Skip to main content

A Hierarchical Decomposition-Based Evolutionary Many-Objective Algorithm

  • Conference paper
  • First Online:
  • 3088 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Abstract

The evolutionary multiobjective algorithms have been demonstrated the effectiveness in dealing with multiobjective optimization problems. However, when solving the problems with many objectives, i.e., the number of objectives is greater than three, it needs a large population size to maintain population diversity and provide a good approximation to the Pareto front. The dilemma between limited computational resources and the exponentially increasing population size is a big challenge. Thus, we suggest a hierarchical decomposition-based evolutionary algorithm for solving many-objective optimization problems in this paper. Specifically, it constructs a binary tree on a set of large-scale uniform weight vectors. We only compare a candidate solutions with the solutions on the path from root to a leaf node of the tree to assign it into an appropriate node. The proposed algorithm has lower time complexity. Theoretical analysis shows the complexity of the proposed algorithm is \(\mathcal {O}(Mlog(\mathbb {N}))\) for dealing with a new candidate solution. Empirical results fully demonstrate the effectiveness and competitiveness of the proposed algorithm.

This work was supported by the National Natural Science Foundation of China under Grant 61673121, in part by the Projects of Science and Technology of Guangzhou under Grant 201508010008, and in part by the Natural Science Foundation of Guangdong Province under Grant 2017A030310467.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)

    Article  Google Scholar 

  2. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  3. Bosman, P.A., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

    Article  Google Scholar 

  4. Cheung, Y.M., Gu, F., Liu, H.L.: Objective extraction for many-objective optimization problems: algorithm and test problems. IEEE Trans. Evol. Comput. 20(5), 755–772 (2016)

    Article  Google Scholar 

  5. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  8. Eckart, Z., Marco, L., Lothar, T.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

  9. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_5

    Chapter  Google Scholar 

  10. Gu, F., Cheung, Y.M.: Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm. IEEE Trans. Evolutionary Computation (2017). doi:10.1109/TEVC20172695579

  11. Hadka, D., Reed, P.: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evol. Comput. 20(3), 423–452 (2012)

    Article  Google Scholar 

  12. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  13. Ishibuchi, H., Masuda, H., Nojima, Y.: Pareto fronts of many-objective degenerate test problems. IEEE Trans. Evol. Comput. (2015) doi:10.1109/TEVC20152505784

  14. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 13:1–13:35 (2015)

    Google Scholar 

  15. Li, B., Tang, K., Li, J., Yao, X.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evol. Comput. 20(6), 924–938 (2016)

    Article  Google Scholar 

  16. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  17. Nicola, B., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  18. Schutze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evol. Comput. 15(4), 444–455 (2011)

    Article  Google Scholar 

  19. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. (2016). doi:10.1109/TEVC.2016.2608507

  20. Wagner, M., Neumann, F.: A fast approximation-guided evolutionary multi-objective algorithm. In: Proceedings of 2013 Conference on Genetic and Evolutionary Computation, pp. 687–694 (2013)

    Google Scholar 

  21. Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015)

    Article  Google Scholar 

  22. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  23. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Lin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gu, F., Liu, HL. (2017). A Hierarchical Decomposition-Based Evolutionary Many-Objective Algorithm. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics