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Abstract. Mutation testing is a well-studied method for increasing the
quality of a test suite. We designed LittleDarwin as a mutation testing
framework able to cope with large and complex Java software systems,
while still being easily extensible with new experimental components.
LittleDarwin addresses two existing problems in the domain of mutation
testing: having a tool able to work within an industrial setting, and yet,
be open to extension for cutting edge techniques provided by academia.
LittleDarwin already offers higher-order mutation, null type mutants,
mutant sampling, manual mutation, and mutant subsumption analysis.
There is no tool today available with all these features that is able to
work with typical industrial software systems.

Keywords: Software Testing, Mutation Testing, Mutation Testing Tool,
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1 Introduction

Along with the popularity of agile methods in recent times came an emphasis on
test-driven development and continuous integration [5,10]. This implies that de-
velopers are interested in testing their software components early and often [28].
Therefore, the quality of the test suite is an important factor during the evo-
lution of the software. One of the extensively studied methods to improve the
quality of a test suite is mutation testing [8].

Mutation testing was first proposed by DeMillo, Lipton, and Sayward to
measure the quality of a test suite by assessing its fault detection capabilities [8].
Mutation testing has been shown to simulate faults realistically [4, 17]. This
is because the faults introduced by each mutant are modeled after common
mistakes developers make [16]. Mutation testing is demonstrated to be a more
powerful coverage criteria in comparison with data-flow, statement, and branch
coverage [11,43].

Recent trends in scientific literature indicate a surge in popularity of this
technique, along with an increased usage of real projects as the subjects of scien-
tific experiments [16]. In literature, topics such as creating more robust mutants
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using higher-order mutation [15,20,32,35], reducing redundancy among mutants
using mutant subsumption [3, 24, 34], and reducing the number of mutants us-
ing mutant selection [12, 13, 44] are gaining popularity. Despite its benefits, the
idea of mutation testing is not widely used in industry. Consequently, mutation
testing research stays behind since it lacks fundamental experiments on indus-
trial software systems. We believe that, beyond the computationally expensive
nature of mutation testing [31], the reluctance of industry can stem from the
shortage of mutation testing tools that can both (i) work on large and complex
systems, and (ii) incorporate new and upcoming techniques as an experimental
framework.

In this paper, we try to fill this gap by introducing LittleDarwin. LittleDar-
win is designed as a mutation testing framework aiming to target large and
complex systems. The design decisions are geared towards a simple architecture
that allows the addition of new experimental components, and fast prototyping.
In its current version, LittleDarwin facilitates experimentation on higher-order
mutation, null type mutants, mutant sampling, manual mutation, and mutant
subsumption analysis. LittleDarwin has been used for experimentation on several
large and complex open source and industrial projects [36,37,38].

The rest of the paper is structured as follows. We provide background in-
formation about mutation testing in Section 2. We explain the design and the
implementation of our tool in Section 3, and summarize the experiments that
have been performed using our tool in Section 4. We conclude the paper in
Section 5.

2 Mutation Testing

Mutation testing1 is the process of injecting faults into a software system to verify
whether the test suite detects the injected fault. Mutation testing starts with a
green test suite — a test suite in which all the tests pass. First, a faulty version
of the software is created by introducing faults into the system (Mutation). This
is done by applying a known transformation (Mutation Operator) on a certain
part of the code. After generating the faulty version of the software (Mutant), it
is passed onto the test suite. If there is an error or failure during the execution of
the test suite, the mutant is marked as killed (Killed Mutant). If all tests pass, it
means that the test suite could not catch the fault, and the mutant has survived
(Survived Mutant) [16].

Mutation Operators. A mutation operator is a transformation which in-
troduces a single syntactic change into its input. The first set of mutation op-
erators were reported in King et al. [19]. These mutation operators work on
essential syntactic entities of the programming language such as arithmetic, log-
ical, and relational operators. They were introduced in the tool Mothra which

1 The idea of mutation testing was first mentioned by Lipton, and later developed by
DeMillo, Lipton and Sayward [8]. The first implementation of a mutation testing
tool was done by Timothy Budd in 1980 [6].
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was designed to mutate the programming language FORTRAN77. In 1996, Of-
futt et al. determined that a selection of few mutation operators is enough to
produce similarly capable test suites with a four-fold reduction of the number
of mutants [29]. This reduced-set of operators remained more or less intact in
all subsequent research papers. With the advent of object-oriented programming
languages, new mutation operators were proposed to cope with the specifics of
this programming paradigm [18,25].

Equivalent Mutants. If the output of a mutant for all possible input values
is the same as the original program, it is called an equivalent mutant. It is not
possible to create a test case that passes for the original program and fails for
an equivalent mutant, because the equivalent mutant is indistinguishable from
the original program. This makes the creation of equivalent mutants undesir-
able, and leads to false positives during mutation testing. In general, detection
of equivalent mutants is undecidable due to the halting problem [30]. Manual in-
spection of all mutants is the only way of filtering all equivalent mutants, which
is impractical in real projects due to the amount of work it requires. Therefore,
the common practice within today’s state-of-the-art is to take precautions to
generate as few equivalent mutants as possible, and accept equivalent mutants
as a threat to validity (accepting a false positive is less costly than removing a
true positive by mistake [9]).

Mutation Coverage. Mutation testing allows software engineers to monitor
the fault detection capability of a test suite by means of mutation coverage (see
Equation 1) [16]. A test suite is said to achieve full mutation test adequacy
whenever it can kill all the non-equivalent mutants, thus reaching a mutation
coverage of 100%. Such test suite is called a mutation-adequate test suite.

Mutation Coverage =
Number of killed mutants

Number of all non-equivalent mutants
(1)

Higher-Order Mutants. First-order mutants are the mutants generated
by applying a mutation operator on the source code only once. By applying mu-
tation operators more than once we obtain higher-order mutants. Higher-order
mutants can also be described as a combination of several first-order mutants.
Jia et al. introduced the concept of higher-order mutation testing and discussed
the relation between higher-order mutants and first-order mutants [14].

Mutant Subsumption. Mutant subsumption is defined as the relationship
between two mutants A and B in which A subsumes B if and only if the set of inputs
that kill A is guaranteed to kill B [23]. The subsumption relationship for faults
has been defined by Kuhn in 1999 [21], but its use for mutation testing has been
popularized by Jia et al. for creating hard to kill higher-order mutants [14]. Later
on, Ammann et al. tackled the theoretical side of mutant subsumption [3]. In
their paper, Ammann et al. define dynamic mutant subsumption, which redefines
the relationship using test cases. Mutant A dynamically subsumes Mutant B if
and only if (i) A is killed, and (ii) every test that kills A also kills B. The main
purpose behind the use of mutant subsumption is to reliably detect redundant
mutants, which create multiple threats to the validity of mutation testing [34].
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This is often done by determining the dynamic subsumption relationship among
a set of mutants, and keeping only those that are not subsumed by any other
mutant.

Mutant Sampling. To make mutation testing practical, it is important to
reduce its execution time. One way to achieve this is to reduce the number of
mutants. A simple approach to mutant reduction is to randomly select a set of
mutants. This idea was first proposed by Acree [2] and Budd [6] in their PhD
theses. To perform random mutant sampling, no extra information regarding
the context of the mutants is needed. This makes the implementation of this
technique in mutation testing tools easier. Because of this, and the simplicity of
random mutant sampling, its performance overhead is negligible. Random mu-
tant sampling can be performed uniformly, meaning that each mutant has the
same chance of being selected. Otherwise, random mutant sampling can be en-
hanced by using heuristics based on the source code. The percentage of mutants
that are selected determines the sampling rate for random mutant sampling.

3 Design and Implementation

In this section, we discuss the implementation details of LittleDarwin, and pro-
vide information on our design decisions.

3.1 Algorithm

LittleDarwin is designed with simplicity in mind, in order to increase the flex-
ibility of the tool. To this effect, it mutates the Java source code rather than
the byte code in order to defer the responsibility of compiling and executing
the code to the build system. This allows LittleDarwin to remain as flexible as
possible regarding the complexities stemming from the build and test structures
of the target software. The procedure is divided into two phases: Mutation Phase
(Algorithm 1), and Test Execution Phase (Algorithm 2).

Mutation Phase. In this phase, the tool creates the mutants for each source
file. LittleDarwin first searches for all source files contained in the path given as
input, and adds them to the processing queue. Then, it selects an unprocessed
source file from the queue, parses it, applies all the mutation operators, and
saves all the generated mutants.

Input : Java source files
Output: Mutated Java source files

queue ← all Java source files;
while queue 6= ∅ do

srcFile ← queue.pop();
mutants[srcFile] ← mutate(srcFile);

end
return mutants;

Algorithm 1: Mutation Phase
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Test Execution Phase. In this phase, the tool executes the test suite for
each mutant. First the build system is executed without any change to ensure
that the test suite runs “green”. Then, a source file along with its mutants are
read from the database, and the output of the build system is recorded for each
mutant. If the build system fails (exits with non-zero status) or times out, the
mutant is categorized as killed. If the build system is successful (exits with zero
status), the mutant is categorized as survived. Finally, a report is generated for
each source file, and an overall report is generated for the project (see Figure 3
for an example of this).

Input : Mutated Java source files
Output: Mutation Testing Report

if executeTestSuite() is successful then
foreach srcFile do

queue ← mutants[srcFile];
backup(srcFile);
while queue 6= ∅ do

mutantFile ← queue.pop();
replace(srcFile,mutantFile);
result[mutantFile] ← executeTestSuite();

end
restore(srcFile);
Generate report for srcFile;

end
Generate overall report;

end
return reports;

Algorithm 2: Test Execution Phase

3.2 Components

The data flow diagram of the main internal components of LittleDarwin is shown
in Figure 1. The following is an explanation of each main component:

JavaRead. This component provides methods to perform input/output op-
erations on Java files. LittleDarwin uses this component to read the source files,
and write the mutants back to disk.

JavaParse. This component parses Java files into an abstract syntax tree.
This is necessary to produce valid and compilable mutants. To implement this
functionality, an Antlr42 Java 8 grammar is used along with a customized version
of Antlr4 runtime. Beside providing the parser, this component also provides the
functionality to pretty print the modified tree back to a Java file.

JavaMutate. This component manipulates the abstract syntax tree (AST)
created by the parser. Subsection 3.3 explains the mutation operators of Lit-
tleDarwin in detail. The currently implemented mutation operators search the

2 http://www.antlr.org/

http://www.antlr.org/
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LittleDarwin

JavaRead JavaParse JavaMutate Report 
Generator

Antlr4 RuntimeGenerated 
 Java Parser

Fig. 1. Data Flow Diagram for LittleDarwin Components

provided AST for mutable nodes matching the predefined patterns (for exam-
ple, AOR-B looks for all binary arithmetic operator nodes that do not contain
a string as an operand), and they perform the mutation on the tree itself. This
gives the developer flexibility in creating new complicated mutation operators.
Even if a mutation operator introduces a fault that needs to change several
statements at once, and depends on the context of the statements, it can be
implemented using a complicated search pattern on the AST. The mutation op-
erators are designed to exclude mutations that would lead to compilation errors.
However, not all of these cases can be detected using an AST (e.g. AOR-B on
two variables that contain strings). Handling of such cases are therefore left for
the post-processing unit that filters such mutants based on the output of the
Java compiler. In order to preserve the maximum amount of information for
post-processing purposes, for each mutant a commented header is created. This
header contains the following information: (i) the mutation operator that cre-
ated the mutant, (ii) the mutated statement before and after the mutation, (iii)
the line number of the mutated statement in the original source file, and (iv) the
id number of the mutated node(s). An example is shown in Figure 2.

Fig. 2. The Header of a LittleDarwin Mutant

Report Generator. This component generates HTML reports for each file.
These reports contain all the generated mutants and the output of the build sys-
tem after the execution of each mutant. In the end, an overall report is generated
for the whole project (Figure 3).
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Fig. 3. LittleDarwin Project Report

3.3 Mutation Operators of LittleDarwin

There are 9 default mutation operators implemented in LittleDarwin listed in
Table 1. These operators are based on the reduced-set of mutation operators that
were demonstrated by Offutt et al. to be capable of creating similar-strength test
suites as the full set of mutation operators [29]. Since the number of mutation
operators of LittleDarwin is limited, it is possible that no mutants are gener-
ated for a class that lacks mutable statements. In practice, we observed that
usually only very small compilation units (e.g. interfaces, and abstract classes)
are subject to this condition.

Table 1. LittleDarwin Mutation Operators

Operator Description
Example

Before After

AOR-B Replaces a binary arithmetic operator a + b a− b

AOR-S Replaces a shortcut arithmetic operator + + a −− a

AOR-U Replaces a unary arithmetic operator −a +a

LOR Replaces a logical operator a& b a | b
SOR Replaces a shift operator a >> b a << b

ROR Replaces a relational operator a >= b a < b

COR Replaces a binary conditional operator a && b a || b
COD Removes a unary conditional operator ! a a

SAOR Replaces a shortcut assignment operator a ∗ = b a / = b
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In addition to these mutation operators, there are four experimental muta-
tion operators in LittleDarwin that are designed to simulate null type faults.
These mutation operators along with the faults they simulate are provided in
Table 2. We included these mutation operators based on the conclusions offered
by Osman et al. [33]. In their study, they discover that the null object is a major
source of software faults. The null type mutation operators are able to simulate
such faults, and consequently assess the quality of the test suite with respect
to them. These mutation operators cover fault-prone aspects of a method: Nul-
lifyInputVariable mutates the method input, NullifyReturnValue mutates the
method output, and NullifyObjectInitialization and RemoveNullCheck mutate
the statements in method body.

Table 2. Null Type Faults and Their Corresponding Mutation Operators

Fault Mutation Operator Description

Null is returned
by a method

NullifyReturnValue
If a method returns an object,

it is replaced by null

Null is provided
as input to a method

NullifyInputVariable
If a method receives an object

reference, it is replaced by null

Null is used to
initialize a variable

NullifyObjectInitialization
Wherever there is a new statement,

it is replaced with null

A null check
is missing

RemoveNullCheck
Any binary relational statement

containing null at one side is negated

3.4 Design Characteristics

To foster mutation testing in industrial setting it is important to have a tool
able to work on large and complex systems. Moreover, to allow researchers to
use real-life projects as the subjects of their studies, it is also important to
provide a framework that is easy to extend. In this section, we show to what
extent LittleDarwin, and its main alternatives, can satisfy these requirements. As
alternatives, we use PITest [7], Javalanche [41], and MuJava [27], since they are
popular tools used in literature. In Table 3, we summarize the design highlights.

Compatibility with Major Build Systems. To make the initial setup
of a mutation testing tool easier, it needs to work with popular build systems
for Java programs. LittleDarwin executes the build system rather than integrate
into it, and therefore, can readily support various build systems. In fact, the
only restrictions imposed by LittleDarwin are: (i) the build system must be able
to run the test suite, and (ii) the build system must return non-zero if any tests
fail, and zero if it succeeds. PITest address the challenge via integration into the
popular build systems by means of plugins. At the time of writing it supports
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Table 3. Comparison of Features in Mutation Testing Tools

Features LittleDarwin PITest [1] Javalanche [41] MuJava [26]

Compatibility with

Maven X X × ×
Ant X X × ×
Gradle X X × ×
Others X × × ×

Support for Complex Test Structures X × × ×
Optimized for Performance × X X X
Optimized for Experimentation X × × ×
Tested on Large Systems X X X ×
Ability to Retain Detailed Results X × × X
Open Source X X X X

Maven3, Ant4, and Gradle5. Javalanche and MuJava do not integrate in the
build system.

Support for Complex Test Structures. One of the difficulties of per-
forming mutation testing on complex Java systems is to find and execute the
test suite correctly. The great variety of testing strategies and unit test designs
generally causes problems in executing the test suite correctly. LittleDarwin
overcomes this problem thanks to a loose coupling with the test infrastructure,
instead relying on the build system to execute the test suite. Other mutation
testing tools reported in Table 3 have problems in this regard.

Optimized for Performance. LittleDarwin mutates the source code and
performs the execution of the test suite using the build system. This introduces
a performance overhead for the analysis. For each mutant injected, LittleDarwin
demands a rebuild and test cycle on the build system. The rest of the mutation
tools use byte code mutation, which leads to better performance.

Optimized for Experimentation. LittleDarwin is written in Python to
allow fast prototyping [40]. To parse the Java language, LittleDarwin uses an
Antlr4 parser. This allows us to rapidly adapt to the syntactical changes in newer
versions of Java (such as Java 8). This parser produces a complete abstract syn-
tax tree that makes the implementation of experimental features easier. In addi-
tion, the modular and multi-phase design of the tool allows reuse of each module
independently. Therefore, it becomes easier to customize the tool according to
the requirements of a new experiment. The other mutation tools work on byte
code, and therefore do not offer such facilities.

Tested on Large Systems. LittleDarwin has been used in the past on
software systems with more than 82 KLOC [37,38]. PITest and Javalanche have
been used in experiments with softwares of comparable size [39,41]. We did not
find evidence that MuJava has been tested on large systems.

Ability to Retain Detailed Results. PITest and Javalanche only output
a report on the killed and survived mutants. However, in many cases this is not

3 https://maven.apache.org/
4 https://ant.apache.org/
5 https://gradle.org/

https://maven.apache.org/
https://ant.apache.org/
https://gradle.org/
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enough. For example, subsumption analysis requires the name of all the tests
that kill a certain mutant. To address this problem, LittleDarwin retains all
the output provided by the build system for each mutant, and allows for post-
processing of the results. This also allows the researchers to manually verify
the correctness of the results. MuJava provides an analysis framework as well,
allowing for further experimentation [27].

Open Source. LittleDarwin is a free and open source software system. The
code of LittleDarwin and its components are provided6 for public use under
the terms of GNU General Public License version 2. PITest and MuJava are re-
leased under Apache License version 2. Javalanche is released into public domain
without an accompanying license.

3.5 Experimental Features

In order to facilitate the means for research in mutation testing, LittleDarwin
supports several features up to date with the state of the art. A summary of these
features and their availability in the alternative tools is provided in Table 4. An
explanation of each feature follows.

Table 4. Comparison of Experimental Features in Mutation Testing Tools

Experimental Features LittleDarwin PITest Javalanche MuJava

Higher-Order Mutation X × × ×
Mutant Sampling X × × X
Subsumption Analysis X × × ×
Manual Mutation X × × ×

Higher-order Mutation. This feature is designed to combine two first-
order mutants into a higher-order mutant. It is possible to link the higher-order
mutants to their first-order counterparts after acquiring the results.

Mutant Sampling. This feature is designed to use the results for sampling
experiments. LittleDarwin by default implements two sampling strategies: uni-
form, and weighted. The uniform approach selects the mutants randomly with
the same chance of selection for all mutants. In the weighted approach, a weight
is assigned to each mutant that is proportional to the size of the class containing
the mutant. The given infrastructure also allows for the development of other
techniques.

Subsumption Analysis. This feature is designed to determine the sub-
sumption relationship between mutants. For each mutant, this feature can de-
termine whether the mutant is subsuming or not, which tests kill the mutant,
which mutants are subsuming the mutant, and which mutants are subsumed
by the mutant. It is also capable of exporting the mutant subsumption graph
proposed by Kurtz et al. for each project [22,23].

6 https://github.com/aliparsai/LittleDarwin

https://github.com/aliparsai/LittleDarwin
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Manual Mutation. This feature allows the researcher to use their manu-
ally created mutants with LittleDarwin. LittleDarwin is capable of automatically
matching the mutants with the corresponding source files, and creating the re-
quired structure to perform the analysis. For example, this is useful in case the
mutants are created with a separate tool.

4 Experiments

In this section, we provide a brief summary of the experiments we already per-
formed using the experimental features of LittleDarwin on large and complex
systems.

Mutation Testing of a Large and Complex Software System. We
used LittleDarwin to analyze a large and complex safety critical system for Agfa
HealthCare. Our attempts to use other mutation testing tools failed due to the
complex testing structure of the target system. Due to this complexity, these
tools were not able to detect the test suite. This is because (i) the project used
OSGI7 headers to dynamically load modules, and (ii) the test suite was located
in a different component, and required several frameworks to work. The loose
coupling of LittleDarwin with the testing structure allowed us to use the build
system to execute the test suite, and thus, successfully perform mutation testing
on the project. For more details on this experiment, including the specification
of the target system, and the run time of the experiment, please refer to Parsai’s
master’s thesis [36].

Experimenting Up to Date Techniques on Real-Life Projects. Lit-
tleDarwin was used to perform three separate studies using the up to date tech-
niques reported in Table 4. We were able to perform these studies on real-life
projects.

In our study on random mutant sampling, we noticed that related litera-
ture have two shortcomings [37]. They focus their analysis at project level and
they are mainly based on toy projects with adequate test suites. Therefore, we
evaluated random mutant sampling at class level, and on real-life projects with
non-adequate test suites. We used LittleDarwin to study two sampling strategies:
uniform, and weighted. We highlighted that the weighted approach increases the
chance of inclusion of mutants from classes with a small set of mutants in the
sampled set, and reduces the viable sampling rate from 65% to 47% on average.
This analysis was performed on 12 real-life open source projects.

In our study on higher-order mutation testing, we used LittleDarwin to per-
form our experiments [38]. We proposed a model to estimate the first-order
mutation coverage from higher-order mutation coverage. Based on this, we pro-
posed a way to halve the computational cost of acquiring mutation coverage.
In doing so, we achieved a strong correlation between the estimated and actual
values. Since LittleDarwin retains the information necessary for post-processing
the results, we were able to analyze the relationship between each higher-order
mutant and its corresponding first-order mutants.

7 https://www.osgi.org/developer/specifications/

https://www.osgi.org/developer/specifications/
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We performed a study on simulating the null type faults which is currently
under peer-review. In this study, we show that mutation testing tools are not
adequate to strengthen the test suite against null type faults in practice. This is
mainly because the traditional mutation operators of current mutation testing
tools do not model null type faults. We implemented four new mutation operators
in LittleDarwin to model null type faults explicitly, and we show how these
mutation operators can be operatively used to extend the test suite in order to
prevent null type faults. Using LittleDarwin, we were able to analyze the test
suites of 15 real-life open source projects, and describe the trade offs related to
the adoption of these operators to strengthen the test suite. We also used the
mutant subsumption feature of LittleDarwin to perform redundancy analysis on
all 15 projects.

Pilot Experiment. We performed a pilot experiment on a real life project in
order to compare LittleDarwin with two of its alternatives: PITest and Javalanche.
In this experiment, we used Jaxen8 as the subject, since it has been used before
to evaluate Javalanche by its authors [42]. Jaxen has 12,438 lines of produc-
tion code, and 7,539 lines of test code. Table 5 shows the results of our pilot
experiment. As we can see, even though LittleDarwin creates the least number
of mutants, it is still slowest per-mutant. This is mainly because PITest and
Javalanche both filter the mutants prior to analysis based on statement cover-
age. In addition, LittleDarwin relies on the build system to run the test suite,
which introduces per-mutant overhead.

Table 5. Pilot Experiment Results

Tool Generated Mutants Killed Mutants Mutation Coverage Analysis Time Per-mutant Time

LittleDarwin 1,390 805 57.9% 2h23m45s 6.21s

PITest 4,315 2,145 49.8% 1h13m13s 1.02s

Javalanche 9,285 4,442 47.8% 1h35m23s 0.62s

5 Conclusion

We presented LittleDarwin, a mutation testing framework for Java. On the one
hand, it can cope with large and complex software systems. This lets LittleDar-
win foster the adoption of mutation testing in industry. On the other hand, the
tool is written in Python and released as an open source framework, namely
it enables fast prototyping, and the addition of new experimental components.
From this point of view, LittleDarwin shows its keen interest in representing an
easy to extend framework for researchers on mutation testing. Combining these
aspects allows researchers to use real-life projects as the subjects of their studies.

In the current version, LittleDarwin is compatible with major build systems,
supports complex test structures, can work with large systems, and retains lots

8 http://jaxen.org/

http://jaxen.org/
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of useful information for further analysis of the results. Moreover, it already in-
cludes the following experimental features: higher-order mutation, mutant sam-
pling, mutant subsumption analysis, and manual mutation. Using these features,
we have already performed four studies on real-life projects that would otherwise
not have been feasible.
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