Skip to main content

A Constraint Partitioning Method Based on Minimax Strategy for Constrained Multiobjective Optimization Problems

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

  • 3150 Accesses

Abstract

Constrained multiobjective optimization problem (CMOP) is an important research topic in the field of evolutionary computation. In terms of constraint handling, most of the existing evolutionary algorithms consider more about the proportion of infeasible solutions in population, but less concern about the distribution of infeasible solutions. Therefore, we propose a constraint partitioning method based on minimax strategy (CPM/MS) to solve CMOP. Firstly, we analyze the impact of the distribution of infeasible solutions on selecting solutions and give a preconditioning method for infeasible solutions. Secondly, we divide the preconditioned solutions into different regions by minimax strategy. Finally, we update individuals based on feasibility criteria method in each region. The effectiveness of CPM/MS algorithm is extensively evaluated on a suite of 10 bound-constrained numerical optimization problems, where the results show that CPM/MS algorithm is able to obtain considerably better fronts for some of the problems compared with some the state-of-the-art multiobjective evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  MATH  Google Scholar 

  2. Cai, X., Hu, Z., Fan, Z.: A novel memetic algorithm based on invasive weed optimization and di_erential evolution for constrained optimization. Soft. Comput. 17(10), 1893–1910 (2013)

    Article  Google Scholar 

  3. Hu, Z., Cai, X., Fan, Z.: An improved memetic algorithm using ring neighborhood topology for constrained optimization. Soft. Comput. 18(10), 2023–2041 (2013)

    Article  Google Scholar 

  4. Li, Z.Y., Huang, T., Chen, S.M., Li, R.F.: Overview of constrained optimization evolutionary algorithms. J. Softw. (2017)

    Google Scholar 

  5. Farmani, R., Wright, J.A.: Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. Comput. 7(5), 445–455 (2003)

    Article  Google Scholar 

  6. Xiao, J.H., Xu, J., Shao, Z., Jiang, C.F., Pan, L.: A genetic algorithm for solving multi-constrained function optimization problems based on KS function. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, pp. 4497–4501. IEEE Press (2007)

    Google Scholar 

  7. Tessema, B., Yen, G.G.: A adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. (A) 39(3), 565–578 (2009)

    Article  Google Scholar 

  8. Surry, P.D., Radcliffe, N.J.: The COMOGA method: Constrained optimization by multiobjective genetic algorithm. Control Cybern. 26(3), 391–412 (1997)

    MATH  Google Scholar 

  9. Wang, Y., Cai, Z.X., Guo, G., Zhou, Y.R.: A dynamic hybrid framework for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. (B) 42(1), 203–217 (2012)

    Article  Google Scholar 

  10. Cai, Z.X., Wang, Y.: Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Trans. Evol. Comput. 16(1), 117–134 (2012)

    Article  Google Scholar 

  11. Gong, W.Y., Cai, Z.H.: A multiobjective differential evolution algorithm for constrained optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong Kong, pp. 181–188. IEEE Press (2008)

    Google Scholar 

  12. Gao, W.F., Yen, G., Liu, S.Y.: A dual-population differential evolution with coevolution for constrained optimization. IEEE Trans. Cybern. 45(5), 1108–1121 (2014)

    Google Scholar 

  13. Zielinski, R., Laur, R.: Constrained single-objective optimization using differential evolution. In: Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, pp. 223–230. IEEE Press (2006)

    Google Scholar 

  14. Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)

    Article  Google Scholar 

  15. Wang, Y., Wang, B.C., Li, H.X., Yen, G.G.: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization. IEEE Trans. Cybern. 46(12), 2938–2952 (2015)

    Article  Google Scholar 

  16. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4(3), 284–294 (2000)

    Article  Google Scholar 

  17. Zhang, M., Luo, W.J., Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 178(15), 3043–3074 (2008)

    Article  Google Scholar 

  18. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites. In: Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, pp. 372–378. IEEE Press (2006)

    Google Scholar 

  19. Bu, C., Luo, W., Zhu, T.: Differential evolution with a species-based repair strategy for constrained optimization. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, pp. 967–974. IEEE Press (2014)

    Google Scholar 

  20. Takahama, T., Sakai, S.: Efficient constrained optimization by the ε constrained rank-based differential evolution. In: Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, pp. 1–8. IEEE Press (2012)

    Google Scholar 

  21. Ishibuchi, H., Murata, T.: A Multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28(3), 392–403 (1998)

    Article  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  23. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 283–290. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  24. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  25. Ishibuchi, H., Murata, T.: A multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28(3), 392–403 (1998)

    Article  Google Scholar 

  26. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  27. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)

    Article  Google Scholar 

  28. Cai, X., Li, Y., Fan, Z., Zhang, Q.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evol. Comput. 19(4), 508–523 (2015)

    Article  Google Scholar 

  29. Cai, X., Yang, Z., Fan, Z., Zhang, Q.: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans. Cybern. PP(99), 1–14 (2016)

    Google Scholar 

  30. Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45(10), 2202–2213 (2015)

    Article  Google Scholar 

  31. Liu, H., Li, X., Chen, Y.: Multiobjective evolutionary algorithm based on dynamical crossover and mutation. In: Proceedings of International Conference on Computational Intelligence and Security, Suzhou, pp. 150–155. IEEE (2008)

    Google Scholar 

  32. Zhang, Q., Zhou, A.M., Suganthan, P.N., et al.: Multiobjective optimization test instances for the CEC 2009 special session and competition. School of Computer Science and Electrical Engineering, University of Essex, Essex (2009)

    Google Scholar 

  33. Zitzler, E., Thiele, L., Laumanns, M., et al.: Performance assessment of multiobjective optimizers: an analys is and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  34. Zhang, Q., Suganthan, P.N.: Final report on CEC’09 MOEA competition. School of Computer Science and Electrical Engineering, University of Essex, Essex (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, X., Fu, S., Huang, H. (2017). A Constraint Partitioning Method Based on Minimax Strategy for Constrained Multiobjective Optimization Problems. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics