a graph, and let (T, f) be a weighted tree in which $E(T)=$ $V(G)$ and $f(e) \geq 0$ for each $e \in E(T)$. If there exists an integer k such that $u v \in E(G) \Leftrightarrow d_{f}(u, v) \leq k$, then T is an unweighted leaf root of G.

Proof. If no edge has weight 0 , there is nothing to do. Otherwise, we devise a weighting function f^{\prime} for T. Let $d=\max _{x, y \in V(T)}|p(x, y)|$. Set $f^{\prime}(e)=(d+1) \cdot f(e)$ for each $e \in E(T)$ having $f(e)>0$, and $f^{\prime}(e)=1$ for each $e \in E(T)$ having $f(e)=0$. If $d_{f}(x, y) \leq k$, then $d_{f^{\prime}}(x, y) \leq(d+1) k+d$, and if $d_{f}(x, y) \geq k+1$, then $d_{f^{\prime}} \geq(d+1) k+(d+1)$. The threshold $(d+1) k+d$ shows that T is an unweighted leaf root of G.

A tree T^{\prime} is a refinement of a tree T if T can be obtained from T^{\prime} by contraction of edges. A consequence of the above follows.

Lemma 2. Let T be an unweighted leaf root of a leaf power G. Then any refinement T^{\prime} of T is also an unweighted leaf root of G.

Proof. We may take a weighting f such that (T, f) is a leaf root of G, refine it in order to obtain T^{\prime}, weight the newly created edges by 0 and apply Lemma 1 .

The following was implicitly proved in [4. We include the proof in the Appendix for the sake of completeness.

Lemma 3. Suppose that G has a vertex v of degree 1. Then G is a leaf power if and only if $G-v$ is a leaf power.

3 Alternating cycles and quartets in leaf powers

In this section, we restrict our attention to alternating cycles in leaf powers, which let us establish a new necessary condition on the topology of unweighted leaf roots. This will serve as a basis for the construction of our family of forbidden induced subgraphs. Although we will not use the full generality of the statements proved here, we believe they may be of interest for future studies.

Let (A, B) be a pair such that $A \subseteq E(G)$ and $B \subseteq \bar{E}(G)$. We say a weighted tree (T, f) satisfies (A, B) if there exists a threshold k such that for each edge $\{x, y\} \in A, d_{f}(x, y) \leq k$ and for each non-edge $\{x, y\} \in B, d_{f}(x, y)>k$. Thus (T, f) is a leaf root of G iff it satisfies $(E(G), \bar{E}(G))$. For an unweighted tree T,
we say that T can satisfy (A, B) if there exists a weighting f of $E(T)$ such that (T, f) satisfies (A, B).

A sequence of $2 c$ distinct vertices $C=\left(x_{0}, y_{0}, x_{1}, y_{1}, \ldots, x_{c-1}, y_{c-1}\right)$ is an alternating cycle of a graph G if for each $i \in\{0, \ldots, c-1\}, x_{i} y_{i} \in E(G)$ and $y_{i} x_{i+1} \notin E(G)$ (indices are modulo c in all notions related to alternating cycles). In other words, the vertices of C alternate beween an edge and a non-edge. We write $V(C)=\left\{x_{0}, y_{0}, \ldots, x_{c-1}, y_{c-1}\right\}, E(C)=\left\{x_{i} y_{i}: 0 \leq i \leq c-1\right\}$ and $\bar{E}(C)=\left\{y_{i} x_{i+1}: 0 \leq i \leq c-1\right\}$. A weighted tree satisfies C if it satisfies $(E(C), \bar{E}(C))$, and an unweighted tree can satisfy C if it can satisfy $(E(C), \bar{E}(C))$. The next necessary condition for leaf powers is quite an obvious one, but will be of importance throughout the paper.

Proposition 1. If G is a leaf power, then there exists an unweighted tree T that can satisfy every alternating cycle of G.

As it turns out, every graph that is currently known to not be a leaf power fails to satisfy the above condition (actually, we may even restrict our attention to cycles of length 4 and 6 , as we will see). This suggests that it is also sufficient, and we conjecture that if there exists a tree that can satisfy every alternating cycle of G, then G is a leaf power. As a basic sanity check towards this statement, we show that in the absence of alternating cycles, a graph is indeed a leaf power.

Proposition 2. If a graph G has no alternating cycle, then G is a leaf power.
Proof. Since a chordless cycle of length at least 4 contains an alternating cycle, G must be chordal. By the same argument, G cannot contain an induced gem (the gem is obtained by taking a P_{4}, and adding a vertex adjacent to each vertex of the P_{4}). In [4], it is shown that chordal gem-free graphs are leaf powers.

We will go a bit more in depth with alternating cycles, by first providing a characterization of the unweighted trees that can satisfy an alternating cycle C. Let T be an unweighted tree with $V(C) \subseteq V(T)$. For each $i \in\{0, \ldots, c-1\}$, we say the path in T between x_{i} and y_{i} is positive, and the path between y_{i} and x_{i+1} is negative (with respect to C).

Lemma 4. An unweighted tree T can satisfy an alternating cycle $C=\left(x_{0}, y_{0}, \ldots, x_{c-1}, y_{c-1}\right)$ if and only if there exists an edge e of T that belongs to strictly more negative paths than positive paths w.r.t. C.

Proof. Due to space constraints, we only prove the (\Rightarrow) direction. The proof of sufficiency is relegated to the Appendix.
(\Rightarrow) : suppose that no edge is on more negative paths than positive paths, and yet T can satisfy C. Let f be a weighting such that (T, f) satisfies C with some threshold k. For each $i \in\{0, \ldots, c-1\}$, let $A_{i}=p\left(y_{i}, x_{i+1}\right) \backslash p\left(x_{i+1}, y_{i+1}\right)$ and $B_{i}=p\left(x_{i+1}, y_{i+1}\right) \backslash p\left(y_{i}, x_{i+1}\right)$. Moreover, let $R_{i}=p\left(y_{i}, x_{i+1}\right) \cap p\left(x_{i+1}, y_{i+1}\right)$. Observe that $f\left(p\left(y_{i}, x_{i+1}\right)\right)=f\left(A_{i}\right)+f\left(R_{i}\right)=f\left(p\left(x_{i+1}, y_{i+1}\right)\right)+f\left(A_{i}\right)-f\left(B_{i}\right)$. We claim that for any integer $j \geq 1$,

$$
f\left(p\left(x_{0}, y_{0}\right)\right)<f\left(p\left(x_{j}, y_{j}\right)\right)+\sum_{i=0}^{j-1}\left(f\left(A_{i}\right)-f\left(B_{i}\right)\right)
$$

(where the indices of the x_{j}, y_{j}, A_{i} and B_{i} are taken modulo c). This is easily proved by induction. For $j=1$, we have $f\left(p\left(x_{0}, y_{0}\right)\right) \leq k<f\left(p\left(y_{0}, x_{1}\right)\right)=$ $f\left(p\left(x_{1}, y_{1}\right)\right)+f\left(A_{0}\right)-f\left(B_{0}\right)$ since $x_{0} y_{0}$ is an edge of C but $y_{0} x_{1}$ is not. For higher values of j, the same argument can be applied inductively: suppose $f\left(p\left(x_{0}, y_{0}\right)\right)<$ $f\left(p\left(x_{j-1}, y_{j-1}\right)\right)+\sum_{i=0}^{j-2}\left(f\left(A_{i}\right)-f\left(B_{i}\right)\right)$. The claim follows from the fact that $f\left(p\left(x_{j-1}, y_{j-1}\right)\right) \leq k<f\left(p\left(y_{j-1}, x_{j}\right)\right)=f\left(p\left(y_{j}, x_{j}\right)\right)+f\left(A_{j-1}\right)-f\left(B_{j-1}\right)$.

Using the above claim, by setting $j=c$, we obtain $f\left(p\left(x_{0}, y_{0}\right)\right)<f\left(p\left(x_{0}, y_{0}\right)\right)+$ $\sum_{i=0}^{c-1}\left(f\left(A_{i}\right)-f\left(B_{i}\right)\right)$, i.e. $\sum_{i=0}^{c-1} f\left(B_{i}\right)<\sum_{i=0}^{c-1} f\left(A_{i}\right)$. Then $\sum_{i=0}^{c-1}\left(f\left(B_{i}\right)+\right.$ $\left.f\left(R_{i}\right)\right)<\sum_{i=0}^{c-1}\left(f\left(A_{i}\right)+f\left(R_{i}\right)\right)$. But since $p\left(y_{i}, x_{i+1}\right)$ is the disjoint union of A_{i} and R_{i}, and $p\left(x_{i+1}, y_{i+1}\right)$ the disjoint union of B_{i} and R_{i}, this implies $\sum_{i=0}^{c-1} f\left(p\left(x_{i+1}, y_{i+1}\right)\right)<\sum_{i=0}^{c-1} f\left(p\left(y_{i}, x_{i+1}\right)\right)$. For any given edge $e, f(e)$ is summed as many times as it appears on a positive path on the left-hand side, and as many times as it appears on a negative path on the right-hand side. Since, by assumption, no edge appears on more negative than positive paths, we have reached a contradiction since this inequality is impossible.

Lemma 4 lets us relate quartets and 4 -alternating cycles easily. If $C=$ $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$, the edges of the quartets $x_{0} x_{1} \mid y_{0} y_{1}$ and $x_{0} y_{1} \mid y_{0} x_{1}$ do not meet the condition of Lemma 4 and therefore no unweighted leaf root can contain these quartets. This was already noticed in [15], although this was presented in another form and not stated in the language of quartets.
Corollary 1. Let $C=\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$ be a 4-alternating cycle of a graph G. Then a tree T can display C if and only if T contains the $x_{0} y_{0} \mid x_{1} y_{1}$ quartet.

We will denote by $R Q^{\prime}(G)$ the set of required quartets of G, that is $R Q^{\prime}(G)=$ $\left\{x_{0} y_{0} \mid x_{1} y_{1}:\left(x_{0}, y_{0}, x_{1}, y_{1}\right)\right.$ is an alternating cycle of $\left.G\right\}$. The only graphs on 4 vertices that contain an alternating cycle are the P_{4}, the $2 K_{2}$ and the C_{4}. However, the C_{4} contains two distinct alternating cycles: if four vertices abcd in cyclic order form a C_{4}, then (a, b, d, c) and (d, a, c, b) are two alternating cycles. The first implies the $a b \mid c d$ quartet, whereas the second implies the $a d \mid c b$ quartet. This shows that no leaf power can contain a C_{4}. Thus $R Q^{\prime}(G)$ can be constructed by enumerating the $O\left(n^{4}\right)$ induced P_{4} and $2 K_{2}$ of G. It is worth mentioning that deciding if a given set of quartets is compatible is NP-complete [20. However, $R Q^{\prime}(G)$ is not any set of quartets since it is generated from P_{4} 's and $2 K_{2}$'s of a strongly chordal graph, and the hardness does not immediately transfer.

Now, denote by $R Q(G)$ the set of quartets that any unweighted leaf root of G must contain, if it exists. Then $R Q^{\prime}(G) \subseteq R Q(G)$, and equality does not hold in general. Below we show how to find some of the quartets from $R Q(G) \backslash R Q^{\prime}(G)$ (Lemma 5. which is a generalization of [15, Lemma 2]).

Lemma 5. Let $P_{1}=x_{0} x_{1} \ldots x_{p}$ and $P_{2}=y_{0} y_{1} \ldots y_{q}$ be disjoint paths of G (with possible chords) such that for any $0 \leq i<p$ and $0 \leq j<q,\left\{x_{i}, x_{i+1}, y_{j}, y_{j+1}\right\}$ are the vertices of an alternating cycle. Then $x_{0} x_{p} \mid y_{0} y_{q} \in R Q(G)$.

Proof. First note that in general, if a tree T contains the quartets $a b \mid c_{i} c_{i+1}$ for $0 \leq i<l$, then T must contain $a b \mid c_{0} c_{l}$ (this is easy to see by trying to construct such a T : start with the $a b \mid c_{0} c_{1}$ quartet, and insert c_{2}, \ldots, c_{l} in order - at each insertion, c_{i} cannot have its neighbor on the $a-b$ path). For any $0 \leq i<p$, we may apply this observation on $\{a, b\}=\left\{x_{i}, x_{i+1}\right\}$. This yields $x_{i} x_{i+1} \mid y_{0} y_{q} \in$ $R Q(G)$, since $x_{i} x_{i+1} \mid y_{j} y_{j+1} \in R Q^{\prime}(G)$ for every j. Since this is true for every $0 \leq i<p$, we can apply this observation again, this time on $\{a, b\}=\left\{y_{0}, y_{q}\right\}$ (and the c_{i} 's being the x_{i} 's) and deduce that $y_{0} y_{q} \mid x_{0} x_{p} \in R Q(G)$.

In particular, suppose that G has two disjoint pairs of vertices $\left\{x_{0}, x_{1}\right\}$ and $\left\{y_{0}, y_{1}\right\}$ such that x_{0} and x_{1} (resp. y_{0} and y_{1}) share a common neighbor z (resp. z^{\prime}), and $z \notin N\left(y_{0}\right) \cup N\left(y_{1}\right)$ (resp. $\left.z^{\prime} \notin N\left(x_{0}\right) \cup N\left(x_{1}\right)\right)$. Then $x_{0} x_{1} \mid y_{0} y_{1} \in R Q(G)$.

In the rest of this section, we briefly explain how all known non-leaf powers fail to satisfy Proposition 2. We have already argued that a leaf power cannot contain a C_{4}. As for a cycle C_{n} with $n>4$ and vertices x_{0}, \ldots, x_{n-1} in cyclic order, observe that $x_{i} x_{i+1} \mid x_{i+2} x_{i+3} \in R Q\left(C_{n}\right)$ since they form a P_{4}, for each $i \in\{0, \ldots, n-1\}$ (indices are modulo n). In this case it is not difficult to show that $R Q\left(C_{n}\right)$ is incompatible, providing an alternative explanation as to why leaf powers must be chordal.

A similar argument can be used for S_{n}, the n-sun, when $n \geq 4$. If we let x_{0}, \ldots, x_{n-1} be the clique vertices of S_{n} arranged in cyclic order, again $x_{i} x_{i+1} \mid x_{i+2} x_{i+3} \in R Q\left(S_{n}\right)$ for $i \in\{0, \ldots, n-1\}$, here because of Lemma 5 and the degree 2 vertices of S_{n}. Only S_{3}, the 3 -sun, requires an ad-hoc argument, and it is currently the only known non-leaf power for which the set of required quartets are compatible. Figure 1 illustrates how alternating cycles show that S_{3} is not a leaf power. There are only two trees that contain $R Q^{\prime}\left(S_{3}\right)=\{a y|c z, b y| c x, b z \mid a x\}$, and for both, there is an alternating cycle such that each edge is on the same number of positive and negative paths. We do not know if there are other examples for which quartets are not enough to discard the graph as a leaf power. Moreover, an open question is whether for each even integer n, there exists a non-leaf power and a tree that can satisfy every alternating cycle of length $<n$, but not every alternating cycle of length n.

As for the seven strongly chordal graphs presented in [15], they were shown to be non-leaf powers by arguing that $R Q(G)$ was not compatible (although the proof did not use the language of quartet compatibility).

Fig. 1. The 3-sun S_{3}, and the two trees that contain $R Q^{\prime}\left(S_{3}\right)=\{a y|c z, b y| c x, b z \mid a x\}$, with each tree accompanied by the alternating cycle of S_{3} that it cannot satisfy.

Fig. 2. The graph $G_{3,4}$ on the left, followed by its generalization $G_{r, q}$ on the right. In the latter, all edges between the a_{i} 's and b_{i} 's are present, except the non-edges depicted by red dashed lines.

4 Strongly chordal graphs that are not leaf powers

We will use a known set of (minimally) incompatible quartets as a basis for constructing our graph family.

Theorem 1 ([18]). For every integers $r, q \geq 3$, the quartets $Q=\left\{a_{i} a_{i+1} \mid b_{j} b_{j+1}\right.$: $i \in[r-1], j \in[q-1]\} \cup\left\{a_{1} b_{1} \mid a_{r} b_{q}\right\}$ are incompatible. Moreover, any proper subset of Q is compatible.

We now construct the family $\left\{G_{r, q}: r, q \geq 3\right\}$ of minimal strongly chordal graphs that are not leaf powers. The idea is to simply enforce that $R Q\left(G_{r, q}\right)$ contains all the quartets of Q in Theorem 1. Figure 2 illustrate the graph $G_{3,4}$ and a general representation of $G_{r, q}$. For integers $r, q \geq 3, G_{r, q}$ is as follows: start with a clique of size $r+q$, partition its vertices into two disjoint sets $A=\left\{a_{1}, \ldots a_{r}\right\}$ and $B=\left\{b_{1}, \ldots, b_{q}\right\}$, and remove the edges $a_{1} a_{r}, a_{1} b_{q}, b_{1} b_{q}$ and $b_{1} a_{r}$. Then for each $i \in[r-1]$ insert a node x_{i} that is a neighbor of a_{i} and a_{i+1}, and for each $i \in[q-1]$, insert another node y_{i} that is a neighbor of b_{i} and b_{i+1}.

We note that in [15], the graph $G_{3,3}$ was one of the seven graphs shown to be a strongly chordal non-leaf power. Hence $G_{r, q}$ can be seen as a generalization of this example. It is possible that the other examples of [15] can also be generalized.

Theorem 2. For any integers $r, q \geq 3$, the graph $G_{r, q}$ is strongly chordal, is not a leaf power and for any $v \in V\left(G_{r, q}\right), G_{r, q}-v$ is a leaf power.

Proof. One can check that $G_{r, q}$ is strongly chordal by the simple elimination ordering: $x_{1}, x_{2}, \ldots, x_{r-1}, y_{1}, \ldots, y_{q-1}, a_{1}, b_{1}, a_{r}, b_{q}, a_{2}, \ldots, a_{r-1}, b_{2}, \ldots, b_{q-1}$.

To see that $G_{r, q}$ is not a leaf power, we note that the incompatible set of quartets of Theorem 1 is a subset of $R Q\left(G_{r, q}\right): a_{i} a_{i+1} \mid b_{j} b_{j+1} \in R\left(G_{r, q}\right)$ by Lemma 5 and the paths $a_{i} x_{i} a_{i+1}$ and $b_{j} y_{j} b_{j+1}$, and $a_{1} b_{1} \mid a_{r} b_{q} \in R Q\left(G_{r, q}\right)$ since they induce a $2 K_{2}$.

We now show that for any $v \in V\left(G_{r, q}\right), G_{r, q}-v$ is a leaf power. First suppose that $v \in A \cup B$, say $v=a_{i}$ without loss of generality. Then in $G_{r, q}-a_{i}, x_{i}$ (or take x_{i-1} if $i=r$) has degree one, and so by Lemma 3, $G_{r, q}-a_{i}$ is a leaf power if and only if $G_{r, q}-a_{i}-x_{i}$ is a leaf power. Therefore, it suffices to show that

Fig. 3. A leaf root of $G_{r, q}-x_{i}$.
$G_{r, q}-x_{i}$ is a leaf power. We may thus assume that $v=x_{i}$ for some i (the $v=y_{i}$ case is the same by symmetry).

Figure 3 exhibits a leaf root (T, f) for $G_{r, q}-x_{i}$ (the weighting contains 0 edges, but this can be handled by Lemma 11. In the weighting f, the edges take values depending on variables p, p_{1}, p_{2}, p_{3} which are defined as follows:

$$
\begin{aligned}
p:=2(2 i-1)(2 r-2 i-1)(2 q-3) & p_{1}:=p /(2 i-1) \\
p_{2}:=p /(2 q-3) & p_{3}:=p /(2 r-2 i-1)
\end{aligned}
$$

and we set the threshold $k:=2 p$. Each edge on the $a_{1}-u, b_{1}-u$ and $a_{r}-v$ path is weighted by p_{1}, p_{2} and p_{3} respectively, with the exception of the last two edges of the $b_{1}-u$ path where one edge has weight 0 and the other $2 p_{2}$. One can check that this ensures that $f\left(p\left(a_{1}, u\right)\right)=f\left(p\left(b_{1}, u\right)\right)=f\left(p\left(a_{r}, v\right)\right)=p,\left(p_{1}, p_{2}\right.$ and p_{3} are chosen so as to distribute a total weight of p across these paths, and p is such that these values are integers). Moreover, $p_{1}, p_{2}, p_{3}>2$. Observe that if $i=1$, then the $a_{1}-u$ path is a single edge and $p_{1}=p$, and if $i=r-1$, the $a_{r}-v$ path is a single edge and $p_{3}=p$. It is not hard to verify that (T, f) satisfies the subgraph of $G-x_{i}$ induced by the a_{j} 's and b_{j} 's (since each pair of vertices has distance at most $2 p$, except $a_{1} a_{r}, a_{1} b_{q}, b_{1} a_{r}$ and $\left.b_{1} b_{q}\right)$.

Now for the x_{j} 's and y_{j} 's. For each $j \in[r-1] \backslash\{i\}$, the edge e incident to x_{j} has $f(e)=2 p-2 p_{1}$ if $j<i$ and $f(e)=2 p-2 p_{3}$ if $j>i$. For $j \in[q-1]$, the edge e incident to y_{j} has $f(e)=2 p-2 p_{2}$ if $j \leq q-3, f(e)=2 p-2 p_{2}-1$ if $j=q-2$ and $f(e)=p-2$ if $j=q-1$. Each x_{j} is easily seen to be satisfied, as the only vertices of T within distance $2 p$ of x_{j} are a_{j} and a_{j+1}. This is equally easy to see for the y_{j} vertices, with the exception of y_{q-1}. In $(T, f), y_{q-1}$ can reach b_{q} and b_{q-1} within distance $2 p$ as required, but we must argue that it cannot reach a_{i} nor a_{i+1} (which is enough, since all the other leaves are farther from y_{q-1}. But this follows from that fact that $p_{1}, p_{3}>2$. This shows that (T, f) is a leaf root of $G_{r, q}-x_{i}$, and concludes the proof.

Interestingly, the $G_{r, q}$ graphs might be subject to various alterations in order to obtain different families of strongly chordal non-leaf powers. One example of such an alteration of $G_{r, q}$ is to pick some $j \in\{2, \ldots, r-2\}$ and remove the edges $\left.\left\{a_{i} b_{q}: 2 \leq i \leq j\right\}\right\}$. One can verify that the resulting graph is still strongly chordal, but requires the same set of incompatible quartets as $G_{r, q}$.

Fig. 4. An illustration of the reduction: G is on the left (only edges incident to s and t are drawn), H is on the right (thick edges mean that every possible edge is present).

5 Hardness of finding $G_{r, q}$ in chordal graphs

We show that deciding if a chordal graph contains an induced subgraph isomorphic to $G_{r, q}$ for some $r, q \geq 3$ is NP-complete. We reduce from the following:
The Restricted Chordless Cycle (RCC) problem:
Input: a bipartite graph $G=(U \cup V, E)$, and two vertices $s, t \in V(G)$ such that $s, t \in U$, both s and t are of degree 2 and they share no common neighbor.
Question: does there exist a chordless cycle in G containing both s and t ?
The RCC problem is shown to be NP-hard in [7, Theorem 2.2] We first need some notation. If P is a path between vertices u and v, we call u and v its endpoints, and the other vertices are internal. Two paths P_{1} and P_{2} of a graph G are said independent if P_{1} and P_{2} are chordless, do not share any vertex except perhaps their endpoints, and for any internal vertices x in P_{1} and y in $P_{2}, x y \notin E(G)$. Observe that there is a chordless cycle containing s and t if and only if there exist two independent paths P_{1} and P_{2} between s and t.

From a RCC instance (G, s, t) we construct a graph H for the problem of deciding if H contains an induced copy of $G_{r, q}$. Figure 4 illustrates the construction.

Let $V(H)=\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \cup X_{U} \cup X_{V}$, where $X_{U}=\left\{u^{\prime}: u \in U \backslash\{s, t\}\right\}$ and $X_{V}=\left\{v^{\prime}: v \in V\right\}$. Denote $X_{U}^{*}=X_{U} \cup\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\}$. For $E(H)$, add an edge between every two vertices of X_{U}^{*} except the edges $s_{1} t_{1}, s_{1} t_{2}, s_{2} t_{1}, s_{2} t_{2}$. Moreover, we add an edge between $u^{\prime} \in X_{U}$ and $v^{\prime} \in X_{V}$ if and only if $u v \in E(G)$. Let $\left\{c_{1}, c_{2}\right\}=N(s)$ and $\left\{d_{1}, d_{2}\right\}=N(t)$. Then add edges $s_{1} c_{1}^{\prime}$ and $s_{2} c_{2}^{\prime}$, and add the edges $t_{1} d_{1}^{\prime}$ and $t_{2} d_{2}^{\prime}$. Notice that X_{V} forms an independent set.

We claim that H is chordal. Note that each vertex v of X_{V} is simplicial, since $N(v)$ consists of vertices from X_{U} and at most one of $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\}$ (since s and t have no common neighbor). Moreover, $H-X_{V}$ is easily seen to be chordal, and it follows that H admits a perfect elimination ordering.

Theorem 3. Deciding if a graph H contains a copy of $G_{r, q}$ for some $r, q \geq 3$ is NP-complete, even if H is restricted to the class of chordal graphs.

[^0]Proof. The problem is in NP, since a subset $I \subseteq V(H)$, along with the labeling of I by the a_{i}, b_{i}, x_{i} and y_{i} 's of a $G_{r, q}$ can serve as a certificate. As for hardness, let G be a graph and H the corresponding graph constructed as above. We claim that G contains two independent paths P_{1} and P_{2} between s and t if and only if H contains a copy of $G_{r, q}$ for some $r, q \geq 3$. The idea is that s_{1}, s_{2} (resp. t_{1}, t_{2}) correspond to the a_{1}, b_{1} (resp. a_{r}, b_{q}) vertices of $G_{r, q}$, while the P_{1} and P_{2} paths give the other vertices. The x_{i} and y_{i} 's are in X_{V}, and the a_{i} and b_{i} 's in X_{U}^{*}.
(\Rightarrow) Let P_{1} and P_{2} be two independent paths between s and t. Note that both paths alternate between U and V, Let $P_{1}=\left(s=u_{1}, v_{1}, u_{2}, v_{2}, \ldots, v_{r-1}, u_{r}=t\right)$ and $P_{2}=\left(s=w_{1}, z_{1}, w_{2}, z_{2}, \ldots, z_{q-1}, w_{q}=t\right)$. Note that since P_{1} and P_{2} are independent, every vertex of $G\left[V\left(P_{1}\right) \cup V\left(P_{2}\right)\right]$ has degree exactly 2 .

We show that the set of vertices $I=\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \cup\left\{x^{\prime}: x \in V\left(P_{1}\right) \cup V\left(P_{2}\right) \backslash\right.$ $\{s, t\}\}$ forms a $G_{r, q}$. Denote $I_{U}=I \cap X_{U}$ and $I_{V}=I \cap X_{V}$. First observe that $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \cup I_{U}$ forms a clique, but minus the edges $\left\{s_{1} t_{1}, s_{1} t_{2}, s_{2} t_{1}, s_{2} t_{2}\right\}$. Hence $\left\{s_{1}, s_{2}\right\}$ will correspond to the vertices $\left\{a_{1}, b_{1}\right\}$ of $G_{r, q}$, and $\left\{t_{1}, t_{2}\right\}$ to $\left\{a_{r}, b_{q}\right\}$, and it remains to find the degree two vertices around this "almostclique". Observe that $\left\{v_{1}, z_{1}\right\}=\left\{c_{1}, c_{2}\right\}$ and $\left\{v_{r-1}, z_{q-1}\right\}=\left\{d_{1}, d_{2}\right\}$. Let $c_{i_{1}}=$ $v_{1}, c_{i_{2}}=z_{1}$ and $d_{j_{1}}=v_{r-1}, d_{j_{2}}=z_{q-1}$, with $\left\{i_{1}, i_{2}\right\}=\left\{j_{1}, j_{2}\right\}=\{1,2\}$. In H, the vertex sequence $\left(s_{i_{1}}, u_{2}^{\prime}, \ldots, u_{r-1}^{\prime}, t_{j_{1}}\right)$ forms a path in $G[I]$ in which every two consecutive vertices share a common neighbor, which lies in I_{V}. Namely, $s_{i_{1}}$ and u_{2}^{\prime} share $v_{1}^{\prime}=c_{i_{1}}^{\prime}, u_{i}^{\prime}, u_{i+1}^{\prime}$ share v_{i}^{\prime}, and $u_{r-1}^{\prime}, t_{j_{1}}$ share $v_{r-1}^{\prime}=d_{j_{1}}^{\prime}$. The same property holds for the consecutive vertices of the path $\left(s_{i_{2}}, w_{2}^{\prime}, \ldots, w_{q-1}^{\prime}, t_{i_{2}}\right)$. Note that these two paths are disjoint in H and partition I_{U}. Moreover, by construction each $x^{\prime} \in I_{V}$ is a shared vertex for some pair of consecutive vertices, i.e. x^{\prime} has at least two neighbors in I.

Therefore, it only remains to show that if $x^{\prime} \in I_{V}$, then x^{\prime} has only two neighbors in I. Suppose instead that x^{\prime} has at least 3 neighbors in I, say $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$. Note that all three lie in X_{U}^{*}. We must have $\left|\left\{s_{1}, s_{2}\right\} \cap\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}\right| \leq 1$, since s_{1} and s_{2} share no neighbor in X_{V}. Likewise, $\left|\left\{t_{1}, t_{2}\right\} \cap\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}\right| \leq 1$. This implies that $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$ are vertices corresponding to three distinct vertices of G, say y_{1}, y_{2} and y_{3}. Then x is a neighbor of y_{1}, y_{2}, y_{3} and since, by construction, $x, y_{1}, y_{2}, y_{3} \in$ $V\left(P_{1}\right) \cup V\left(P_{2}\right)$, this contradicts that $G\left[V\left(P_{1}\right) \cup V\left(P_{2}\right)\right]$ has maximum degree 2 .
(\Leftarrow) Suppose there is $I \subseteq V(H)$ such that $H[I]$ is isomorphic to $G_{r, q}$ for some $r, q \geq 3$. Add a label to the vertices of I as in Figure 2 (i.e. we assume that we know where the a_{i} 's, b_{i} 's, x_{i} 's and y_{i} 's are in I). We first show that $a_{1}, b_{1}, a_{r}, b_{q}$, which we will call the corner vertices, are $s_{1}, s_{2}, t_{1}, t_{2}$. If one of a_{1} or b_{1} is in X_{U}, then both a_{r} and b_{q} must be in X_{V}, as otherwise there would be an edge between $\left\{a_{1}, b_{1}\right\}$ and $\left\{a_{r}, b_{q}\right\}$. But a_{r} and b_{q} must share an edge, whereas X_{V} is an independent set. Thus we may assume $\left\{a_{1}, b_{1}\right\} \cap X_{U}=\emptyset$. Suppose that a_{1} or b_{1} is in X_{V}, say a_{1}. Because $b_{1} \notin X_{U}$ as argued above, we must have $b_{1} \in\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$. Suppose w.l.o.g. that $b_{1}=s_{1}$. Hence $a_{1}=c_{1}^{\prime}$. Now consider the location of the x_{1} vertex of $G_{r, q}$. Then x_{1} must be in X_{U}, in which case x_{1} is a neighbor of $s_{1}=b_{1}$, contradicting that I is a copy of $G_{r, q}$. Therefore, we may assume that $\left\{a_{1}, b_{1}\right\} \cap X_{V}=\emptyset$. By applying the same argument on a_{r} and b_{q}, we deduce that $\left\{a_{1}, b_{1}, a_{r}, b_{q}\right\}=\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$. We will suppose, without loss
of generality, that $a_{1}=s_{1}, b_{1}=s_{2}$ and $\left\{a_{r}, b_{q}\right\}=\left\{t_{1}, t_{2}\right\}$ (otherwise we may relabel the vertices of the $G_{r, q}$ copy, though note that in doing so we cannot make assumptions on which t_{i} corresponds to which of $\left.\left\{a_{r}, b_{q}\right\}\right)$.

Now let $\left(s_{1}=a_{1}, a_{2}, \ldots, a_{r}=t_{j}\right), j \in\{1,2\}$ be the path between the "top" corners of the $G_{r, q}$ copy in H, such that $a_{i} a_{i+1}$ share a common neighbor x_{i} of degree 2 in $G[I], i \in[r-1]$. Similarly, let $\left(s_{2}=b_{1}, b_{2}, \ldots, b_{q}=t_{l}\right),(l \in\{1,2\}$ and $l \neq j$) be the path between the "bottom" corners of $G_{r, q}$, such that $b_{i} b_{i+1}$ share a common neighbor y_{i} of degree 2 for $i \in[q-1]$. We claim that $a_{i} \in X_{U}$ for each $2 \leq i \leq r-1$. Suppose instead that some a_{i} is not in X_{U}. Since $s_{1}=a_{1}$ is a neighbor of a_{i}, we must have $a_{i}=c_{1}^{\prime}$ (the only other possibility is $a_{i}=s_{2}$, but $s_{2}=b_{1}$). The common neighbor x_{i-1} of a_{i-1} and a_{i} therefore lies in X_{U}. But then, x_{i-1} is a neighbor of $s_{2}=b_{1}$, which is not possible. Therefore, each a_{i} belongs to X_{U}. By symmetry, each b_{i} also belongs to X_{U}. This implies that every x_{i} and y_{i} belong to X_{V}, with $x_{1}=c_{1}^{\prime}, x_{r-1}=d_{j}^{\prime}, y_{1}=c_{2}^{\prime}$ and $y_{q-1}=d_{l}^{\prime}$.

We can finally find our independent paths P_{1} and P_{2}. It is straightforward to check that $\left\{s, t, c_{1}\right\} \cup\left\{u: u^{\prime} \in\left\{x_{i}, a_{i}\right\}\right.$ for $\left.2 \leq i \leq r-1\right\}$ induces a path P_{1} from s to t in G. Similarly, $\left\{s, t, c_{2}\right\} \cup\left\{u: u^{\prime} \in\left\{y_{i}, b_{i}\right\}\right.$ for $\left.2 \leq i \leq q-1\right\}$ also induces a path P_{2} from s to t. Moreover, P_{1} and P_{2} share no internal vertex.

It only remains to show that P_{1} and P_{2} are independent, i.e. form an induced cycle. We prove that $G\left[V\left(P_{1}\right) \cup V\left(P_{2}\right)\right]$ has maximum degree 2 . Suppose there is a vertex v of degree at least 3 in $G\left[V\left(P_{1}\right) \cup V\left(P_{2}\right)\right]$. Then $v \notin\{s, t\}$ since they have degree 2 in G. Moreover, $v \notin V$, as otherwise, $v^{\prime} \in I_{V}$ which implies that v^{\prime} is an x_{i} or a y_{i} and, by construction, v^{\prime} has at least 3 neighbors in I, a contradiction. Thus $v \in U$, and its 3 neighbors lie in V. Hence, v^{\prime} is either an a_{i} or a b_{i} and has three neighbors in I_{V}, which is again a contradiction. This concludes the proof.

6 Conclusion

In this paper, we have shown that leaf powers cannot be characterized by strong chordality and a finite set of forbidden subgraphs. However, many questions asked here may provide more insight on leaf powers. For one, is the condition of Proposition 1 sufficient? And if so, can it be exploited for some algorithmic or graph theoretic purpose? Also, we do not know if large alternating cycles are important, since so far, every non-leaf power could be explained by checking its alternating cycles of length 4 or 6 . A constant bound on the length of "important" alternating cycles would allow enumerating them in polynomial time.

Also, we have exhibited an infinite family of strongly chordal non-leaf powers (along with some variations of it), but it is likely that there are others. One potential direction is to try to generalize all of the seven graphs found in [15]. The clique arrangement of $G_{r, q}$ may be informative towards this goal. Finally on the hardness of recognizing leaf powers, the hardness of finding $G_{r, q}$ in strongly chordal graphs is of special interest. A NP-hardness proof would now be significant evidence towards the difficulty of deciding leaf power membership. And in the other direction, a polynomial time recognition algorithm may provide important insight on how to find forbidden structures in leaf powers.

References

1. Hans-Jürgen Bandelt and Andreas Dress. Reconstructing the shape of a tree from observed dissimilarity data. Advances in applied mathematics, 7(3):309-343, 1986.
2. Vincent Berry, Tao Jiang, Paul Kearney, Ming Li, and Todd Wareham. Quartet cleaning: improved algorithms and simulations. In European Symposium on Algorithms, pages 313-324. Springer, 1999.
3. Eric Bibelnieks and Perino M Dearing. Neighborhood subtree tolerance graphs. Discrete applied mathematics, 43(1):13-26, 1993.
4. Andreas Brandstädt and Christian Hundt. Ptolemaic graphs and interval graphs are leaf powers. In Latin American Symposium on Theoretical Informatics, pages 479-491. Springer, 2008.
5. Andreas Brandstädt, Christian Hundt, Federico Mancini, and Peter Wagner. Rooted directed path graphs are leaf powers. Discrete Mathematics, 310(4):897910, 2010.
6. Tiziana Calamoneri and Blerina Sinaimeri. Pairwise compatibility graphs: A survey. SIAM Review, 58(3):445-460, 2016.
7. Emilie Diot, Sébastien Tavenas, and Nicolas Trotignon. Detecting wheels. Applicable Analysis and Discrete Mathematics, pages 111-122, 2014.
8. Martin Farber. Characterizations of strongly chordal graphs. Discrete Mathematics, 43(2-3):173-189, 1983.
9. Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific journal of mathematics, 15(3):835-855, 1965.
10. William Kennedy, Guohui Lin, and Guiying Yan. Strictly chordal graphs are leaf powers. Journal of Discrete Algorithms, 4(4):511-525, 2006.
11. Manuel Lafond and Nadia El-Mabrouk. Orthology and paralogy constraints: satisfiability and consistency. BMC genomics, 15(6):S12, 2014.
12. Li Li, Christian J Stoeckert, and David S Roos. Orthomcl: identification of ortholog groups for eukaryotic genomes. Genome research, 13(9):2178-2189, 2003.
13. Ragnar Nevries and Christian Rosenke. Towards a characterization of leaf powers by clique arrangements. $C o R R$, abs $/ 1402.1425,2014$.
14. Ragnar Nevries and Christian Rosenke. Characterizing and computing the structure of clique intersections in strongly chordal graphs. Discrete Applied Mathematics, 181:221-234, 2015.
15. Ragnar Nevries and Christian Rosenke. Towards a characterization of leaf powers by clique arrangements. Graphs and Combinatorics, 32(5):2053-2077, 2016.
16. Naomi Nishimura, Prabhakar Ragde, and Dimitrios M Thilikos. On graph powers for leaf-labeled trees. Journal of Algorithms, 42(1):69-108, 2002.
17. Robert Paige and Robert E Tarjan. Three partition refinement algorithms. SIAM Journal on Computing, 16(6):973-989, 1987.
18. Brad Shutters, Sudheer Vakati, and David Fernández-Baca. Incompatible quartets, triplets, and characters. Algorithms for Molecular Biology, 8(1):11, 2013.
19. Jeremy P Spinrad. Doubly lexical ordering of dense 0-1 matrices. Information Processing Letters, 45(5):229-235, 1993.
20. Michael Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of classification, 9(1):91-116, 1992.
21. Roman L Tatusov, Michael Y Galperin, Darren A Natale, and Eugene V Koonin. The cog database: a tool for genome-scale analysis of protein functions and evolution. Nucleic acids research, 28(1):33-36, 2000.

Fig. 5. An example alternating cycle C and tree T with a single internal edge $u v$. Edges and non-edges corresponding to a positive and negative path containing $u v$ are labeled with a " + " and "-", respectively, while the " \emptyset " label is for edges/non-edges corresponding to a path that is not negative nor positive. Here y_{0}, y_{2} and y_{3} are negative, whereas y_{1} is positive. The tree is labeled with the weights that would be given by the greedy procedure of the proof, starting at y_{0}.

Appendix

6.1 Proof of Lemma 3

Proof. For the non-obvious direction, suppose that (T, f) is a leaf root of $G-v$ with threshold k. Let w be the neighbor of v in G. Then in (T, f) we can do the following modification: subdivide the edge $w z$ incident to w into two edges $w z^{\prime}$ and $z^{\prime} z$, set $f\left(w z^{\prime}\right)=0, f\left(z^{\prime} z\right)=f(w z)$, and insert v by making it adjacent to z^{\prime} and setting $f\left(v z^{\prime}\right)=k$. As $f\left(z^{\prime} z\right)>0,(T, f)$ satisfies the distance constraints on v, and we can apply Lemma 1 for the 0 edge.

Proof of Lemma 4, sufficiency

(\Leftarrow) : let $u v$ be an edge that appears on strictly more negative paths than positive paths. We prove that if u and v are the only two internal vertices of T (i.e. every leaf is adjacent to either u or v, as in Figure 5), then the statement holds. By Lemma 2, this is sufficient, since we can refine T into the desired tree afterwards.

Some more notation is required. For $z \in V(C)$, denote by $a(z)$ the single neighbor of z in T (with $a(z) \in\{u, v\}$). For a weighting function f, we may write $f(z)$ instead of $f(z, a(z))$. Let $X_{0}=N(u) \backslash\{v\}$ and $X_{1}=N(v) \backslash\{u\}$. Call two vertices x, y separated if $x \in X_{i}$ and $y \in X_{1-i}$ for some $i \in\{0,1\}$. Call a vertex $y_{i} \in V(C)$ positive if y_{i} and x_{i-1} are not separated, but y_{i} and x_{i} are (i.e. y_{i} gives a "positive charge" to $u v$). Likewise, y_{i} is negative if y_{i} and x_{i-1} are separated but y_{i} and x_{i} are not. Otherwise, y_{i} is neutral.

Let P, N and Z denote, respectively, the number of positive, negative and neutral vertices among the y_{i} 's. Then we must have $N \geq P+2$. To see this, first
note that the number of paths, positive or negative, that go through $u v$ must be even (since for each path that starts in X_{0} and goes to X_{1}, there must be a corresponding path from X_{1} to X_{0}). Thus $u v$ is on at least two more negative paths than positive paths. Then $N \geq P+2$ follows, since negative vertices correspond to a negative path that cannot be matched with a positive path.

We now construct a weighting f of T so that it satisfies C. Put $e:=f(u v)=$ c^{2} and set $k:=2 c^{10}$ to be the threshold for $T{ }^{2}$ Suppose that y_{0} is negative (otherwise relabel vertices), and set $f\left(y_{0}\right)=k / 2$. Then traverse C in cyclic order starting from x_{1} towards y_{1} until x_{0} is reached, weighting each vertex z encountered in a greedy manner, as follows:

- if $z=x_{i}$ and x_{i} is separated from y_{i-1}, set $f\left(x_{i}\right)=k+1-e-f\left(y_{i-1}\right)$;
- if $z=x_{i}$ and x_{i} is not separated from y_{i-1}, set $f\left(x_{i}\right)=k+1-f\left(y_{i-1}\right)$;
- if $z=y_{i}$ and y_{i} is separated from x_{i}, set $f\left(y_{i}\right)=k-e-f\left(x_{i}\right)$;
- if $z=y_{i}$ and y_{i} is not separated from x_{i}, set $f\left(y_{i}\right)=k-f\left(x_{i}\right)$.

At the end of this process, every edge of T will be weighted. Refer to Figure 5 for an example application of this procedure. One can check that all edge weights are positive integers since $f(z) \geq k / 2-c e$ for all $z \in V(C)$. When the process stops at x_{0}, by construction f satisfies every edge and non-edge of C, except possibly the $x_{0} y_{0}$ edge of C. Hence it suffices to show that the above weighting satisfies $d_{f}\left(x_{0}, y_{0}\right) \leq k$. Since y_{0} is negative, it is not separated from x_{0}, and hence we must show that $f\left(x_{0}\right) \leq k / 2$.

We have $f\left(x_{1}\right)=k / 2+1-e$. Now for $i \in\{1, \ldots, c-1\}$, consider $\Delta_{i}:=$ $f\left(x_{i+1}\right)-f\left(x_{i}\right)$ (recall that indices are modulo c). If y_{i} is positive, then $f\left(y_{i}\right)=$ $k-f\left(x_{i}\right)-e$ and $f\left(x_{i+1}\right)=k+1-f\left(y_{i}\right)=f\left(x_{i}\right)+e+1$, implying $\Delta_{i}=e+1$. Using the same logic on the other cases, we obtain that if y_{i} is negative, $\Delta_{i}=$ $-e+1$ and if y_{i} is neutral, $\Delta_{i}=1$. Since $f\left(x_{0}\right)=f\left(x_{1}\right)+\sum_{i=1}^{c-1} \Delta_{i}$, we have $f\left(x_{0}\right)=f\left(x_{1}\right)+P \cdot(e+1)+(N-1) \cdot(-e+1)+Z$ (we must use $N-1$ instead of N because y_{0} is negative, but is not between x_{1} and x_{0} in the visited cyclic order). This yields $f\left(x_{0}\right) \leq k / 2+1-e+e(P-N+1)+c$. Since $N \geq P+2$ and $e=c^{2}$, we obtain $f\left(x_{0}\right) \leq k / 2$ as desired.

[^1]
[^0]: ${ }^{1}$ Strictly speaking, the problem asks if there exists a chordless cycle with both s and t of size at least k. However, in the graph constructed for the reduction, any chordless cycle containing s and t has size at least k if it exists - therefore the question of existence is hard. Also, s and t are not required to be in the same part of the bipartition, but again, this is allowable by subdividing an edge incident to s or t.

[^1]: ${ }^{2}$ We multiply k by 2 to ensure it is even

