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Abstract. An ever-growing number of web service providers expose data
that is continuously changing. Use cases arise where being notified about
changes made to the data is essential to the client, for instance to know
when a user has a new follower on Twitter. Monitoring changes on web
services data consists in polling services for the required data, detecting
any changes in the targeted data subset, and notifying the user only
about the relevant changes. However, each step of this process can be
relatively complex, leading to a tedious and challenging implementation for
developers. In this paper we introduce PoLLY, a domain-specific language
for describing change detection strategies in JSON data fetched from
REST web APIs. By leveraging the domain knowledge of the user, our
domain-specific language offers declarative, concise yet highly-expressive
constructs for specifying change detection strategies. We validate our
approach using several user-driven scenarios provided by our industrial
partner and show that it outperforms the state-of-the-art solutions.

Keywords: DSL, Change Detection, API, REST, JSON.

1 Introduction

Integration platforms such as IFTTT# and Zapier® have recently emerged with
the aim of orchestrating interactions between a multitude of web services such as
Facebook and Twitter [11,13]. They enable end users to describe which actions
to trigger when a custom event occurs [16]. For instance, one may want to
automatically tweet a message when a specific subway line becomes unavailable.
However, most of existing web services do not provide a way to specify custom
event notifications. To overcome this limitation, platform owners have developed
their own notification system by performing a recurrent polling of monitored
services. For each service, the current state is periodically fetched and compared
against the previous one to identify specific values that vary over time. When
a change is detected, the corresponding event is raised. Because specific code

4 https://ifttt.com
5 https://zapier.com
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needs to be developed for each event of a service, the set of supported services
and events is limited and does not necessarily meet user expectations.

Each step of the monitoring process can be relatively complex. As an example,
consider the use of the Facebook service to detect new photos with a given tagged
user in a given album. To implement this scenario, one needs first to periodically
poll several Facebook API endpoints (the one for the photos and the one for the
tags) and navigate through the paginated responses. The resulting aggregated
state is then compared against the previous one. However, this comparison
requires focusing only on new photos (identified by their unique IDs) while
ignoring other irrelevant changes such as the last update time. Even such a simple
use case underlines the complexities of this process, which are declined in two
different challenges: state computation and change detection.

Although the computation of a state sometimes requires fetching a unique
resource from a single API endpoint, it is often necessary to implement more
complicated policies. For instance, the construction of a state may require navi-
gating through a set of API endpoints, where several requests must be chained
in a particular order to correctly fetch the relevant data. In addition, responses
returned by a service can be paginated and thus necessitate several subsequent
requests to accumulate all the data. Thus, constructing a state can quickly become
laborious.

Once a state has been computed, it is necessary to detect changes with
the previous one. However, off-the-shelf techniques can produce unexpected or
irrelevant results as in the previous Facebook example in which photos with
only a modified last update time should not be reported as different. Developing
a generic differencing tool is a well-known complex problem, and can be NP-
hard depending both on the change operations that are considered, and on the
guarantees about the output size [6].

Our industrial partner, CPRODIRECT, wishes to compete with traditional
platforms by enabling fast integration of new service providers and events in
its own platform [2]. To reduce time to market, we investigate the challenges of
detecting changes in web service data. We focus on modern web services that
follow the REST architectural style and exchange data with their consumers in
JSON. We introduce a generative language-based approach, POLLY, to simplify
change detector construction.

Our contributions are the following:

— We introduce a new approach to change detector construction. Our approach
relies on the use of a domain-specific language, POLLY, for describing change
detection strategies in JSON data fetched from REST web APIs.

— Our language provides declarative, simple yet highly-expressive constructs
for describing how to construct a state from one or multiple API endpoints,
how to identify changes in states, and how to produce a custom output.

— We have implemented a compiler that automatically produces an efficient
JavaScript implementation which runs on top of a runtime system and hides
low-level requirements such as HT'TP authentication and pagination.
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Fig. 1: Excerpt of photos and tags from the Facebook service.

— We show the applicability of POLLY by using it to automatically generate
a number of change detectors for widely used web services such as Twitter,
Facebook, and GitHub. We demonstrate that POLLY’s code is more concise
that a manual implementation, and that it outperforms a state-of-the-art,
off-the-shelf differencing technique.

The rest of this paper is organized as follows. Section 2 presents the range
of issues that arise in detecting changes in web service data, as illustrated by
a use case based on Facebook. Section 3 describes the POLLY architecture and
introduces a DSL for describing state construction, change detection and custom
output construction. Section 4 demonstrates the efficiency and scalability of
the PoLLY change detector. Section 5 discusses related work. Finally, Section 6
concludes and presents future work.

2 Challenges in service data change detection

To outline the multiple challenges involved when trying to detect changes in
service data, we explain in details the scenario described in the introduction:
detecting new photos of a given Facebook album where Alice is tagged.

In order to detect the new photos, one first needs to gather the complete list
of photos of the Facebook album. This can be done by issuing a request on the
https://graph.facebook.com/v2.9/:albumId/photos URL, where :albumId
is the identifier of the photo album of interest. The Facebook service returns
a response as a JSON document as illustrated in Fig. 1a. However, additional
processing is needed to bridge the gap between the expected information and
what is available in the returned document.

Firstly, the whole list of photos is not received at once, because the response
is paginated (i.e. split in several lists of a fixed size). The paging.next attribute
gives the URL to query to receive the next batch of photos. Additionally, the tags
present on the photos are not part of this response. An additional request per
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Fig. 2: Initial and updated version.

photo is required to gather this information. This request can be made on the end-
point https://graph.facebook.com/v2.9/:photoId/tags where :photold is
the identifier of the photo of interest (received in response of the previous request).
A request on the tags endpoint yields the result shown in Fig. 1b.

As we can see, this response is paginated as well. One can notice that the
requests to gather the tags of each photo can be performed in an asynchronous
manner, to improve performance. Finally, the tagged person names are available
in these responses. To gather all the required information, the developer has
then to manually construct a list that combines the photos and the tags data, as
shown in Fig. 2a.

Performing a new polling operation using the same process would produce
a new list of photos, as shown in Fig. 2b. By using an off-the-shelf differencing
tool, the developer can compute the patch shown in Fig. 3. As it can be noticed,
this patch contains two irrelevant changes: the x coordinate of the tag of the first
photo and the last update time of the first photo. The only relevant change is
the third one, where we can see a newly created photo containing a tag referring
to user Alice. Therefore, the developer needs to post-process the patch produced
by the differencing tool in order to construct the notification relevant to the
scenario.
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Fig. 3: JSON diff between the two versions of Figure 2.

In this example we clearly show that detecting changes in service data is
a tedious operation. It requires navigating across several endpoints, possibly
chaining response elements into query parameters, and handling the problem of
pagination at each step. When the data is gathered, an off-the-shelf differencing
tool may produce irrelevant changes thus requiring either post-processing of the
output or developing an ad-hoc differencing algorithm.

3 Approach

As illustrated in Section 2, implementing custom change detectors of service data
can be challenging for many developers. In this section, we introduce POLLY,
a declarative language-based approach that raises the level of abstraction by
providing dedicated operators to express state construction, change detection,
and output construction within a pipeline of operations. In the remainder of
this section, we describe how our approach enables one to simply design efficient
custom change detectors.

3.1 Overview of the PoLLY language

The PoLLy language is based on the YAML [18] syntax and is implemented as
a Node.js module. Inspired by dataflow architectures, it is based on processing
pipelines for defining custom change detectors. A pipeline is expressed as a
series of transformation operations on successive sets of data, where data and
operations on it are independent from each other. Each operation performs a
specific task, and produces a JSON document that is passed as input for the
following operation. POLLY allows the user to specify how to compute a state by
fetching a set of API resources, how to detect custom changes that are relevant
to his requirements, and how to build a custom output to match the expected
outcome. The provided language operators and constructs are described at greater
length in the remainder of this section.



1 - operation: fetch
1 - operation: fetch 2 definition:
2 definition: 3 repeat:
3 request: 4 forEach: _
4 url: https://graph.facebook.com 5 placeholders:
< /v2.9/:albumId/photos 6 photoId: ~.id
5 params: 7 request:
6 albumId: 465607303461343 8 url: https://graph.facebook.com
7 query: < /v2.9/:photold/tags
8 access_token: XXXX 9 query:
9 headers: 10 access_token: XXXX
10 Accept: application/json 11 headers:
11 template: ~.data 12 Accept: application/json
12 pagination: 13 pagination:
13 next: ~.paging.next 14 next: ~.paging.next
14 # Or, instead of using template: 15 template:
15 # output: &:$..data 16 photoId: ~.id
17 tags: ~.data

(a) PoLLy specification for fetching a list

of photos for a given album (b) PoLLy specification for fetching a list

of tags for each album photo.

Fig. 4: A minimal example showcasing how to retrieve all photo tags of a Facebook
album using PoLLY.

Language constructs. By design, each operation processes an input value
(represented by the “_” symbol), and produces an output value (represented by
the “&” symbol). These default values can be overridden using the input and
output keywords at the operation level. Furthermore, POLLY introduces two
additional notations. The “~” symbol refers to the response body of a request
(Fig. 4a, lines 11 and 13), while the “%” symbol refers to the response headers.
The “~” symbol represents the loop iteration cursor (Fig. 4b, lines 6 and 16).
This cursor represents the current element being iterated on. All five notations
presented in this paragraph support the dot notation for accessing child properties.
For example, ~.data references the data attribute at the root of the response
document.

Evaluating JSONPath expressions. POLLY relies on the JSONPath [10]
specification to describe the selection of a sub-document, as illustrated in line 15
of Fig. 4a. This enables users to easily extract the sub-documents of interest. Thus,
a JSONPath expression® can be applied on any of the previous symbols, using the
following notation: [symbol]: [jsonpath_expr]. For instance, the evaluation of
the expression &:$. . id is equivalent to evaluating $. . id on the output document
(&), thus producing all the id fields present in the output document.

3.2 State construction

The fetch operator enables the user to specify how to collect data from a set
of API endpoints. These details are specified within the request block (Fig. 4a,
line 3). Here, the user defines the resource URL using the url keyword (line

% The $ symbol represents the root of the current document in JSONPath.



4). The URL can have parameter placeholders (prefixed by a colon), which are
substituted with the matching key from the params block (line 5). Furthermore,
the DSL offers the ability to specify query parameters (query, line 7) as well as
HTTP headers (headers, line 9) as key-value pairs.

Templating. In the majority of use cases, the user only requires gathering a
subset of the collected data. Furthermore, he might also need to include extra
information along with the response. The template keyword allows specifying a
transformation template. This can be expressed directly as an expression, or as a
new set of keys where each corresponding value is an expression. For example,
line 11 of Fig. 4a shows how to extract the data object from the API response
(Fig. 1a, line 2). Another example occurs in line 15 of Fig. 4b where we fetch
photo tags. Here, we define a new template containing the original photo ID and
its tags. This transformation is necessary in order to manually include the photo
ID (which is not part of the API response) in the final state.

Pagination. The pagination keyword enables the user to indicate how to fetch
subsequent pages when the response is paginated (Fig. 4a, line 12). Information
about pagination is typically present in an HTTP header or in the body of the
response. For example, GitHub returns the full URL of the next page in the Link
header, while Twitter provides just a cursor for the next page in the body of
the response. Other APIs such as Stack Exchange require the user to manually
specify the page number as a query parameter when requesting a resource, but do
not provide any information about the current or next page number in the body
of the response. Instead, they just indicate if there are subsequent pages using
a boolean value in the body of the response. To support all these pagination
methods, POLLY enables the user to specify how to navigate to the following
page using the next keyword (line 13). This keyword accepts either an expression
containing the full URL of the next page, or key-value pairs specifying the name
and value of the query parameter used for pagination (queryParam, defaults to
the value page and auto-incremented by default). After collecting all subsequent
pages, the results are flattened in a single array and returned as the output of
the operation.

