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Abstract. We focus on counting the number of labeled graphs on n

vertices and treewidth at most k (or equivalently, the number of labeled
partial k-trees), which we denote by Tn,k. So far, only the particular
cases Tn,1 and Tn,2 had been studied. We show that

(

c ·
k · 2k · n

log k

)n

·2−
k(k+3)

2 ·k−2k−2 ≤ Tn,k ≤
(

k · 2k · n
)n

·2−
k(k+1)

2 ·k−k
,

for k > 1 and some explicit absolute constant c > 0. The upper bound
is an immediate consequence of the well-known number of labeled k-
trees, while the lower bound is obtained from an explicit algorithmic
construction. It follows from this construction that both bounds also
apply to graphs of pathwidth and proper-pathwidth at most k.

Keywords: treewidth; partial k-trees; enumeration; pathwidth; proper-
pathwidth.

1 Introduction

Given an integer k > 0, a k-tree is a graph that can be constructed starting
from a (k+1)-clique and iteratively adding a vertex connected to k vertices that
form a clique. These graphs are natural extensions of trees, which correspond
to 1-trees, and received considerable attention since the late 1960s [1, 8, 13, 19].
The notion of k-tree was introduced by Harary and Palmer [13], and the number
of labeled k-trees on n vertices was first found by Beineke and Pippert [1]; cf.
Moon [19] and Foata [8] for alternative proofs.

Theorem 1 (Beineke and Pippert [1]). There are
(

n
k

)

(kn − k2 + 1)n−k−2

many n-vertex labeled k-trees.

A partial k-tree is a subgraph of a k-tree. For two integers n, k with 0 < k ≤ n,
let Tn,k denote the number of n-vertex labeled partial k-trees. While the number
of n-vertex labeled k-trees is given by Theorem 1, it appears that very little is
known about Tn,k. Indeed, to the best of our knowledge, only the cases k = 1
and k = 2 have been studied. For the case k = 1, the number of n-vertex labeled
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forests is asymptotically Tn,1 ∼ √
e · nn−2 [25]. For the case k = 2, the number

of n-vertex labeled series-parallel graphs, which is known to be exactly Tn,2, is

asymptotically Tn,2 ∼ g · n− 5
2 γnn! for some explicit constants g and γ [2].

Interestingly, partial k-trees are exactly the graphs of treewidth at most k.
Treewidth is a structural graph invariant, which we formally define below, first
introduced by Halin [12] and later rediscovered by Robertson and Seymour [22]
as a fundamental tool in their Graph Minors project culminating in the proof of
Wagner’s conjecture [24].

A tree-decomposition of width k of a graph G = (V,E) is a pair (T,B), where
T is a tree and B = {Bt | Bt ⊆ V, t ∈ V (T)} such that:

1.
⋃

t∈V (T) Bt = V .

2. For every edge {u, v} ∈ E there is a t ∈ V (T) such that {u, v} ⊆ Bt.
3. Bi∩Bℓ ⊆ Bj for all {i, j, ℓ} ⊆ V (T) such that j lies on the unique path from

i to ℓ in T.
4. maxt∈V (T) |Bt| = k + 1.

The sets of B are called bags. The treewidth of G, denoted by tw(G), is the
smallest integer k such that there exists a tree-decomposition of G of width k.
If T is a path, then (T,B) is also called a path-decomposition. The pathwidth of
G, denoted by pw(G), is the smallest integer k such that there exists a path-
decomposition of G of width k.

The following lemma is well-known and can be found, for instance, in [16].

Lemma 1. A graph has treewidth at most k if and only if it is a partial k-tree.

Even if treewidth was introduced with purely graph-theoretic motivations, it
turned out to have a number of algorithmic applications as well. One of the most
relevant results in this area is Courcelle’s theorem [5], stating that any graph
problem expressible in monadic second-order logic can be solved in linear time on
graphs of bounded treewidth. Nowadays, treewidth is exhaustively used in both
structural and algorithmic Graph Theory, cf. for instance the textbooks [6,7,16].
Recently, the treewidth of random graphs has also been studied under several
probabilistic models [3, 11, 17, 18, 21].

In this article, for any two integers n, k with 0 < k ≤ n, we are interested
in counting the number of n-vertex labeled graphs that have treewidth at most
k. By Lemma 1, this number is equal to Tn,k, and actually our approach relies
heavily on the definition of partial k-trees. As, by definition, the number of edges

of an n-vertex k-tree is kn− k(k+1)
2 , by using Theorem 1 we obtain the following

upper bound:

Tn,k ≤ 2kn−
k(k+1)

2 ·
(

n

k

)

· (kn− k2 + 1)n−k−2. (1)

Using the fact that
(

n
k

)

≤ nk and 1 ≤ k2, from Equation (1) it follows that

Tn,k ≤ (k · 2k · n)n · 2− k(k+1)
2 · k−k. (2)
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On the other hand, we can easily provide a lower bound on Tn,k with the
following construction. Starting from an (n− k + 1)-vertex forest, we add k − 1
apices, that is, k−1 vertices with an arbitrary neighborhood in the forest. Every
graph created in this way has exactly n vertices and is clearly of treewidth at
most k. Moreover, as the number of labeled forests on n − k + 1 vertices is
at least the number of trees on n − k + 1 vertices, which is well-known to be
(n − k + 1)n−k−1 [4], and each apex can be connected to the forest in 2n−k+1

different ways, we obtain that

Tn,k ≥ (n− k + 1)n−k−1 · 2(k−1)(n−k+1). (3)

As n−2 ≥ 2−n, if we further assume that n
k

tends to infinity, from Equa-
tion (3) we get that, asymptotically,

Tn,k ≥
(

1

4
· 2k · n

)n

· 2−k2

. (4)

The dominant factors of Equations (2) and (4), that is, (k · 2k · n)n and
(

1
4 · 2k · n

)n
, respectively, differ by a term

(

1
4

)n
and, most importantly, by a

term kn.

In order to close the gap between the existing lower and upper bounds on
Tn,k, in this article we focus on improving the trivial lower bound presented
above. We obtain the following result.

Theorem 2. For any two integers n, k with 1 < k ≤ n, the number Tn,k of

n-vertex labeled graphs with treewidth at most k satisfies

Tn,k ≥
(

1

128e
· k · 2k · n

log k

)n

· 2−k(k+3)
2 · k−2k−2. (5)

That is, we fall short by a factor (128e · logk)n in order to reach the dominant
factor of Equation (2). In order to prove Theorem 2, we present in Section 2 an
algorithmic construction of a family of n-vertex labeled partial k-trees, which
is inspired from the definition of k-trees. When exhibiting such a construction
toward a lower bound, one has to play with the trade-off of, on the one hand,
constructing as many graphs as possible and, on the other hand, being able to
bound the number of duplicates; we perform this analysis in Section 3. Namely,
we first count in Subsection 3.1 the number of elements created by the construc-
tion, and then we bound in Subsection 3.2 the number of times that the same
element may have been created. Finally, we present in Section 4 some concluding
remarks and several avenues for further research.

2 The construction

Let n and k be two fixed positive integers with 0 < k ≤ n. In this section, we
construct a set Rn,k of n-vertex labeled partial k-trees. For notational simplicity,
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we let Rn,k = |Rn,k|. In Subsection 2.1 we provide some notation and definitions
used in the construction, in Subsection 2.2 we describe the construction, and in
Subsection 2.3 we prove that the treewidth of the generated graphs is indeed
at most k. In fact, we prove a stronger property, namely that the graphs we
construct have proper-pathwidth at most k, where the proper-pathwidth is a
graph invariant that is lower-bounded by the pathwidth, which in turn is lower-
bounded by the treewidth.

2.1 Notation and definitions

For the construction, we use a labeling function σ defined by a permutation of
{1, . . . , n} with the constraint that σ(1) = 1. Inspired by the definition of k-
trees, we will introduce vertices {v1, v2, . . . , vn} one by one following the order
σ(1), σ(2), . . . , σ(n) given by the labeling function σ. If i, j ∈ {1, . . . , n}, then i

is called the index of vσ(i), the vertex vσ(i) is the i-th introduced vertex and, if
j < i, the vertex vσ(j) is said to be to the left of vσ(i).

In order to build explicitly a class of partial k-trees, for every i ≥ k + 1 we
will define:

1. A set Ai ⊆ {j | j < i} of active vertices, corresponding to the clique to
which a new vertex can be connected in the definition of k-trees, such that
|Ai| = k.

2. A vertex ai ∈ Ai, called the anchor, whose role will be described in the next
paragraph.

3. An element f(i) ∈ Ai, called the frozen vertex, which corresponds to a vertex
that will not be active anymore.

4. A set N(i) ⊆ Ai, which corresponds to the indices of the neighbors of vσ(i)
to the left.

The construction will work with blocks of size s for some integer s depending
of n and k, to be specified in Subsection 3.3. Namely, we will insert the vertices
by consecutive blocks of size s, with the property that all vertices of the same
block share the same anchor and are adjacent to it.

In the description of the construction, we use the term choose for the elements
for which there are several choices, which will allow us to provide a lower bound
on the number of elements in Rn,k. It will be the case of the functions σ, f , and
N . As it will become clear later (cf. Section 3), once σ, f , and N are fixed, all
the other elements of the construction are uniquely defined.

For every index i, we will impose that

|N(i)| > k + 1

2
,

in order to have simultaneously enough choices for N(i) and enough choices for
the frozen vertex f(i), which will be chosen among the vertices in N(i− 1). On
the other hand, as it will become clear in Subsection 3.2, the role of the anchor
vertices will be to uniquely determine the vertices belonging to “its” block. For
that, as we will see in the description of the construction, when a new block
starts, its anchor is defined as the smallest currently active vertex.
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2.2 Description of the construction

Inspired by the definition of k-trees, we construct our partial k-trees in an algo-
rithmic way. We say that a triple (σ, f,N), with σ a permutation of {1, . . . , n},
f : {k + 2, . . . , n} → {1, . . . , n}, and N : {2, . . . , n} → 2{1,...,n}, is constructible

if it can be defined according to the following algorithm:

Choose σ, a permutation of {1, . . . , n} such that σ(1) = 1.
for i=2 to k do

Choose N(i) ⊆ {j | j < i}, such that 1 ∈ N(i).

for i=k+1 do
Define Ak+1 = {j | j < k + 1}.
Define ak+1 = 1.
Choose N(k + 1) ⊆ {j | j < i}, such that 1 ∈ N(k + 1).

for i=k+2 to n do
if i ≡ k + 2 (mod s) then

Define f(i) = ai−1.
Define Ai = (Ai−1 \ {f(i)}) ∪ {i− 1}.
Define ai = minAi.
Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| > k+1

2 ; cf. Fig. 1.

else
Choose f(i) ∈ (Ai−1 \ {ai−1}) ∩N(i− 1).
Define Ai = (Ai−1 \ {f(i)}) ∪ {i− 1}.
Define ai = ai−1.
Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| > k+1

2 ; cf. Fig. 2.

vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)

vσ(i5)

Ai−1

vσ(i)

block of s vertices

Fig. 1. Introduction of vσ(i) with k + 2 ≤ i ≤ n and i ≡ k + 2 (mod s), s = 4, and
k = 5. We assume that i1 < i2 < i3 < i4 < i5 < i. We have defined f(i) = vσ(i1) and
ai = vσ(i2). The frozen vertex f(i) is marked with a cross, and the anchor ai is marked
with a circle. We choose N(i) = {i3, i5}.
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vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)

vσ(i5)

Ai−1

vσ(i)

block of s vertices

Fig. 2. Introduction of vσ(i) with k + 2 ≤ i ≤ n and i 6≡ k + 2 (mod s), s = 4, and
k = 5. We assume that i1 < i2 < i3 < i4 < i5 < i. We have defined ai = ai−1 = vσ(i1).
The frozen vertex f(i) is marked with a cross, and the anchor ai is marked with a circle.
We choose f(i) = vσ(i3), assuming vσ(i3) is a neighbor of vσ(i5), and N(i) = {i2, i5}.

Let (σ, f,N) be a constructible triple. We define the graph G(σ, f,N) =
(V,E) such that V = {vi | i ∈ {1, . . . , n}} and E = {{vσ(i), vσ(j)} | j ∈ N(i)}.
Note that, given (σ, f,N), the graph G(σ, f,N) is well-defined. We denote by
Rn,k the set of all graphs G(σ, f,N) such that (σ, f,N) is constructible.

2.3 Bounding the proper-pathwidth of the constructed graphs

We start by defining the notion of proper-pathwidth of a graph. This parameter
was introduced by Takahashi et al. [26], and its relation with search games has
been studied in [27].

Let G be a graph and let X = {X1, X2, . . . , Xr} be a sequence of subsets of
V (G). The width of X is max1≤i≤r |Xi| − 1. X is called a proper-path decompo-

sition of G if the following conditions are satisfied:

1. For any distinct i and j, Xi 6⊆ Xj.

2.
⋃r

i=1 Xi = V (G).
3. For every edge {u, v} ∈ E(G), there exists an i such that u, v ∈ Xi.

4. For all a, b, and c with 1 ≤ a ≤ b ≤ c ≤ r, Xa ∩Xc ⊆ Xb.

5. For all a, b, and c with 1 ≤ a < b < c ≤ r, |Xa ∩Xc| ≤ |Xb| − 2.

The proper-pathwidth of G, denoted by ppw(G), is the minimum width over
all proper-path decompositions of G. If X satisfies conditions 1-4 above, X is
called a path-decomposition, which coincides with the definition of pathwidth
given in Section 1.

From the definitions, for any graph G it clearly holds that

ppw(G) ≥ pw(G) ≥ tw(G). (6)
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Let us show that any element of Rn,k has proper-pathwidth at most k. Let
(σ, f,N) be constructible such that G(σ, f,N) ∈ Rn,k and let Ai be defined as in
Subsection 2.2. We define for every i ∈ {k + 1, . . . , n} the bag Xi = {vσ(j) | j ∈
Ai ∪ {i}}. The sequence X = {Xk+1, Xk+2, . . . , Xn} satisfies the five conditions
of the above definition, and for every i ∈ {k + 1, . . . , n}, |Xi| = k + 1. It follows
that G(σ, f,N) has proper-pathwidth at most k, so it also has treewidth at most
k, and therefore G(σ, f,N) is a partial k-tree by Lemma 1.

3 Counting the number of elements

In this section we analyze our construction and give a lower bound on Rn,k.
We first start in Subsection 3.1 by counting the number of constructible triples
(σ, f,N) generated by the algorithm, and in Subsection 3.2 we provide an upper
bound on the number of duplicates. Finally, in Subsection 3.3 we argue about
the best choice for the parameter s defined in the construction.

3.1 Number of constructible triples (σ, f,N)

We proceed to count the number of constructible triples (σ, f,N) created by
the construction given in Subsection 2.2. As σ is a permutation of {1, . . . , n}
with the constraint that σ(1) = 1, there are (n− 1)! distinct possibilities for the
choice of σ. The function f can take more than one value only for k+2 ≤ i ≤ n

and i 6≡ k + 2 (mod s). This represents n − (k + 1) − ⌈n−(k+1)
s

⌉ cases. In each

of these cases, there are at least k−1
2 distinct possible values for f(i). Thus,

we have at least (k−1
2 )(n−(k+1)−⌈n−(k+1)

s
⌉) distinct possibilities for the choice of

f . For every i ∈ {2, . . . , k + 1}, N(i) can be chosen as any subset of i − 1

vertices containing the fixed vertex vσ(1). This yields
∏k+1

i=2 2i−2 = 2
k(k−1)

2 ways
to define N over {2, . . . , k+1}. For i ≥ k+2, N(i) can be chosen as any subset
of size at least k+1

2 of a set of k elements with one element that is imposed.

