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Abstract. Unexpected loads in Cloud data centers may trigger over-
loaded situation and performance degradation. To guarantee system per-
formance, cloud computing environment is required to have the ability
to handle overloads. The existing approaches, like Dynamic Voltage Fre-
quency Scaling and VM consolidation, are effective in handling partial
overloads, however, they cannot function when the whole data center
is overloaded. Brownout has been proved to be a promising approach
to relieve the overloads through deactivating application non-mandatory
components or microservices temporarily. Moreover, brownout has been
applied to reduce data center energy consumption. It shows that there
are trade-offs between energy saving and discount offered to users (rev-
enue loss) when one or more services are not provided temporarily. In
this paper, we propose a brownout-based approximate Markov Decision
Process approach to improve the aforementioned trade-offs. The results
based on real trace demonstrate that our approach saves 20% energy
consumption than VM consolidation approach. Compared with existing
energy-efficient brownout approach, our approach reduces the discount
amount given to users while saving similar energy consumption.

Keywords: Cloud Energy Efficiency, Application Component, Microservices,
Brownout, Markov Decision Process

1 Introduction

Given the scenario that budget and resource are limited, overloaded situation
may lead to performance degradation and resource saturation, in which some re-
quests cannot be allocated by providers. Thus, some users may experience high
latencies, and others may even not receive services at all [14], which directly af-
fects the requests that have Quality of Service (QoS) constraints. Unfortunately,
current resource management approaches, like Dynamic Voltage Frequency Scal-
ing (DVFS) [13] and VM consolidation [18], cannot function when the holistic
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data center is overloaded. The saturated resource not only brings over-utilized
situation to hosts, but also causes high energy consumption.

Energy consumed by the cloud data centers has currently become one of the
major concerns of the computing industry. It is reported that U.S. data centers
will consume 140 billion kWh of electricity annually by 2020, which equals to
the annual output of about 50 brown power plants [9]. Analysts also forecast
that data centers will roughly triple the amount of electricity consumed in the
next decade [2]. The servers hosted in data centers dissipate heat and need to
be maintained in a fully air-conditioned and engineered environment. Though
the cooling system is already efficient, servers remain one of the major energy
consumers. One of the main reasons of high energy consumption lies in that
computing resource are not efficiently utilized by server applications. Currently,
building applications with microservices provides a more efficient approach to
utilize infrastructure resource.

Applications can be constructed via set of self-contained components which
are also called microservices. The components encapsulate its logic and expose its
functionality through interfaces, which makes them flexible to be deployed and
replaced. With components or microservices, developers and users can benefit
from their technological heterogeneity, resilience, scalability, ease of deployment,
organizational alignment, composability and optimization for replaceability [16].
This also brings the advantage of more fine-grained control over the application
resource consumption.

Therefore, we take advantage of a paradigm called brownout [14] to han-
dle with overloaded situation and save energy. It is inspired by the concept of
brownout in electric grids and originates from the voltage shutdown that copes
with emergency cases, in which light bulbs emit fewer lights and consume less
power [10]. In Cloud scenario, brownout can be applied to applications compo-
nents or microservices that are allowed to be disabled temporarily.

It is common that application components or microservices have this brownout
feature. A brownout example for online shopping system is introduced in [14],
in which the online shopping application provides a recommendation engine to
recommend products that users may be interested in. The recommendation en-
gine component helps service provider to increase profits, but it is not required
to be running all the time. Recommendation engine also requires more resource
in comparison with other components. Accordingly, with brownout, under over-
loaded situation, the recommendation engine could be deactivated to serve more
clients who require essential services and have QoS constraints. Another exam-
ple is the online document process application that contains the components
for spell checking and report generation. These components are not essential to
run all the time and can be deactivated for a while to reduce resource utiliza-
tion. Apart from these two examples, brownout is available for other application
components or microservices that are not required to be available all the time.

In this paper, we consider component-level control in our system model. The
model could also be applied to container or microservices architecture. We model
the application components as either mandatory or optional, and if required, op-



tional components can be deactivated. By deactivating the optional components
selectively and dynamically, the application utilization is reduced to save total
energy consumption. While under market scenario, service provider may provide
discount for users as one or more services are deactivated.

In our scenario, the meaning of discount is not limited to the discount of-
fered to users. Additionally, it can also be modelled as the revenue loss of service
providers (i.e. SaaS service providers) that they charge lower price for services
under brownout. For example, in an online shopping system, the recommenda-
tion engine helps the service provider to improve their revenue by recommend-
ing similar products. If the recommendation engine is deactivated, the service
provider is unable to obtain the revenue from recommendation engine.

The key contributions of this paper are: our approach considers the trade-
offs between saved energy and the discount that is given to a user if components
or microservices are deactivated; we propose an efficient algorithm based on
brownout and approximate Markov Decision Process that considers the afore-
mentioned trade-offs and achieves better trade-offs than baselines.

The remainder of this paper is organized as follows: after discussing the
related work in Section 2, we present the brownout system model and prob-
lem statement in Section 3. Section 4 introduces our proposed brownout-based
Markov Decision Process approach, and Section 5 demonstrates the experimen-
tal results of our proposed approach. The summary along with the future work
are concluded in Section 6.

2 Related Work

A large body of literature has focused on reducing energy consumption in cloud
data centers, and the dominant categories for solving this problem are VM con-
solidation and Dynamic Voltage Frequency Scaling (DVFS).

VM consolidation is viewed as an act of combining into an integral whole,
which saves energy by allocating work among fewer machines and turning off
unused machines [18]. Using this approach, VMs allocated to underutilized hosts
are consolidated to other servers and the remaining hosts are transformed into
low power mode. Mastroianni et al. [15] presented a self-organizing and adaptive
approach for consolidation of VMs CPU and RAM resource, which is driven
by probabilistic processes and local information. Corradi et al. [8] considered
VM consolidation in a more practical viewpoint related to power, CPU and
networking resource sharing and tested VM consolidation in OpenStack, which
shows VM consolidation is a feasible solution to lessen energy consumption.

The DVFS technique introduces a trade-off between computing performance
and energy consumed by the server. The DVFS technique lowers the frequency
and voltage when the processor is lightly loaded, and utilizes maximum frequency
and voltage when the processor is heavily loaded. Kim et al. [13] proposed several
power-aware VM schemes based on DVFS for real-time services. Hanumaiah et
al. [12] introduced a solution that considers DVFS, thread migration and active
cooling to control the cores to maximize overall energy efficiency.



Most of the proposed brownout approaches in Cloud scenarios focused on
handling overloads or overbooking rather than energy efficiency perspective.
Klein et al. [14] firstly borrowed the approach of brownout and applied it to cloud
applications, aiming to design more robust applications under unpredictable
loads. Tomas et al. [19] used brownout along with overbooking to ensure grace-
ful degradation during load spikes and avoid overload. In a brownout-compliant
application or service, the optional parts are identified by developers, and a con-
trol knob called dimmer that controls these optional parts is also introduced.
The dimmer value represents a certain probability given by a control variable
and shows how often these optional parts are executed. Moreover, a brownout
controller is also required to adjust the dimmer value.

Markov Decision Process (MDP) is a discrete time stochastic optimization
approach and provides a way to solve the multiple state probabilistic decision-
making problem, which has been adopted to solve resource management prob-
lems in Cloud scenarios. Toosi et al. [20] used finite MDP for requests admis-
sion control in Clouds, while their objective is maximizing revenues rather than
reducing power consumption. Han et al. [11] applied MDP to determine VM
migration for minimizing energy consumption, while our work is adopting MDP
to determine the deactivation of application components.

In our previous work [21], several heuristic policies were proposed to find the
components that should be deactivated and investigated the trade-offs between
energy and discount. In this paper, we adopt approximate MDP to improve the
aforementioned trade-offs.

3 System Model and Problem Definition

3.1 System Model

Our system model is presented in Fig. 1 and it consists of the following entities:
Users: Users submit service requests to cloud data centers. The users entity

contains user information and requested applications (services).
Applications: The applications provide different services for users and are

consisted of a set of components, which are identified as mandatory or optional.
Mandatory component: The mandatory component keeps running all the

time when the application is launched.
Optional component: The optional component can be set as activated or

deactivated according to the system status. These components have parameters
like utilization u(Appc) and discount d(Appc). Utilization indicates the amount
of utilization, and discount represents the amount of discount that is offered
to the users (or revenue loss of service provider). The operations of optional
components are controlled by the brownout controller, which makes decisions
based on the system overloaded status and brownout algorithm.

To adapt the dimmer to our model, different from the dimmer in [14] that
requires a dimmer per application, our dimmer is only applied to the applications
with optional components. Rather than response time, another adaptation is



Fig. 1. System Model with Brownout

that our dimmer value is computed based on the number of overloaded hosts
and adapts to the severity of overloaded events (more details are presented in
Section 4.1).

Cloud Providers: Cloud providers offer physical resources to meet service
demands, which host a set of VMs or containers to run applications.

3.2 Power Model

We adopt the servers power model derived from [22]. The power of server i is
Pi(t) that is dominated by the CPU utilization:

Pi(t) =

{
P idlei +

∑Ni
j=1 u(VMi,j(t))× P dynamici , Ni > 0

0 , Ni = 0
(1)

Pi(t) is composed of idle power and dynamic power. The idle power is re-
garded as constant and the dynamic power is linear to the total CPU utilization
of all the VMs on the server [22]. If no VM is hosted on a server, the server
is turned off to save power. VMi,j refers to the jth VM on server i, Ni means
the number of VMs assigned to server i. And u(VMi,j(t)) refers to the VM
utilization at time interval t, which is represented as:

u(VMi,j(t)) =

Cj∑
c=1

u(Appc) (2)

where Cj is the number of application components on VM, and u(Appc) is the
utilization of application component c when it is activated.

Then the total energy consumption during time interval t, with M servers is:

E(t) =

M∑
i=1

∫ t

t−1
Pi(t)dt (3)



Notes: In our power model, we assume that the time required to turn on/off
hosts (including the time to deactivate and activate components) is lees than a
scheduling time interval (like 5 minutes). When the host is turned off/on, the
host is assumed to be consuming the idle power.

3.3 Discount Amount

As introduced in Section 1, the meaning of discount could be either the discount
offered to users or the revenue loss of service providers that they charge lower
price for services under brownout. In this paper, we note them as discount.

The total discount amount at time interval t is modeled as the sum of discount
of all deactivated application components at t:

D(t) =
M∑
i=1

Ni∑
j=1

d(VMi,j(t)) (4)

where D(t) is the total discount amount at t that obtained from all VMs on
hosts, Ni is the number of VMs assigned to server i, M is the number of servers.
The individual discount d(VMi,j(t)) is the sum of discount amount of deactivated
application components d(Appc) of VMi,j , which is shown in Equation (5):

d(VMi,j) =

Cj∑
c=1

d(Appc) (5)

where Cj is the number of application components hosted on VMj , and only
the deactivated components are counted.

3.4 Problem Definition

Let Q(t) ∈ Q, where Q = η1, . . . , η|Q|, ηi ∈ Q. The Q(t) is a combination of
two vectors: energy consumption vector E(t) and discount amount vector D(t),
representing the possible energy consumption and discount amount at different
system states. Let C(t) to be all the application component states at t, we have
Definition 1 The system state at time interval t can be specified as:

S(t) , [Q(t), C(t)] (6)

The system state S(t) contains the energy consumption and discount amount as
well as their corresponding application components states .

At each time interval, we calculate the state information as:

g(t) = E(t) + λD(t) (7)

where λ is the weight of discount. The higher λ implicates that more weights are
given to the discount amount. In the whole scheduling period T under policy π,
our optimization objective is:

min
π

g(π) =

T∑
t=0

[E(t) + λD(t)] (8)



4 Proposed Approach

4.1 Approximate Markov Decision Process Model

To adopt the Markov model, we assume that the workload satisfies the Markov
property, which means the state transitions caused by workloads are memory-
less. Our experiments are conducted with Planetlab workload, which has been
validated to satisfy Markov chain property [4]. In our model, we assume that the
probability of application components to transfer their states at the next time
period only depends on the workloads of the current time period and indepen-
dent on earlier states. We formulate our problem as finite horizon MDP that we
investigate a fixed length of time.

Then we can solve our objective function by using Bellman equation [3]:

V ∗(Si) = arg min
γ∈R

[g(Si) +
∑
Sj∈S

Pr[Sj |Si, γ]V ∗(Sj)] (9)

g(Si) is the instant cost under system state Si, and V ∗(Si) is the expected
energy consumption and discount obtained from Sj to Si. We also denote γ(t) ,
[γ1(t), . . . , γn(t)] ∈ R as the operations (activation or deactivation actions) for
application components. V ∗(Si) can be found by iteratively obtaining minimum
energy consumption and discount until convergence.

Let ˆpi,j denote the estimated transition probability that the application com-
ponent changes its state. The transition probability is computed as:

p̂i,j =

√
M̂

M
× Pr(u(Appc)

d(Appc)
= zC) (10)

Pr(u(Appc)d(Appc)
= zC) is the probability that the ratio of component utilization and

discount u(Appc)
d(Appc)

falls into category zC . We divide the probability into C (the

maximum number of components on a VM) categories. For all the components
with the probability falls into the same category, we apply the same operation.
To avoid the curse of dimension, noted by [11], we adopt key states to reduce
state space. With key states, the component states on a VM is reduced to the
maximum number of components on a VM as |C|. M̂ is the estimated number
of overloaded hosts, which is calculated based on a sliding window [5]. The
advantage of sliding window is to give more weights to the values of recent time
intervals. Let Lw to be the window size, and N(t) to be the number of overloaded
hosts at t, we estimate M̂ as:

M̂(Lw) =
1

Lw

Lw−1∑
t=0

N(t) (11)

We denote the states as key states Sk as described above. With proof in
[11],∀Si ∈ Sk for all the VMs, the equivalent Bellman’s equation in Equation



(9) can be approximately formulated as:

V ∗(Si) ≈
M∑
m=1

Nm∑
n=1

(g(Si) + arg min
γn∈Rn

{
∑
Sj∈Sk

Pr[Sj |Si, γn]Ṽ ∗n (Sj)}) (12)

The state spaces thus are reduced to polynomial with linear approximation. The
M is the number of hosts and Nm is the number of VM assigned to server m.

4.2 Brownout Algorithm based on Markov Decision Process
(BMDP)

Our novel brownout algorithm is embedded within a VM placement and con-
solidation algorithm. We adopt the VM placement and consolidation algorithm
(PCO) proposed in [4], which is also one of our baselines in Section 5.

The PCO algorithm is a heuristic to reduce energy consumption through
VM consolidation. In the initial VM placement phase, PCO sorts all the VMs in
decreasing order by their current CPU utilization and allocates each VM to the
host that increases the least power consumption due to this allocation. In the
VM consolidation phase, PCO optimizes VM placement by separately picking
VMs from over-utilized and under-utilized hosts to migrate, and finding new
placements for them. After migration, the over-utilized hosts are not overloaded
any more and the under-utilized hosts are switched to sleep mode.

Our brownout algorithm based on approximate Markov Decision Process is
shown in Algorithm 1 and includes 6 steps:

1) System initialization (lines 1-2): Initializing the system configura-
tions, including overloaded threshold TP , dimmer value θt, vector Q that con-
tains the D(t) and E(t) information, as well as objective states Sd, and applying
VM placement algorithm in PCO to initialize VM placement.

2) Estimating transition probability of each application component
(lines 3-14): At each time interval, the algorithm firstly estimates the number

of overloaded hosts. The dimmer value is computed as

√
M̂
M , which is adap-

tive to the number of overloaded hosts. If no host is overloaded, the value is 0
and no component is deactivated. If there are overloaded hosts, the transition
probabilities of application components are computed using Equation (10).

3) Finding the states that minimize the objective function (lines
15-17): Traversing all the key states by value iteration according to Equation
(12), where D

′
(t) and E

′
(t) are the temporary values at the current state.

4) Updating system information (lines 18-20): The algorithm updates
the obtained energy consumption and discount values if g(t) in Equation (7) is
reduced, and records the optimized states. The current states are substituted by
the state with lower g(t).

5) Deactivating the selected components (line 22): The brownout
controller deactivates the selected components to achieve objective states.

6) Optimize VMs placement (line 24) The algorithm uses the VM con-
solidation approach in PCO to optimize VM placement via VM consolidations.



Algorithm 1 Brownout based Markov Decision Process Algorithm (BMDP)
Input: host list hl with size M , VM list, application components information, overloaded power

threshold TP , dimmer value θt at time t, destination states Sd(t), energy consumption E(t) and
discount amount D(t) in Q

Output: total energy consumption, discount amount
1: TP ← 0.8; θt ← 0; ∀E(t), ∀D(t) ∈ Q← max; Sd(t) ∈ Sd ← NULL
2: use PCO algorithm to initialize VMs placement
3: while true do
4: for t← 0 to T do

5: θt ← =

√
M̂t
M

6: for all hi in hl do
7: if hi is overloaded then
8: for all VMi,j on hi do
9: for all Appc on VMi,j do

10: Pr(Appc)← θt × Pr(u(Appc)d(Appc)
= zC)

11: end for
12: end for
13: end if
14: end for
15: for all Sj(t) ∈ Sk(t) do

16: V ∗(Si) =
∑m=M
m=1

∑n=Nm
n=1 (g(Si) + minγn∈Rn{

∑
Sj∈Sk

Pr[Sj |Si, γn]Ṽ ∗n (Sj)})

17: g(t) = E
′
(t) + λD

′
(t)

18: if g(t) < E(t) + λD(t) then

19: E(t)← E
′
(t) ; D(t)← D

′
(t) ; Sd(t)← Sj(t)

20: end if
21: end for
22: deactivate the selected components to achieve state Sd(t)
23: end for
24: use VM consolidation in PCO algorithm to optimize VM placement
25: end while

The complexity of the BMDP algorithm at each time interval is consisted of
the brownout part and VM consolidation part. The complexity of the transition
probability computation is O(C · N ·M), where C is the maximum number of
components in all applications, N is the maximum number of VMs on all the
hosts and M is the number of hosts. With the key states, the space state of the
MDP in brownout part is O(C ·N ·M). According to Equation (12), the actions
are reduced to O(C ·N ·M), so the overall MDP complexity is O(C2·N2·M2). The
complexity of the PCO part is O(2M) as analyzed in [4]. Therefore, the overall
complexity is O(C ·M ·N + C2 ·N2 ·M2 + 2M) or equally O(C2 ·N2 ·M2).

5 Performance Evaluation

5.1 Methodology

We use the CloudSim framework [6] to simulate a cloud data center. The data
center contains two types of hosts and four types of VMs that are modeled based
on current offerings in EC2 as shown in Table 1. The power models of the adopted
hosts are derived from IBM System x3550 M3 with CPU Intel Xeon X5670 and
X5675 [1] . We set the time required to turn on/off hosts as 0.5 minute.

We implemented application with optional components, and each component
has its corresponding CPU utilization and discount amount. The components are
uniformly distributed on VMs.



We adopt the realistic workload trace from more than 1000 PlanetLab VMs
[17] to create an overloaded environment [5]. Our experiments are simulated un-
der one-day scheduling period and repeated for 10 different days. The brownout
is invoked every 5 minutes (one time interval) if hosts are overloaded. The sliding
window size Lw in Equation (11) to estimate the number of overloaded hosts is
set as 12 windows (one hour).

The CPU resource is measured with capacity of running instructions. Assum-
ing that the application workload occupies 85% resource on a VM and the VM
has 1000 million instructions per second (MIPS) computation capacity, then it
represents the application constantly requires 0.85 × 1000 = 850 MI per second
in the 5 minutes time interval.

Table 1. Host / VM Types and Capacity

Name CPU Cores Memory Bandwidth Storage

Host Type 1 1.86 GHz 2 4 GB 1 Gbit/s 100 GB
Host Type 2 2.66 GHz 2 4 GB 1 Gbit/s 100 GB

VM Type 1 2.5 GHz 1 870 MB 100 Mbit/s 1 GB
VMType 2 2.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 3 1.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 4 0.5 GHz 1 613 MB 100 Mbit/s 1 GB

We use three baseline algorithms for comparison as below:
1) VM Placement and Consolidation algorithm (PCO) [4]: the algo-

rithm has been described at the beginning of Section 4.2.
2) Utilization-based Probabilistic VM consolidation algorithm (UBP)

[7]: for VM initial placement, UBP adopts the same approach as PCO. For VM
consolidation, UBP applies a probabilistic method [15] to select VMs from over-
loaded host. The probabilistic method calculates the migration probability fm(u)
based on host utilization u as : fm(u) = (1 − u−1

1−Th )α , where Th is the upper
threshold for detecting overloads and α is a constant to adjust probability.

3) Brownout algorithm with Highest Utilization and Price Ratio
First Component Selection Algorithm (HUPRFCS)[21]: it is a brownout-
based heuristic algorithm. This algorithm deactivates the application compo-

nents from the one with the highest
u(App)
d(Appc)

to the others with lower u(Appc)
d(Appc)

until

the deactivated components obtain the expected utilization reduction, which is
a deterministic algorithm. HUPRFCS is an efficient approach to reduce energy
consumption under discount amount constraints.

To evaluate algorithms’ performance, we mainly explore two parameters:
1) Overloaded threshold: it identifies the CPU utilization threshold that

determines the overloaded hosts, and it is varied from 80% to 95% in increments
of 5%. We adopt this parameter since both [4] and [15] have shown that it
influences energy consumption.

2) Percentage of optional utilization in an application: it shows how
much utilization in application is optional and can be deactivated. It is varied



from 25% to 100% in increments of 25%. An application with 100% optional
utilization represents that the application components or microservices are self-
contained and each of them is allowed to be disabled temporarily (not disabling
all the components at the same time), such as a stateless online document pro-
cessing application. We assume the application maximum discount is identical
to the percentage of optional utilization, for example, 50% optional utilization
in an application comes along with 50% discount amount.

We assume that the optional components utilization u(Appc) and discount
d(Appc) conform normal distribution u(Appc):N(µ, σ2), d(Appc):N(µ, σ2), the
µ is the mean utilization of component utilization or discount, which is com-
puted as the percentage of optional utilization (or discount amount) divided
by the number of optional components. The σ2 is the standard deviation of
optional components utilization or discount. In our experiments, we consider
both optional component utilization standard deviation and discount standard
deviation are less than 0.1, which represents that the optional components are
designed to have balanced utilization and discount.

5.2 Results

5.2.1 Comparison with different λ

Fig. 2. Comparison with different λ. The parameter λ is the weight of discount.

To investigate the impacts of different discount weights in Equation (7),
we conduct a series of experiments with different λ. In these evaluations, the
hosts number and VMs number are set to 200 and 400 respectively, the over-
loaded threshold is set to 85% and the percentage of optional utilization is set to
50%. Fig. 2 indicates that energy consumption increases and discount amount
decreases when λ increases. The reason lies in that larger λ will guide our algo-
rithm to find the states that offer less discount. From the results, we notice that
when λ value is less than 4500, BMDP saves more energy than UBP and PCO,
and in comparison to HUPRFCS, BMDP has similar energy consumption and
reduces significant discount amount.

In the following evaluations, we set λ to a small value (i.e. λ=100) so that
the energy consumption of BMDP is below two baselines (PCO and UBP) and



close to HUPRFCS. Additionally, with this λ value, the discount of BMDP is
less than the discount produced by HUPRFCS.

5.2.2 Comparison under varied overloaded thresholds

Fig. 3. Varying Overloaded Threshold

The performance evaluated under different overloaded thresholds is shown
in Fig. 3. Other parameters are configured as same as in Section 5.2.1. In Fig.
3(a), we observe that the energy consumption of all the algorithms are reduced
when the overloaded threshold increases, for example, PCO-80% has 699.6 kWh
with 95% Confidence Interval (CI) (682.6, 716.6) and reduces it to 649.9 kWh
with 95% CI: (635.8, 664.1) in PCO-95%; BMDP-80% has 607.8 kWh with 95%
CI: (598.1, 617.4) and saves it as 558.4 kWh with 95% CI: (549.6, 567.2) in
BMDP-95%. The reason lies in that higher overloaded thresholds allow more
VMs to be packed on the same host, so that more hosts are shutdown. When
overloaded thresholds are between 80% to 90%, UBP reduces around 5% energy
consumption compared to PCO, while HUPRFCS and BMDP save about 14-
16% more energy consumption than PCO. When the overloaded threshold is
95%, PCO and UBP achieve close energy consumption, while HUPRFCS and
BMDP still reduce around 16% energy compared with them.

As the energy consumption of HUPRFCS and BMDP are quite close, we
conduct paired t-tests for HUPRFCS and BMDP as shown in Table 2. We notice
that the differences between them are less than 2%, and when the overloaded
thresholds are 85% and 95%, the p-values are 0.09 and 0.45 respectively, which
indicates weak evidence to prove that they are different.

Comparing the discount amount, Fig. 3(b) shows that there is no discount
offered in PCO and UBP, but HUPRFCS offers 11% to 20% discount and BMDP
reduces it to 3% to 11% as the trade-off due to components deactivation. This
is because, based on heuristics, HUPRFCS quickly finds the components with
higher utilization and discount ratio, while BMDP steps further based on MDP
to optimize the component selection.

5.2.3 Comparison under Varied Percentage of Optional Utilization



Table 2. Paired T-Tests with 95% CIs for Comparing Energy Consumption by
HUPRFCS and BMDP under Different Overloaded Thresholds

Algorithm 1 (kWh) Algorithm 2 (kWh) Difference (kWh) p-value

HUPRFCS-80% (598.01) BMDP-80% (607.78) -9.77 (-15.14, -4.39) 0.0026

HUPRFCS-85% (595.87) BMDP-85% (599.24) 3.37 (-0.77, 7.52) 0.099

HUPRFCS-90% (581.91) BMDP-90% (587.97) -6.05 (-9.41 -2.69) 0.0027

HUPRFCS-95% (557.03) BMDP-95% (558.41) -1.38 (-5.36, 2.6) 0.45

Fig. 4. Varying Percentage of Optional Utilization

In Fig. 4, we compare the algorithms with different percentages of optional
utilization. Other parameters are set the same as those in Section 5.2.1. As
shown in Fig 4.(a), for PCO and UBP, their energy consumption are not in-
fluenced by different percentage of optional utilization. PCO has 684 kWh with
95% CI: (667.4, 700.6), and UBP has reduced 4.7% to 651.9 with 95% CI: (637.3,
666.5). Compared with PCO, HUPRFCS-25% reduces 11% energy to 605kWh
with 95% CI: (596.6, 613.4), and BMDP-25% reduces 9% energy to 615.9 kWh
with 95% CI: (605.9, 625.8). When the percentage of optional utilization in-
creases, the more energy consumption is saved by HUPRFCS and BMDP. For
instance, HUPRFCS-100% and BMDP-100% achieve around 20% energy saving
as 556.9kWh with 95% CI: (550.9, 562.3) and 551.6kWh with 95% CI: (545.8,
557.4) respectively. The reason is that higher percentage of optional percent-
age allows more utilization to be reduced. For the discount amount comparison
in Fig. 4(b), it shows that HUPRFCS offers 10% to 25% discount amount as
trade-offs, while BMDP only offers 3% to 10% discount amount.

Because the energy consumption of HUPRFCS and BMDP are quite close,
we conduct the paired t-test for HUPRFCS and BMDP as illustrated in Table
3. When the percentage of optional utilization are 75% and 100%, the p-values
are 0.099 and 0.057, which indicates weak evidence to prove that they are differ-
ent. And with other percentage of optional utilization, the energy consumption
differences are less than 2%.

6 Conclusions and Future Work

Brownout has been proven to be effective to solve the overloaded situation in
cloud data centers. Additionally, brownout can also be applied to reduce energy



Table 3. Paired T-Tests with 95% CIs for Comparing Energy Consumption by
HUPRFCS and BMDP under Different Percentage of Optional Utilization

Algorithm 1 (kWh) Algorithm 2 (kWh) Difference (kWh) p-value

HUPRFCS-25% (617.57) BMDP-25% (628.10) -10.52 (-12.52, -8.52) 0.00082

HUPRFCS-50% (595.0) BMDP-50% (605.88) -10.88 (-15.26, -6.5) 0.00032

HUPRFCS-75% (575.87) BMDP-75% (579.24) -3.37 (-7.52 -0.78) 0.099

HUPRFCS-100% (551.56) BMDP-100% (556.59) -3.12 (-5.08, -1.16) 0.0057

consumption. In this paper, we introduced the brownout system model by de-
activating optional components in applications or microservices temporarily. In
the model, the brownout controller can deactivate the optional components or
microservices to deal with overloads and reduce data center energy consump-
tion while offering discount to users. We also propose an algorithm based on
brownout and approximate Markov Decision Process namely BMDP, to find the
components should be deactivated. The simulations based on real trace showed
that BMDP reduces 20% energy consumption than non-brownout baselines and
saves discount amount than brownout baseline. As future work, we plan to im-
plement a brownout prototype based on Docker Swarm.
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