Parallel fetch. In the Facebook example presented in Section 2, the user has to
first retrieve a list of photo IDs for a given album, then retrieve the tags for each
photo. To enable this scenario, POLLY provides the repeat keyword (Fig. 4b, line
3). This keyword allows specifying an iteration set from the output of the previous
operation (forEach, line 4), and corresponding placeholder labels (placeholders,
line 5). These placeholders are substituted in the URL by their value, thus
executing a request for each constructed URL. In the Facebook example, this
corresponds to fetching the tags for each album photo. By default, all requests are
asynchronous and performed in parallel. The output of this operation contains a
list of templated objects (line 15), where each object includes the current photo
ID and the list of tags for a given photo (e.g. Fig. 1b).
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Fig. 5: Detecting new photos where Alice is tagged using POLLY.

3.3 Change detection

After computing the state in the previous step, the user can now proceed to
specifying a change detection strategy. Our preliminary case studies showed
that changes to a JSON document can occur on objects or arrays, and range
from additions and suppressions, to value modifications and order changes. In
light of these results, the PoLLYy DSL provides several filtering operators for
change detection: filterObject, filterArray and filterCustom. The filterObject (resp.
filterArray) operator accepts an expression of object (resp. array) type as an
input. The filterCustom operator enables the user to define custom filtering logic.

Change types. The find keyword enables defining a list of change types to
detect in the input of the operation (Fig. 5a, line 6). The list of supported
change types is presented in Table 1. For each change type listed in the find
block, a matching object is included in the output of the operation, containing
the corresponding data. For instance, listing addedltems and removedltems in
the find block would produce as output an array of two objects, each having
addedltems (resp. removedltems) as types, and each having a list of the items
that have been detected as recently-added (resp. recently-removed).

Per-change type templating. Although the template keyword presented in
Section 3.2 is also supported in this operation, one might need to specify different
templates for different change types. To meet this requirement, POLLY supports an
additional keyword templates (mutually exclusive with template). This keyword
allows specifying the change type (e.g. addedItems) as key, and the associated
template as value.

Targeted monitoring. By default, all keys of the input document are watched
for modifications, and any change would mark the document as modified. The
optional keyword watch can be used to restrict the set of keys to watch for
modifications. This enables the user to define what actually constitutes a relevant
change. Note that for objects, a key is marked as modified (resp. unmodified) if



Table 1: List of supported change types.

filterObject filterArray

addedKeys addedltems
removedKeys  removedltems
modifiedKeys  modifiedltems
unmodifiedKeys unmodifiedltems
movedltems

Change types

the value corresponding to the key specified in the watch block is modified (resp.
unmodified). For arrays, an item is marked as modified (resp. unmodified) if any
(resp. all) of the values corresponding to the keys specified in the watch block
are modified (resp. unmodified).

Custom item identification. Additionally, when dealing with array items, it
is necessary to uniquely identify the items throughout subsequent polls. This
allows us to know for example if a given item has been added or removed during
the polling interval. However, not all APIs provide unique identifiers on all of
their resources. Moreover, these identifiers can be present under different key
labels. For this reason, we provide an additional keyword called identifiers, which
allows the user to specify how to uniquely identify an item within a collection
(line 4). This can be as simple as providing the path to the id field of an item, a
list of fields (e.g. first and last names of a user), or a wildcard to hash the entire
item and use it as its own identifier.

Custom filtering. When none of the previous operators are adequate, the
filterCustom operator can be used to implement one’s own custom filtering logic.
Figure 5b shows an example of how to filter a list of photos by only selecting
those where Alice is tagged. This operator provides a hook function with the
previous and current states as parameters (line 4). The user can implement this
hook in JavaScript, returning a custom output. In this example, the user iterates
on the input array of photos (line 6) and checks whether if Alice is tagged on
the current photo (lines 7-9), in which case he retrieves the photo ID (line 10).
To avoid any security issues when running user-provided code, this function is
executed within an isolated sandbox at runtime.

4 Evaluation

We evaluate our approach using six scenarios provided by our industrial partner
CPRrODIRECT. We first compare the level of abstractions provided by PoLLy (in
terms of verbosity) compared to its handwritten counterpart. We then assess the
differencing time and the output size of our solution compared to a state-of-the-art
differencing tool.
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4.1 Scenarios

Our industrial partner CPRODIRECT has defined the six following scenarios to be
used in our evaluation. They illustrate the diversity of possible use cases ranging
from being notified about new objects to changes of attributes values or order in
a ranking.

— ElasticSearch (ES): Developer Alice uses an instance of ElasticSearch as
a search engine for her e-commerce platform, and wants to be notified when
the top 5 best-selling products change in ranking order.

— Facebook (FB): Developer Alice wants to monitor a Facebook album where
her friends Dan and Dave are participating. Alice would like to be notified
only about pictures where Dan and Dave are tagged together.

— GitHub (GH): Developer Alice is interested in monitoring GitHub for new
projects written in the Go language with over 2,000 stars.

— Stack Overflow (SO): Developer Alice wants to monitor StackOverflow
for new JavaScript questions where there is an active bounty of over 100
reputation points.

— Transport for London (TL): Developer Alice wants to be notified when-
ever the status of the Victoria subway line changes (e.g. from healthy to
faulty).

— Twitter (TW): Developer Alice wants to be notified whenever the official
Bordeauzr account has new followers on Twitter.

4.2 Language verbosity evaluation

All scenarios described in Section 4.1 have been implemented twice by the first
author of the paper: once using the JavaScript language on top of the Node.js
platform, and once using our domain-specific language PoLLY. Note that the
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JavaScript version was implemented before any research work was done on POLLY,
in order to avoid any bias, and to serve as a reference point.

Figure 6 shows the number of lexical tokens used in the Node.js version
versus the POLLY version. One can notice that POLLY results in a much smaller
program, ranging from 5.5 to 8 times smaller. Furthermore, the figure shows
the distribution of tokens across different categories (fetch, diff and output).
Other tokens that are not directly related to these (such as module imports
and configuration) are assigned to the other category. First, we notice that the
Node.js implementation requires a lot more boilerplate code than POLLY, with
around 200 tokens in the other category, compared to 5 for POLLY. Second, we
notice that the output construction requires more or less the same number of
tokens for both approaches, while it requires significantly less tokens for the fetch
and diff categories using the POLLY approach.

4.3 Diff performance experiment

Since one of the main benefits of using our approach is to be able to perform a
custom differencing based upon domain knowledge of the data returned by the
REST APIs, we wanted to evaluate in greater details the advantages of using such
a strategy. We compare in this experiment the performance of POLLY against a
state-of-the-art generic differencing technique for JSON documents (JDR). We
selected JDR as a candidate since prior benchmarks show it outperforms all other
JavaScript differencing libraries [7].

Experimental setup. Since we are only focusing on the performance of the
differencing and output construction stages for this benchmark, we can prefetch
all required resources for better reproducibility. We thus proceeded to collect real
data from the six service providers presented above. This is achieved by polling
the services for the required resources over a period of 48 hours with an interval
of 5 minutes, yielding 576 snapshots per service. We then serve this collected
data through a mock server in the following experiments. All experiments were
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performed on a single machine powered by 8 GB RAM, and an Intel Core i7-6500U
CPU @ 2.50GHz x 4.

Experimental protocol. We designed an experiment consisting in running each
scenario 576 times (once for each snapshot) using JDR and POLLY as change
detection methods. At each step, we measure the differencing time as well as
the output size. This process is repeated for 10 iterations for better precision.
The results of this experiment are shown in Fig. 7 and Fig. 8. One can notice
that the POLLY approach produces lower differencing times and output sizes
compared to the JDR approach, apart from the output size for the Facebook
(FB) scenario, where the output size is equal to 0 for every polling step for both
approaches. This is because no modifications occurred during the monitoring
period. The difference in output sizes is explained by the fact that JDR produces
a JSON Patch [5] (an intermediary document expressing a sequence of operations
to apply to a JSON document in order to obtain the final outcome), whereas
PoLry directly produces the minimal set of required data as specified in the
DSL, which generally tends to be much smaller in size.

Statistical testing. To have a finer-grained analysis of these results, we subject
our results to a statistical testing. Our two null hypotheses are that H} output
size is the same for POLLY and JDR and H¢ differencing time is the same for
Porry and JDR. Our two alternative hypotheses are H} output size is lesser for
PoLLy than JDR and H? differencing time is lesser for POLLY than JDR. To
test these two hypotheses, we used a one-tailed paired Wilcoxon rank test, since
it bears no assumptions on the underlying distribution of the differencing time or
output size values. To assess the magnitude of the difference between differencing
time and output size between the two approaches, we use Cohen’s d and report
its corresponding level on Cohen’s standard scale. The results of this statistical
testing are shown in Table 2.

One can notice that most tests are significant under the 0.05 threshold,
meaning that POLLY produces significantly smaller outputs in a significantly



Table 2: P-values of our statistical testing and size effect. Significant p-values
(under the 0.05 threshold) are highlighted in bold.

Detection time Output size

Scenario P-value Effect size (level) P-value Effect size (level)

ES 5.240281e-96 2.090851 (large) 4.447673e-42 0.685358 (medium)
FB 5.254766e-96 3.770390 (large) 1.000000e+-00 NaN (NA)
GH 5.254964e-96 2.989436 (large) 1.362006e-84 1.186302 (large)
SO 5.254264e-96 6.150168 (large) 1.048446e-74 0.770466 (medium)
TL  1.000000e 100 -4.885277 (large) 6.361893¢-99 88.626161 (large)
TW 5.254659e-96 2.846963 (large) 2.465265e-72  0.808057 (large)

reduced time compared to the JDR generic differencing approach. The only
non-significant test is for the output size of the FB scenario. This is because
in this scenario the output size is equal to 0 for every polling step for both
approaches.

For the magnitude of the difference, the values range from medium to large,
large being by far the most common value (9 times out of 11 values), followed by
medium (2 times). This means that POLLY results in a highly improved outcome
in terms of output size and differencing time compared to the JDR approach.

5 Related work

Following the expansion of service-oriented computing, most service providers
use the flexible REST architectural style to expose their data [8]. With web
applications getting more and more complex, developers often need to navigate
through multiple endpoints to retrieve the required resources. Existing efforts
focused on a hypermedia-centric approach for describing REST services, using the
Resource Linking Language (ReLL) and Petri Nets [1]. However, very few REST
APIs provide hyperlinks along their responses in practice, making it harder for
developers to gather all resources to compute a given state. To enable this case,
our domain-specific language provides the necessary constructs to easily express
sequential and parallel request chains of API endpoints, while also supporting
pagination.

Due to the rapid growth of the number of web services in the recent decade,
composition platforms are gaining more and more traction [12]. These platforms
typically allow users to monitor third-party services in order to trigger a composi-
tion when a particular event occurs [16]. Thus, it is important to support a wide
range of trigger events in order to meet the client’s needs, scaling accordingly for
all the services supported by the platform. Although previous works focused on
providing a framework for automatic detection of relevant changes on websites [4],
these do not directly address change detection in REST APIs data, nor do they
allow clients to specify what constitutes a relevant change. In contrast, POLLY
offers a simple and concise language to rapidly specify custom change detectors,
tailored to the user’s expectations.



In today’s fast-paced web, data is continuously churning to reflect the latest
state. Change detection consists in computing a diff between two documents,
and identifying any relevant changes. Several existing contributions focus on
improving the differencing process. They represent documents as ordered or
unordered labeled trees, and aim for optimizing the tree edit distance [3,6,19].
Nonetheless, the problem of finding a minimal patch is O(n3) to NP-hard for
ordered trees (depending on the set of operations considered), and NP-hard for
unordered trees [9,14,20]. This leads to the use of practical heuristics that rely
on the syntactical properties of the documents in order to provide reasonably
good results. As such, additional algorithms have been designed specifically for
detecting changes in XML documents [17]. More recently, other algorithms have
been designed for JSON documents, which are a combination of unordered and
ordered labeled trees [7]. However, POLLY relies on the client’s business domain
knowledge to finely tune the change detector. This improves the change detection
process by enabling the selection of the most adequate strategy, thus discarding
any irrelevant data.

