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Abstract. The popularity of using hyperspectral imaging systems in
studying plant properties, types, and condition has increased due to the
numerous economical and financial advantages of such systems. This pa-
per is concerned with the analysis of different plant conditions using
proximal hyperspectral imaging systems. A spectral-texture approach
based on correlation between feature selection and the Markov random
field model is introduced to enhance prediction performance, as com-
pared to the use of the spectral and texture analysis approaches individ-
ually. Two independent hyperspectral datasets captured by two proximal
hyperspectral instrumentations, with different acquisition dates and ex-
posure times, were used in the evaluation. Experimental results show
promising improvement in the discrimination performance of the pre-
sented approach. The study shows that such an approach can shed light
on attributes that better differentiate plants, their properties, and con-
ditions.

Keywords: Feature selection . Hyperspectral imaging . Markov random
field . Spectral analysis . Texture analysis.

1 Introduction

Since its discovery in the early 1980s, imaging spectrometry has attracted a
considerable amount of interest in innovative scientific quests due to its ability
to sense a wider range of electromagnetic spectrum [12]. Hyper-spectral imaging
(HSI), a branch of multivariate imaging [10], gathers optical properties of the
target with several spectral representations using a mixture of spectroscopy and
remote imaging technologies [7]. HSI has been utilised in several applications;
for instance, remote sensing [5], proximal sensing [15], industrial processes [6],
medical imaging [18], and chemical processes [9]. Moreover, several configurations
have been used to capture hyperspectral images [21] point, line, area, and single
shot scanning.

Texture and spectral information are the fundamental properties of hyper-
spectral images. Texture information is described as an attribute representing the
texture arrangement of grey levels [3]; minimum and maximum values represent
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the darkest and brightest points respectively through an image. This informa-
tion is associated with many texture properties such as coarseness, smoothness,
orientation, depth, etc. It should be mentioned that pixels (i.e. texture unit el-
ement) are used to represent single or several texture features. Meanwhile, the
spectral information defines the entire measured spectrum of the corresponding
texture, where each pixel in the image is represented by a unique spectral sig-
nature [7]. It is worth noting that the spectrum information might cover single
or several parts of the electromagnetic spectrum.

Several texture and spectral analysis techniques have been introduced to
analyse hyperspectral images. These techniques have played an important role
in several domains such as agriculture, medicine, and industry for many tasks
- especially image classification [3]. Since hyperspectral imaging senses a wider
range of the electromagnetic spectrum, effective and efficient approaches are
needed before analysing the images [1]. These approaches include feature ex-
traction and feature selection, used to reduce the dimensionality of hyperspec-
tral images as well as the requested processing time, thus analysing only the
information relevant to the investigated problem.

Texture analysis gives insight about the texture, thus providing an impor-
tant base to object recognition and description. Generally, texture analysis tech-
niques can be broadly categorised into statistical, structural, transform-based,
and model-based [3]. The first two use the statistics, i.e. distribution of the
grey levels, and the arrangement rules of the texture respectively to describe
the texture. Moreover, the characteristics of the transformed texture are used to
describe textures in the transform-based technique, while the model-based ap-
proach uses estimated model parameters. Several studies published in the past
have shown the Markov random field (MRF) to be one of the most powerful
models to describe different textures [22]. MRF, i.e. inter-pixel dependency, has
been utilised in different applications such as image denoising, image compres-
sion, image segmentation, super-resolution, etc.

This paper focuses on classifying different plant conditions (i.e. stressed vs.
normal; diseased vs. healthy) using the spectral-texture approach and compares
the results with those from using individual spectral or texture approaches. The
relevant features (i.e. wavelengths in this experiment) along with the texture
representation (i.e. estimated MRF parameters) will be used in the classification
stage. Furthermore, a conventional support vector machine (SVM) was used for
two reasons [2]: 1) it is considered as a state of the art classification algorithm,
2) it reduces the risk of overfitting (i.e. in order to deal efficiently with the di-
mensionality problem). The classification result was promising and an improved
discrimination can be achieved.

The remainder of the paper is organised as follows: the background is re-
viewed in Sect. 2. Section 3 presents HSI systems, HSI datasets, and the spectral-
texture approach. Results and their discussion are given in Sect. 4, followed by
the concluding remarks in section Sect. 5.
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2 Background

This section is divided into two subsections. An overview of feature selection is
presented in the first subsection, while the Markov random field (MRF) model
is highlighted in the second.

2.1 Feature Selection

HSI systems gather large amounts of information; however, not all the data
collected is necessarily relevant to the problem investigated. The problem of high
dimensionality can be alleviated by using a feature selection process. Feature
selection is the process of choosing a relevant subset of features (in this study,
wavelengths) and discarding the remaining ones (e.g. irrelevant and redundant)
[16, 17]. The process of feature selection can be described in four steps: search
organisation, subset evaluation, stopping criteria, and result validation. The first
step is responsible for generating several subsets of features and that includes
determining search direction and procedure. The second step involves evaluation
of the relevance of the generated subsets, based on certain criteria, in order to
select the optimal one (i.e. the one that maximises the evaluation criteria). The
last two steps determine when the process should be halted and the significance
of the selection parameters to the investigated problem.

Feature selection models can be separated - based on certain evaluation
criteria - into the following categories: filter, wrapper, and embedded [16, 17].
The discrimination capability depends solely on data characteristics in the first
model, while it depends on the mining algorithms used to assess the relevancy
of the features. It should be noted that the embedded model was introduced to
utilise both filter and wrapper models, i.e. to rank features based on their data
characteristics and evaluate their goodness through classification algorithms. In
addition, the filter model can produce acceptable to good performances in short
time, while the wrapper and embedded models are easy to implement.

Various feature selection algorithms have been introduced in the past. The
correlation-based feature selection (CFS) [13] algorithm has been shown to be
particularly powerful due to its ability to discard irrelevant and redundant fea-
tures, as well as producing good discrimination performance compared to other
selection algorithms [2]. It uses Shannon’s entropyH(x) = −

∑n
i=1 P (xi) log2 P (xi)

and information gain I(x,y) = H(x)−H(x|y) to minimise feature bias and then
measures the correlation between the features and the classes. The measured cor-
relation is then used to evaluate the feature heuristically:

MeritS =
n(rcf )

n+ (n+ n(n− 1)rff )
(1)

where rcf denotes the average feature-class correlation, rff represents the av-
erage feature-feature correlation, and MeritS is the heuristic merit of a subset
containing features.
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2.2 MRF Model

An MRF, a model-based texture, is an extension of the Markov chain model [4].
It has a set of nodes, each of which corresponds to a variable or set of variables
(an example of MRF neighbour structure and equivalent parameters is shown
in Fig. 1). It is also termed an undirected graph model since it is more natural
for modeling certain problems, such as spatial statistics and image analysis [20].
Moreover, the orientation of the texture features is not required, unlike the di-
rected graph model. The main advantages of MRF models compared to directed
graph models are: 1) more natural for certain domains (i.e. symmetric) and 2) the
discrimination of former models work better than the latter one due to the nor-
malisation process (i.e. globally vs. locally). In contrast, the major disadvantages
are: 1) less interoperable and 2) parameter estimation can be computationally
more expensive (e.g. maximum likelihood estimate).

Fig. 1: Markov random field. Neighbour structure (left) and equivalent parame-
ters of xi,j (right).

The MRF can be mathematically described using the equivalent Gibbs distri-
bution with regard to the same graph [11]. Let P (x) denotes a Gibbs distribution
for realisation x, N represents a neighbouring system, Ω denotes a finite lattice,
C represents all possible cliques, i.e. the subset of a lattice consists of single
and/or set of pixels which are neighbours to each other, then the distribution
can be represented as:

P (x) =
1

Z
e−U(x)/T (2)

where T is a constant and stands for temperature; U(x) represents the energy
function that depends only on clique potential VC on the lattice and can be
written as:

U(x) =
∑
c∈C

Vc(x) (3)

Z denotes a normalising constant, also termed as partition function, and defined
as:

Z =
∑
x

e−U(x)/T (4)
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In terms of estimation of texture parameters, least square (LS) and maximum
likelihood (ML) are two estimates that are widely used with the texture [22].
The former is very simple and it has low computational requirements compared
to the latter, which is why it is more preferable in the estimation process. For
the LS estimate, the parameters over a finite lattice Ω can be estimated using
the following equation:

β̂ = [
∑
m∈Ω

βmβ
T
m]−1[

∑
m∈Ω

∑
i,j∈Ω

βmxi,j ],m = 1, 2, . . . ,M (5)

where xi,j represents the middle pixel and βm denotes the neighbouring pixels
that can be represented as:

βm = col[xi+u,j+v], (u, v) 6= 0, (u, v) ∈ N (6)

where u, v represent the location of the neighbouring pixels horizontally and ver-
tically respectively and col stands for column. It is worth noting that LS is not
consistent for non-causal neighbour sets [20, 22]. However, it is more preferable
compared to the ML estimate since it is computationally expensive. In addition,
the ML result is not always guaranteed (if not impossible) and requires an al-
ternative function, i.e. iterative and computationally expensive, such as pseudo
likelihood (MPL).

3 Materials and Methods

This section describes the materials and the spectral-texture approach. It first
emphasises the specifications of the HSI systems used to capture the hyperspec-
tral datasets and then describes the datasets used in the experiment, followed
by the description of the spectral-texture approach.

3.1 HSI Systems and Datasets

Two HSI systems were used to collect the hyperspectral images: The University
of Manchester (UoM) HSI system and The University of Bonn (Bonn) HSI sys-
tem. The key specifications of both systems are given in Table 1. Both systems
operate in controlled environments (dark room vs. dark chamber) in order to
minimize the effect of unwanted noise. Furthermore, the dynamic range of both
systems is managed to prevent saturation. In addition, three images (scene, dark
noise, and flat field) are captured by both systems and then used to spectrally
normalise the scene images to enhance the quality of the image. More informa-
tion about both systems can be found in [8] and [19].

Two HSI datasets (called UoM and Bonn for simplicity) captured with dif-
ferent acquisition dates and exposure times were used for analysis purposes. The
scene images of the UoM dataset consisted of six Arabidopsis leaf samples, while
the Bonn dataset consisted of four sugar leaf samples [19] placed flattened on
the sample plate in both cases (shown in Fig. 2). Moreover, the former dataset
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Table 1: Key specifications of UoM and Bonn HSI systems

Specification HSI Systems
UoM Bonn

Sensor type Area Line
Effective Pixels 1024×1344 1600
Spectral range 400−700 nm 400−1000 nm
Spectral resolution 10 nm 2.8 nm
Spatial resolution High 0.19 mm
Radiometric resolution 12-bits 12-bits
Dispersion device liquid crystal tuneable filter Image Spectrograph

consists of two normal and four stressed (cold and heat) leaves (i.e. top and bot-
tom left: normal, middle top and bottom: cold stress, and top and bottom right:
heat stress), while the latter consists of four leaves under one condition; either
healthy (controlled) or unhealthy (Cercospora). 648 samples were extracted from
the UoM dataset and divided into two groups: normal and stressed. The normal
group was represented by 216 samples and the remaining represented stressed
samples. The Bonn dataset yielded 196 samples: 98 samples of controlled and
Cercospora conditions. It should be stated that only green areas of both datasets
were considered for sample extraction. In addition, 50% of the samples were used
for training purposes with 10-fold cross validation with the remaining ones used
for testing.

3.2 Spectral-Texture Approach

Our spectral-texture approach (illustrated in Fig. 3) can be described in four
steps: spectral signature extraction, significant wavelengths selection, texture
parameters estimation, and classification. The spectral signature was extracted
from the pixel value of the small leaf region and then averaged over the entire
wavelengths spectrum. This averaged signature was used to reduce the varia-
tion in pixel intensities across the selected leaf region. CFS was used in the
wavelengths selection step in order to simplify the dataset and select the most
significant wavelengths. The LS estimate was used to estimate the second order
parameters of the MRF model and then average them either over the entire
wavelength spectrum or over the list of selected wavelengths. In the final step,
the selected wavelength and the estimated texture parameters were combined
and passed to a conventional SVM classifier with a radial basis function (RBF)
kernel for classification. The SVM uses a quadratic programming routine to solve
the following quadratic problem with the regards to training set in order to find
the best hyperplane [14]:
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(a)

(b)

Fig. 2: Samples of UoM and Bonn scene images. (a) UoM Arabidopsis samples
captured on February 2017(b) Bonn Sugar samples captured on March 2013.

min
ω∈IRd,ξi∈IR+

‖ω‖2 + C

N∑
i

ξi

subject to : yi(ω.xi + b) ≥ 1− ξi

(7)

where ω, b, xi, yi, ξi represent the weight vector, bias, training set, desired class
label, and a non-zero slack variable respectively. Moreover, C is the regularisation
parameter and it is used to mark the misclassified samples, thus determining the
flexibility of the decision boundary. In this case, the decision function y can be
solved using the weight vector as well as the bias:

y = sign(ω.xi + b) (8)

The value of decision function y ∈ {±1}, where 1 denotes one class and −1 the
other class. It should be mentioned that false positive and negative errors have
to be reduced in order to obtain a good classification result. In addition, the
RBF kernel was used to employ the nonlinear hyperplane and can be defined as
the following exponential function:

K(x,y) = e−γ‖x−y‖
2

, γ =
1

2σ2
(9)
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Fig. 3: Schematic of spectral-texture analysis approach

4 Results and Discussions

The experimental results assessed the usefulness of the spectral-texture approach
in analysing and classifying plant hyperspectral images under different condi-
tions. Both UoM and Bonn datasets were used in the analysis. The final results
were then compared with the classification results of existing spectral analysis
approach, texture analysis approach, and the combination of all the wavelengths
and the estimated texture parameters. 50% of the samples were used for training
with 10-fold cross validation and the other 50% samples were used for testing.
Table 2 displays the average classification of 100 run with the standard deviation.

Table 2: Average classification rate

Average classification rate (%)
Technique (standard deveiation)

UoM Bonn

All wavelengths 87.35 (0.019) 98.54 (0.019)
CFS 88.40 (0.014) 98.85 (0.010)
MRF 74.64 (0.019) 65.42 (0.037)
All wavelengths + MRF 83.42 (0.020) 88.51 (0.042)
CFS + MRF 92.87 (0.009) 99.36 (0.007)
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What stands out in this table is that the average classification rate of the
spectral-texture approach outperforms other approaches, including the combi-
nation of all the wavelengths and the estimated texture parameters (percent-
age respectively). The results suggest this is a valid approach for studying and
analysing different plant types and plant condition. Further statistical tests re-
vealed that the improvements are significant compared to the other approaches
at a significance level of 1%, especially the wavelengths-texture and texture ap-
proaches (p-value<10−5).

5 Conclusions

This paper presented a spectral-texture approach for analysis and classification
of hyperspectral plant types and condition. The experimental results from this
approach have shown an improvement in discrimination performance compared
to other approaches. Moreover, the significance of the spectral-texture approach
at 1% significance level was demonstrated through a statistical test. The find-
ings suggest that such an approach seems valid and applicable for the study of
different plant properties, types, and conditions. Future study can explore the
effect of the estimated parameters with different orders (e.g. first and third or-
ders MRF), as well as different classification routines, such as novelty detection
to best identify plant properties, types, and conditions.
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