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Abstract. This paper considers a special case of security games dealing
with the protection of a large area divided in multiple cells for a given
planning period. An intruder decides on which cell to attack and an
agent selects a patrol route visiting multiple cells from a finite set of
patrol routes such that some given operational conditions on the agent’s
mobility are met. For example, the agent might be required to patrol
some cells more often than others. In order to determine strategies for the
agent that deal with these conditions and remain unpredictable for the
intruder, this problem is modeled as a two-player zero-sum game with
probabilistic constraints such that the operational conditions are met
with high probability. We also introduce a variant of the basic constrained
security game in which the payoff matrices change over time, to allow
for the payoff that may change during the planning period.

Keywords: Game theory · Probability constraints · Defense applica-
tions

1 Introduction

This paper considers a special case of a security game dealing with the pro-
tection of a large area for a given time period where the agent’s strategy set is
restricted. The area consists of several cells containing assets to be protected. An
intruder decides on which cell to attack, while the agent needs to select a patrol
route that visits multiple cells. The agent’s strategy is constrained by existing
governmental guidelines that require that some cells should be patrolled more
often than others. This problem can be modeled as a two-player zero-sum game
with probabilistic constraints.

In the literature there are several models considering patrolling games (e.g.,
[1,5,8]). Also, many models consider constraints on the agent’s or intruder’s
strategy set. For example in [2,6,15], the authors require constraints on the
agent’s strategy because only a limited number of resources is available, and
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in [17] the authors consider constraints on both the agent’s and the intruder’s
strategy set.

Often, linear constraints are considered in constrained games. For instance,
in [3] a two-person zero-sum game with linear constraints is introduced. More
recently, [10] described a bimatrix game with linear constraints on the strategy
of both players. In [14], the author considers nonlinear ratio type constraints.
Our security game models situations where operational conditions have to be
met with high probability, which results in nonlinear probabilistic constraints.

An example application of our model lies in countering illegal or unreported
and unregulated fishing. These illicit activities endanger the economy of the
fishery sector, fish stocks and the marine environment and require the monitoring
of large areas with scarce resources subject to national regulations. To support
the development of patrols against illegal fishing, in [7] a decision support system
is developed. This system models the interaction between different types of illegal
fishers and the patrolling forces as a repeated game. More recently, [4] introduced
a game theoretical approach wherein a generalization of Stackelberg games is
used to derive sequential agent strategies that learn from adversary behavior.
However, these papers do not consider constraints to the patroller’s strategy.

The main contribution of this paper is that we introduce a new model to
cope with the conditions on the agent’s random strategy that have to be met
with high probability. Because of the random nature of the strategies, it cannot
be guaranteed that the conditions are always met. By introducing probabilistic
constraints, we assure that the conditions are met with high probability. In
practice the payoff matrices may change over time, in the fishery case, due to
weather conditions, seasonal fluctuations or other circumstances. Therefore, we
introduce an extension of the model to deal with multiple payoff matrices.

This paper is organized as follows. In Sect. 2, we introduce the new security
game model with constraints on the agent’s strategy. In Sect. 3, we present an
extension of the model in which multiple payoff matrices are considered. Finally,
in Sect. 4 we give examples of the model and present computational results.

2 Model with Constant Payoff

This section describes the model assuming that the gain an intruder obtains by
successfully visiting a cell is constant over the planning period. We first provide a
general description of a constrained security game over multiple cells in Sect. 2.1.
For each cell, there is a condition on the minimal number of visits per time period
for that cell. We discuss the probability that these conditions are met for each
cell separately in Sect. 2.2, which gives a lower bound for the game value. In the
application of countering illegal fishing, governmental guidelines require that
some cells should be patrolled more than others because some regions are more
vulnerable. The conditions on the number of visits have to be met for all cells
simultaneously. These simultaneous conditions are discussed in Sect. 2.3.
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2.1 Constrained Game

We consider a security game with constraints on the strategy sets (see [11],
Chap. 3.7). Let C = {1, ..., NC} be the set of cells that can be attacked by an
intruder and let R = {1, ..., NR} be the set of routes that can be chosen by the
agent. The matrix A indicates which cells are visited by each route, such that aij

equals 1 if route i includes cell j and 0 otherwise. Let M be the payoff matrix,
such that mij is the payoff for the intruder if the agent chooses route i and the
intruder attacks cell j, i = 1, ..., NR, j = 1, ..., NC :

mij = ((1 − dj)aij + (1 − aij)) gj , i = 1, ..., NR, j = 1, ..., NC , (1)

where gj is the intruder’s gain if the intruder successfully attacks cell j and dj is
the probability that the intruder is caught if the agent’s chosen route i includes
cell j. The game is repeated ND times (e.g. days), our planning period. We
assume that only one intruder is present in the area. If that intruder is caught,
then another will replace him. The overall aim from an intruders perspective is
to maximize the total payoff over the time period.

Remark 1. Note that the model described in this section assumes that each
intruder attacks one cell each day. By changing the payoff matrix and the actions
of the agent and the intruder, the model can be extended to other situations. ��

The intruder attempts to maximize the payoff by choosing which cell to
attack, so the action set of the intruder is given by C. The agent tries to catch
the intruder by selecting a route, so the action set of the agent is given by R.
The agent minimizes the payoff by deciding on the probability pi, i = 1, ..., NR,
that route i is chosen, while the intruder maximizes the payoff by selecting the
probability qj , j = 1, ..., NC , that cell j is attacked. The strategy of the agent is
constrained by the conditions f(p) ≥ 0, determined by the minimum number of
times each cell is visited by the agent. In Sects. 2.2 and 2.3, we will elaborate on
these conditions. The value of the game, V , equals the expected payoff per day.
Optimal strategies can be found by solving the following mathematical program:

V = min
p

max
q

pT Mq

s.t. f(p) ≥ 0,

NR∑

i=1

pi = 1,

NC∑

j=1

qj = 1,

p, q ≥ 0.

(2)
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Taking the dual of the inner linear program maxq{pT Mq|∑NC

j=1 qj = 1, q ≥ 0},
the minmax formulation (2) can be rewritten to obtain the value of the game and
optimal strategies for the agent:

V = min
p,z

z

s.t. eT z ≥ pT M,

f(p) ≥ 0,

NR∑

i=1

pi = 1, p ≥ 0,

(3)

where e is the row vector with only ones. Note that there only exists a value for
this game if the set {p|f(p) ≥ 0,

∑NR

i=1 pi = 1, p ≥ 0} is not empty.

Remark 2. For clearness of presentation, we model the game as a zero-sum game.
Note that a similar model applies if we consider a bimatrix game in which the
agent and the intruder have different payoff matrices. In bimatrix games, the
game value is calculated using quadratic programming (see for example [12],
Chap. 13.2) instead of linear programming, but the probabilistic constraints can
be implemented similarly. In addition, in the same manner, conditions on the
intruder’s strategy set can be added. ��

2.2 Conditions on the Number of Visits to a Cell

In this subsection, we consider conditions on the number of visits for each cell
separately to obtain a lower bound for V . Let ND be the number of days in
the planning period. The strategy of the agent is constrained by the minimum
number of visits vj to each cell j, j = 1, ..., NC , over the entire period ND,
that must be realized with at least probability 1 − ε. Given any strategy p, the
probability that cell j is visited by the agent is ajp, where aj is the row vector
of the j-th column of A.

Let Xj , j = 1, ..., NC , be the random variable that records the number of
visits to cell j during the planning period. The probability that cell j is visited
equals ajp. As there are ND successive days, Xj is binomially distributed with
parameters ND and ajp. The constraint on the number of visits then reads
P (Xj ≥ vj) ≥ (1 − ε), i.e.,

ND∑

k=vj

ND!
k!(ND − k)!

(ajp)k(1 − ajp)ND−k ≥ 1 − ε,

which can be implemented in (3) by choosing f(p) = (f1(p), f2(p), ...fNC
(p))

with fj(p) = P (Xj ≥ vj) − (1 − ε).
For large ND, the binomial distribution becomes intractable for implementa-

tion. Therefore, we use the following approximation. For large ND, the binomially
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distributed Xj can be approximated by the normally distributed X̃j with mean
NDajp and variance NDajp(1 − ajp) (see [13], Chap. 1.8):

P (Xj ≥ vj) = 1 − P (Xj < vj) ≈ 1 − P (X̃j ≤ vj),

yielding

fj(p) = ε − Φ

(
vj − NDajp√

NDajp(1 − ajp)

)
, (4)

where Φ(x) is the cumulative distribution function for the standard normal dis-
tribution.

Considering the conditions for each cell separately gives a relaxation of the
original conditions, where the minimum number of visits has to be obtained for
all cells simultaneously. If we replace f(p) in (3) by the constraints in (4), we
obtain the following lower bound for the game value V :

VL = min
p,z

z

s.t. eT z ≥ pT M,

Φ

(
vj − NDajp√

NDajp(1 − ajp)

)
≤ ε, j = 1, ..., NC ,

NR∑

i=1

pi = 1, p ≥ 0.

(5)

In order to linearize these constraints, we can determine for each cell j all
possible values of ajp such that ε − P (X̃j ≤ vj) ≥ 0 using the table of the
standard normal distribution. The constraints in (5) can be replaced by the
linear constraint pT A ≥ b̃, where b̃j is determined by the minimum probability
for each cell such that the conditions are met with probability 1 − ε.

Visits to cells are correlated via the routes. Therefore, we are interested in
the joint probability:

P (X1 ≥ v1,X2 ≥ v2, ...,XNC
≥ vNC

),

that we will discuss in the next section.

2.3 Conditions on All Cells Simultaneously

In this section, we discuss the condition on the minimum number of visits for all
cells simultaneously. Let Yi, i = 1, ..., NR, be the random variable that specifies
the number of times that route i is selected. Y = (Y1, Y2, ..., YNR

) is multinomi-
ally distributed with parameters ND and p:

P (Y1 = v1, Y2 = v2, ..., YNR
= vNR

) = ND!
NR∏

i=1

pvi
i

vi!
.
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For large ND, Yi, i = 1, ..., NR can be approximated by the multivariate normally
distributed Ỹi with expectation NDpi, variance NDpi(1 − pi) and covariance
Cov(Ỹi, Ỹi′) = −NDpipi′ , i′ = 1, ..., NR (see [13], Chap. 1.8).

The number of times cell j is visited, Xj , can then be expressed as Xj =∑NR

i=1 aijYi and using the approximation Ỹ for Y , Xj can be approximated by
a normally distributed X̃j with expectation, variance and covariance (see [13],
Chap. 1.4), j = 1, .., NC :

E(X̃j) = NDajp, V ar(X̃j) = NDajp(1 − ajp),

Cov(X̃j , X̃j′) =
NR∑

i=1

NR∑

i′=1

aijai′j′Cov(Ỹi, Ỹi′).

The probability that the conditions are met for all cells is:

P (X1 ≥ v1,X2 ≥ v2, ...,XNC
≥ vNC

) ≈ P (X̃1 ≥ v1, X̃2 ≥ v2, ..., X̃NC
≥ vNC

)

=
1√|Σ|(2π)NC

∫ ∞

v1

∫ ∞

v2

...

∫ ∞

vNC

e− 1
2 (v−μ)′Σ−1(v−μ)dvNC

...dv1, (6)

where Σ is the covariance matrix and μ is a vector with all expected values. This
can be implemented in (3) by choosing f(p) as

f(p) = P (X̃1 ≥ v1, X̃2 ≥ v2, ..., X̃NC
≥ vNC

) − (1 − ε). (7)

The constraint described above is not linear and cumbersome to implement
in a mathematical program. To simplify the model, we use a lower bound for the
probability that the conditions are met and implement this lower bound.

A lower bound for the probability that the conditions for all cells are met is:

P (X̃1 ≥ v1, ..., X̃NC
≥ vNC

) ≥ 1 −
NC∑

j=1

P (X̃j < vj). (8)

This lower bound can be used to simplify the mathematical program as follows:

f(p) = ε −
NC∑

j=1

Φ

(
vj − NDajp√

NDajp(1 − ajp)

)
.

Replacing f(p) in (3) by a lower bound in the condition, results in an upper
bound for the game value V :

VU = min
p,z

z

s.t. eT z ≥ pT M,

NC∑

j=1

Φ

(
vj − NDajp√

NDajp(1 − ajp)

)
≥ ε,

NR∑

i=1

pi = 1, p ≥ 0,

(9)
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Combining this upper bound and the lower bound obtained in Sect. 2.2, we
readily obtain the following result:

Lemma 1. For VL given in (5) and VU given in (9) we have VL ≤ V ≤ VU ��
In Sect. 4, we investigate the impact of this approximation modeling approach

on the game value.

Remark 3. We may linearize this program by approximating the normal distrib-
ution for each cell j by a piecewise linear function as described in [16], Chap. 9.2.
However, we use in the result section the mathematical program stated in (9)
since this model is still solvable for realistic instances. ��

3 Generalization: Multiple Payoff Matrices

The previous section considers games with constant payoff. This section considers
a generalization to situations where payoff can change over time due to, e.g.,
weather conditions or seasonal fluctuations resulting in multiple payoff matrices.

3.1 Constrained Game

Consider the game with multiple payoff matrices M (k), k = 1, ..., NM , of size
NR × NC . Let μ(k) be the probability that the payoff matrix is M (k), with∑NM

k=1 μ(k) = 1. Moreover let q(k) and p(k) be strategies of the agent and the
intruder when the payoff matrix is M (k). The value of the game is the expected
payoff per day and can be found by solving the following optimization problem:

V = min
p

max
q

NM∑

k=1

μ(k)(p(k))T M (k)q(k)

s.t. f(p) ≥ 0,

NR∑

i=1

p
(k)
i = 1,

NC∑

i=1

q
(k)
i = 1, k = 1, ..., NM ,

p, q ≥ 0,

(10)

where pT = (p(1), ..., p(NM )) and qT = (q(1), ..., q(NM )). In the next section, we
discuss the constraint f(p) ≥ 0 if multiple payoff matrices are considered.

3.2 Conditions for Games with Multiple Payoff Matrices

The conditions on the minimal number of visits for all cells during the planning
period can be constructed following the same reasoning as in Sect. 2. Now, the
number of visits for cell j is the sum of the number of visits for cell j for each
payoff matrix. Let X

(k)
j , j = 1, ..., NC , k = 1, ..NM , be the random variable

describing the number of visits to cell j when the payoff matrix is Mk and let
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X̃
(k)
j be the approximation of X

(k)
j . N

(k)
D is the number of periods that the payoff

matrix is M (k). We are interested in the following probability:

P (X̃(1)
1 + ... + X̃

(NM )
1 ≥ v1, ..., X̃

(1)
NC

+ ... + X̃
(NM )
NC

≥ vNC
),

with E(X̃(k)
j ), V ar(X̃(k)

j ), and Cov(X̃(k)
j ) calculated as in Sect. 2.3 with N

(k)
D

and p(k). Since X̃
(k)
j and X̃

(k)
j′ are independent if j �= j′, we have:

E(X̃j) =
NM∑

k=1

N
(k)
D ajp

(k), V ar(X̃j) =
NM∑

k=1

N
(k)
D ajp

(k)(1 − ajp
(k)),

Cov(X̃j , X̃j′) =
NM∑

k=1

NM∑

k′=1

Cov(X(k)
j ,X

(k′)
j′ ).