This results in
∑k

i=⌈ k+1
2 ⌉

(

k−1
i−1

)

≥ 2k−2 possible choices for N(i). Thus, we have

2
k(k+1)

2 · 2(n−(k+1))(k−2) distinct possibilities to construct N .
By combining everything, we obtain at least

(n− 1)! ·
(

k − 1

2

)n−(k+1)−⌈
n−(k+1)

s
⌉

· 2 k(k−1)
2 · 2(n−(k+1))(k−2) (7)

distinct possible constructible triples (σ, f,N).

3.2 Bounding the number of duplicates

Let H be an element of Rn,k. Our objective is to obtain an upper bound on the
number of constructible triples (σ, f,N) such that H = G(σ, f,N).

Given H , we start by reconstructing σ. Firstly, we know by construction that
σ(1) = 1. Secondly, we know that f(k+2) = 1 and so, for every i > k+1, 1 6∈ Ai,
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implying that 1 6∈ N(i). It follows that the only neighbors of vσ(1) are vσ(i) with
1 < i ≤ k+1. So the set of images by σ of {2, . . . , k+1} is uniquely determined.
Then we guess the function σ over this set {2, . . . , k + 1}. We have k! possible
such guesses for σ.

Thirdly, assume that we have correctly guessed σ on {1, . . . , k + 1 + ps} for
some non-negative integer p with k+1+ps < n. Then ak+1+ps+1 is the smallest
active vertex that is adjacent to at least one element that is still not introduced
after step k + 1 + ps. Then the neighbors of ak+1+ps+1 over the elements that
are not introduced yet after step k + 1 + ps are the elements whose indices are
between k + 1 + ps + 1 and k + 1 + (p + 1)s, and these vertices constitute the
next block of the construction; see Fig. 3 for an illustration. As before, the set
of images by σ of {k + 1+ ps+ 1, . . . , k + 1+ (p+ 1)s} is uniquely determined,
and we guess σ over this set. We have at most s! possible such guesses. Fourthly,
if k + 1 + (p + 1)s > n (that is, for the last block, which may have size smaller

than s), we have t! possible guesses with t = n− (k + 1)− s⌊n−(k+1)
s

⌋.

vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)

vσ(i5)

Ai−1

block of s vertices

Fig. 3. The current anchor vσ(i1) is connected to all the s vertices of the current block
but will not be connected to any of the remaining non-introduced vertices.

We know that the first, the second, and the fourth cases can occur only

once in the construction, and the third case can occur at most ⌊n−(k+1)
s

⌋ times.
Therefore, an upper bound on the number of distinct possible guesses for σ is

k! · (s!)⌊n−(k+1)
s

⌋ · t!, where t = n− (k + 1)− s⌊n−(k+1)
s

⌋ .

Let us now fix σ. Then the function N is uniquely determined. Indeed, for
every i ∈ {1, . . . , n}, N(i) corresponds to the neighbors of vσ(i) to the left. It
remains to bound the number of possible functions f . In order to do this, we
define for every i > 1, Di = {j ∈ N(i) | ∀j′ > i, {vσ(j), vσ(j′)} 6∈ E(H)}. Then,
for every i ≥ k + 2, by definition of f(i), f(i) ∈ Di−1. Moreover, for i, j > k + 1
with i 6= j, it holds that, by definition of Di and Dj, Di∩Dj = ∅. Indeed, assume
w.l.o.g. that i < j, and suppose for contradiction that there exists a ∈ Di ∩Dj .
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As a ∈ Dj , it holds that a ∈ N(j), but as a ∈ Di, for every j′ > i, a 6∈ N(j′),
hence a 6∈ N(j), a contradiction.

We obtain that the number of distinct functions f is bounded by
∏n

i=k+1 |Di|.
As Di ∩Dj = ∅ for every i, j ≥ k + 1 with i 6= j and Di ⊆ {1, . . . , n} for every
i ≥ k+1, we have that

∑n

i=k+1 |Di| ≤ n. Let I = {i ∈ {k+1, . . . , n} | |Di| ≥ 2},
and note that |I| ≤ k. By the previous discussion, it holds that

∑

i∈I |Di| ≤ 2k.
So it follows that, by using Cauchy-Schwarz inequality,

n
∏

i=k+1

|Di| =
∏

i∈I

|Di| ≤
(
∑

i∈I |Di|
k

)k

≤
(

2k

k

)k

= 2k. (8)

To conclude, the number of constructible triples that can give rise to H is at

most 2k · (s!)⌊n−(k+1)
s

⌋ · t! where t = n − (k + 1)− s⌊n−(k+1)
s

⌋. Thus, we obtain
that

Rn,k ≥ (n− 1)! ·
(

k−1
2

)n−(k+1)−⌈
n−(k+1)

s
⌉ · 2 k(k−1)

2 · 2(n−(k+1))(k−2)

2k · k! · (s!)⌊n−(k+1)
s

⌋ · (n− (k + 1)− s⌊n−(k+1)
s

⌋)!
. (9)

For better readability, we bound separately each of the terms of Equation (9):

• (n− 1)! ≥ 1
n
(n
e
)n.

• 1
n
≥ 2−n.

• (k − 1)(n−(k+1)−⌈n−(k+1)
s

⌉) ≥ 2−nk(n−
n
s
−k−2), where we have assumed that

k ≥ 2, in which case k − 1 > k
2 ; if k = 1, we already know that Tn,1 ∼√

e · nn−2 [25].

• 2(n−(k+1)−⌈n−(k+1)
s

⌉) ≤ 2n.

• 2
k(k−1)

2 · 2(n−(k+1))(k−2) ≥ 2kn−
k(k+3)

2 · 2−2n.
• 2k ≤ 2n.
• k! ≤ kk.

• (s!)⌊
n−(k+1)

s
⌋ · (n− (k + 1)− s⌊n−(k+1)

s
⌋)! ≤ sn.

By applying these considerations into Equation (9), we can simplify it to

Rn,k ≥
(

1

64e
· k · 2k · n

k
1
s · s

)n

· 2−k(k+3)
2 · k−2k−2. (10)

3.3 Choice of the parameter s

Let us now discuss how to choose the size s of the blocks in the construction.
In order to obtain the largest possible lower bound for Rn,k, we would like to

choose the value of s that minimizes the denominator k
1
s ·s in Equation (10). To

be as general as possible, assume that s is a function s(n, k) that may depend

on n and k, and we define t(n, k) := s(n,k)
log k

. With this definition, it follows that

log
(

k
1

s(n,k) · s(n, k)
)

=
log k

s(n, k)
+ log s(n, k) =

1

t(n, k)
+ log t(n, k) + log log k.

(11)
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It is elementary that the minimum of 1
t(n,k) + log t(n, k) is achieved for

t(n, k) = 1. Thus, we obtain that s(n, k) = log k is the function that maximizes
the lower bound given by Equation (10). Therefore, we obtain that

Rn,k ≥
(

1

128e
· k · 2k · n

log k

)n

· 2−k(k+3)
2 · k−2k−2, (12)

concluding the proof of Theorem 2, where we assume that k ≥ 2.

4 Concluding remarks and further research

Comparing Equation (2) and Equation (5), there is still a gap of (128e · log k)n
in the dominant term of Tn,k, and closing this gap remains a challenging open
problem. The factor (log k)n appears because, in our construction, when a new
block starts, that is, every s = log k introduced vertices, we force the frozen
vertex to be the previous anchor. Therefore, this factor is somehow artificial,
and we believe that it could be improved.

One could also focus on the term of Tn,k that depends only on k, namely

2−
k(k+3)

2 · k−2k−2 for the lower bound and 2−
k(k+1)

2 · k−k for the upper bound.

In our lower bound, we think that the constant 3 in the term k(k+3)
2 may be

reduced to 1, as its existence is related to the fact that, in the construction, we
force σ(1) = 1, and therefore the neighborhood of the first k+1 vertices, except
for the first one, is forced to contain vertex 1.

We believe that there exist an absolute constant c > 0 and a function f(k),
with k−2k−2 ≤ f(k) ≤ k−k for every k > 0, such that for every 0 < k ≤ n,

Tn,k ≥ (c · k · 2k · n)n · 2−k(k+1)
2 · f(k). (13)

One way to improve the upper bound would be to show that every partial
k-tree with n vertices and m edges can be extended to at least a large number
α(n,m) of k-trees, and then use double counting. This is the approach taken
in [20] for bounding the number of planar graphs, but so far we have not been
able to obtain a significant improvement using this technique.

Our results find algorithmic applications, specially in the area of Parameter-
ized Complexity. When designing a parameterized algorithm, usually a crucial
step is to solve the problem at hand restricted to graphs decomposable along
small separators by performing dynamic programming (see [14] for a recent ex-
ample). For instance, precise bounds on Tn,k are useful when dealing with the
Treewidth-k Vertex Deletion problem, which has recently attracted sig-
nificant attention in the area [9, 10, 15]. In this problem, given a graph G and a
fixed integer k > 0, the objective is to remove as few vertices from G as possible
in order to obtain a graph of treewidth at most k. When solving Treewidth-k

Vertex Deletion by dynamic programming, the natural approach is to enu-
merate, for any partial solution at a given separator of the decomposition, all
possible graphs of treewidth at most k that are “rooted” at the separator. In this
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setting, the value of Tn,k, as well as an explicit construction to generate such
graphs, may be crucial in order to speed-up the running time of the algorithm.

As mentioned before, our results also apply to other relevant graph param-
eters such as pathwidth and proper-pathwidth. For both parameters, beside
improving the lower bound given by our construction, it may be also possible
to improve the upper bound given by Equation (2). For proper-pathwidth, a
modest such improvement can be obtained by improving the upper bound given
by Theorem 1. Indeed, it easily follows from the definition of proper-pathwidth
that the edge-maximal graphs of proper-pathwidth k, which we call proper lin-

ear k-trees, can be constructed starting from a (k + 1)-clique and iteratively
adding a vertex vi connected to a clique Kvi of size k, with the constraints that
vi−1 ∈ Kvi and Kvi \ {vi−1} ⊆ Kvi−1 . From this observation, and taking into
account that the order of the first k vertices is not relevant and that there are
2k initial cliques giving rise to the same graph, it follows that the number of
n-vertex labeled proper linear k-trees is equal to

n! · kn−k−1 · 1

2k · k! . (14)

From Equation (14) and using that an n-vertex labeled proper linear k-tree

has kn − k(k+1)
2 edges, basic calculations yield that the dominant term of the

number of n-vertex labeled graphs of proper-pathwidth at most k is at most
(

k·2k·n
c

)n

for some absolute constant c ≥ 1.88.

Finally, it would be interesting to count the graphs of bounded Xwidth, for
other X different than “tree”, “path”, or “proper-path”. For instance, branchwidth
seems to be a good candidate, as it is known that, if we denote by bw(G)
the branchwidth of a graph G and |E(G)| ≥ 3, then bw(G) ≤ tw(G) + 1 ≤
3
2bw(G) [23]. Other relevant graph parameters are cliquewidth, rankwidth, tree-
cutwidth, or booleanwidth. For any of these parameters, a first natural step
would be to find a “canonical” way to build such graphs, as it is the case of
partial k-trees.

Acknowledgement. We would like to thank Dimitrios M. Thilikos for pointing us to

the notion of proper-pathwidth.
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