To make sure that the conditions are met with high probability we define,

f(p) = P (X̃1 ≥ v1, ..., X̃NC
≥ vNC

) − (1 − ε),

where P (X̃1 ≥ v1, ..., X̃NC
≥ vNC

) equals (6). Similarly as in Sect. 2.3, a lower
bound for this probability is given in (8). Taking the dual of the inner LP of (10)
and using this lower bound, optimal strategies for the agent and the intruder
can be found by solving:

VU = min
p,z

NM∑

k=1

z(k)

s.t. eT z(k) ≥ μ(k)(p(k))T M (k), k = 1, ..., NM ,

NC∑

j=1

Φ

⎛

⎝ vj − ∑NM

k=1 N
(k)
D ajp

(k)

√∑NM

k=1 N
(k)
D ajp(k)(1 − ajp(k))

⎞

⎠ ≥ ε,

NR∑

i=1

p
(k)
i = 1, k = 1, ..., NM ,

p ≥ 0,

(11)

where z = (z(1), ..., z(NM )). In the next section, we will illustrate this model.

4 Results

In this section, we give computational results and examples to illustrate our mod-
els. In Sect. 4.1, we investigate the approximation error introduced in Sect. 2.3.
Thereafter, we give two examples to illustrate our model in Sect. 4.2.
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4.1 Computational Results

This section investigates the error introduced by using the lower bound in (8).
Solving (3) with f(p) given in (7) numerically is computationally intractable
for networks with more than two or three routes and cells. Therefore, we have
compared the relative difference between the lower and upper bounds of V , see
Lemma 1. We have randomly generated 100 payoff matrices, conditions and
routes for different network sizes. Table 1 shows the average relative difference
between the upper and lower bound with 95%-confidence interval between brack-
ets. The last columns gives the average running time in seconds for (9). The
results are implemented in Matlab version R2016b [9] on an Intel(R) Core(TM)
i7 CPU, 2.4 GHz, 8 GB of RAM. As the results in Table 1 show, (9) gives a good
approximation of the game value V and can be solved in reasonable time. The
size of more realistic examples, as encountered in the patrolling against illegal
fishing context, is comparable to the size of these randomly generated instances.

Table 1. Average relative difference of upper bound VU and lower bound VL (ε = 0.05).

# Cells # Routes Error Running time

10 5 0.8% (± 1.0%) 0.217 s

20 15 1.9% (± 1.8%) 0.347 s

30 25 2.2% (± 1.4%) 0.819 s

4.2 Illustrative Examples

This section presents some examples to illustrate the models described in this
paper. The results in this section are obtained by implementation of (9) and (11).
Consider an area with 12 cells and 9 routes. The routes are chosen such that the
cells are evenly spread over all routes, see Table 2. Suppose NM = 2 and the pay-
off matrices are constructed using (1), where dj = 0.9, j = 1, ..., NC and g(k) is
the intruder’s gain. Figure 1 depicts payoff matrices M (1), M (2) and two example
routes, Routes 1 and 8. The white cells have a gain of 1, the light gray cells have
a gain of 2 and the dark gray cell have a gain of 3.

Constant Payoff Matrix. Consider the games with payoff matrices M (1) and
M (2) separately. Suppose that the planning period for both payoff matrices is
ND = 100. Table 3 shows the game values for different conditions. For example,
a condition of 0.1 means that the minimum number of visits equals 10. The
second and the third column give the game value of both games for the conditions
specified in the first column. The first row shows the value of the game without
conditions on the number of visits to the cells, the second row considers the
game in which all nodes must be visited at least 10 times, and the third row
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1
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9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 1. Payoff matrices M (1), Route 1

(left) and M (2), Route 8 (right).

Table 2. Possible routes.

Routes Cells visited by route

1 1, 5, 9, 10

2 2, 3, 8, 12

3 3, 7, 6, 10

4 4, 7, 6, 9

5 1, 2, 3, 4

6 3, 4, 7, 12

7 2, 5, 6, 9

8 4, 7, 11, 12

9 2, 5, 10, 11

considers the game in which Nodes 1-4 must be visited at least 30 times and the
other nodes at least 10 times.

Table 3 indicates that the game value increases if more conditions are imposed
on the agent’s strategy. However, the increase of the game value depends on the
payoff matrix. For example, the extra condition on Nodes 1–4 does not increase
the game value for payoff matrix M (1), since the intruder’s gain for these nodes
is high and the agent is already patrolling these cells more often, as the results
below indicate.

Table 3. Expected payoff per day for different conditions (ε = 0.05).

Conditions (fraction) Payoff M (1) Payoff M (2) Average Combined

None 1.10 1.58 1.34 1.34

All nodes: 0.1 1.23 1.64 1.44 1.34

Nodes 1–4: 0.3, Nodes 5–12: 0.1 1.23 2.14 1.69 1.35

Figure 2 displays the agent’s strategy for the different payoff matrices without
conditions. The color of each cell is determined by the gain of the intruder and
the number within each cell shows the fraction of the time period that the cell

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 2. Agent’s strategy for the game without conditions.
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should be visited. The agent’s strategy is shown by the circles in each cell. The
probability that a cell is visited is proportional to the radius of the circle in
that specific cell. For example in Fig. 2, the probability that cell 3 is visited
equals 1 for M (1) and 0.24 for M (2). Figure 3 displays the agent’s strategy when
conditions as given in Table 3 are considered. For all cases, it is clear that cells
with a high gain for the intruder are visited more often.

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1
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0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

(a) All nodes: 0.1

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

(b) Nodes 1-4: 0.3, Nodes 5-12: 0.1

Fig. 3. Agent’s strategy for different conditions.

Multiple Payoff Matrices. The previous example considers the game with a
constant payoff matrix such that for each game the conditions on the minimum
number of visits have to be met. Now, we consider multiple payoff matrices
simultaneously. Suppose that the total planning period ND = 200 and both
payoff matrices M (1) and M (2) have equal probability, so μ(1) = μ(2) = 0.5.
Again, routes and conditions are given in Tables 2 and 3. A condition of 0.1
means that the total number of visits is 20, but it is, for example, allowed that
there are only 5 visits when the payoff matrix is M (1) and 15 when the payoff
matrix is M (2). This is the benefit of playing the game repeatedly and considering
multiple payoff matrices simultaneously. In the last column of Table 3 the value
of the game in which the conditions are combined for multiple payoff matrices is
shown. If there are no conditions on the number of visits to the cells, the game
value is just the average of both games with constant payoff, which is shown
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(a) All nodes: 0.1
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(b) Nodes 1-4: 0.3, Nodes 5-12: 0.1

Fig. 4. Agent’s strategy if multiple payoff matrices are considered simultaneously.
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in the second last column of Table 3. However, when conditions are considered,
the value of the combined game is lower than the average of both games with
constant payoff, because the agent has more flexibility in meeting the conditions.

Figure 4 shows the agent’s strategy for the combined game with conditions
given in Table 3. Comparing the results with those in Fig. 3 reveals that the agent
has more flexibility in meeting the constraints when multiple payoff matrices are
considered. Indeed the agent visits a cell less often when the gain is low and
compensates this lack of visits when the gain of that cell is high.

5 Concluding Remarks

Patrolling a region with conditions on the frequency of visits to specific parts of
that area while taking into account the optimal payoff of the intruder or agent
can be modeled as a zero-sum security game with probabilistic constraints on the
agent’s strategy. These constraints prohibit exact solutions for large (realistic)
instances. Therefore, we have developed a model yielding an upper bound and a
lower bound for the game value. Computational results reveal that the relative
difference between the upper and lower bound for the instances considered is
less than 2.5% and that instances of realistic size can be solved within seconds.

In practice, the agent’s strategy is constrained by existing guidelines. Numer-
ical examples show that as the number of conditions increases, the agent’s loss
will increase. However, if multiple payoff matrices are considered, the agent has
more flexibility in meeting the conditions and the loss of the agent is reduced.

In this paper, we have assumed that only one intruder is present in the
area, that the payoff of intruders is known and that the agent decides on a
strategy in advance. For future research, it would be interesting to investigate the
case where not all payoff matrices are known in advance and multiple intruders
attack simultaneously. Also, considering a more dynamic strategy of the agent,
for example by taking into account extra information about the payoff and cells
that already have been visited, should be pursued.
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