With today’s growing use of mobile devices, a particular focus is given to
energy efficiency. Producing minimal diffs becomes particularly important when
dealing with mobile clients, as it helps reducing the bandwidth usage [15]. Our
approach addresses this concern by enabling the developer to specify the output
resulting from the change detection process. This enables sending only the useful
bits of information to the client, discarding all other irrelevant changes, thus
reducing the payload size to the bare minimum.

6 Conclusion

Detecting custom changes in service data is a repetitive and tedious task. In
this paper, we have presented POLLY, a declarative domain-specific language
for this task. POLLY raises the level of abstraction by leveraging the business
domain knowledge of users. It enables users to design custom change detectors by
providing the necessary constructs to express state computation, change detection
and output construction. We have used POLLY to automatically generate custom
change detectors for six use cases provided by our industrial partner CPRODIRECT.
Our evaluation shows that POLLY outperforms a handwritten implementation in
terms of code verbosity, and that POLLY outperforms a state-of-the-art off-the-
shelf differencing tool in terms of running time and output size. To showcase our
solution, an online demonstration of POLLY is freely available at the following
address’. As future work, we plan on performing a large-scale developer study,
where we assess the benefits of using POLLY in terms of productivity, code quality
and maintenance cost.

Acknowledgment. This work was partially supported by CPRODIRECT and the
French funding agency ANRT under contract CIFRE-2013/0891.

" https://demo.pollyapp.ml


https://demo.pollyapp.ml

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

. Alarcon, R., Wilde, E., Bellido, J.: Hypermedia-driven RESTful service composition.

ICSOC 6568 LNCS (2011)

Ben Hadj Yahia, E., Réveillére, L., Bromberg, Y.D., Chevalier, R., Cadot, A.:
Medley: An Event-Driven Lightweight Platform for Service Composition. In: 16th
International Conference on Web Engineering (2016)

Bille, P.: A survey on tree edit distance and related problems. Theoretical computer
science 337(1) (2005)

Borgolte, K., Kruegel, C., Vigna, G.: Relevant change detection: a framework for the
precise extraction of modified and novel web-based content as a filtering technique
for analysis engines. In: 23rd International Conference on World Wide Web (2014)
Bryan, P., Nottingham, M.: Javascript object notation (json) patch. RFC 6902
(Proposed Standard) (2013)

Buttler, D.: A short survey of document structure similarity algorithms. In: Inter-
national Conference on Internet Computing (2004)

Cao, H., Falleri, J.R., Blanc, X., Zhang, L.: JSON Patch for Turning a Pull REST
API into a Push. In: International Conference on Service-Oriented Computing
(2016)

Fielding, R.T.: Architectural styles and the design of network-based software
architectures. Ph.D. thesis, University of California, Irvine (2000)

Higuchi, S., Kan, T., Yamamoto, Y., Hirata, K.: An A* algorithm for computing edit
distance between rooted labeled unordered trees. In: JSAI International Symposium
on Artificial Intelligence (2011)

JSONPath: http://goessner.net/articles/JsonPath, Accessed: 2017-06-02
Liu, L., Pu, C., Tang, W.: WebCQ-detecting and delivering information changes
on the web. In: 9th International Conference on Information and Knowledge
Management (2000)

Ovadia, S.: Automate the internet with “if this then that”’(IFTTT). Behavioral &
social sciences librarian 33(4) (2014)

Pandey, S., Dhamdhere, K., Olston, C.: WIC: A general-purpose algorithm for
monitoring web information sources. In: 30th International Conference on Very
Large Data Bases (2004)

Pawlik, M., Augsten, N.: RTED: a robust algorithm for the tree edit distance.
VLDB Endowment 5(4) (2011)

Simon, J., Schmidt, P., Pammer, V.: An energy efficient implementation of differen-
tial synchronization on mobile devices. In: 11th International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services (2014)

Ur, B., Pak Yong Ho, M., Brawner, S., Lee, J., Mennicken, S., Picard, N., Schulze,
D., Littman, M.L.: Trigger-action programming in the wild: An analysis of 200,000
IFTTT recipes. In: CHI Conference on Human Factors in Computing Systems
(2016)

Wang, Y., DeWitt, D.J., Cai, J.Y.: X-Diff: An effective change detection algorithm
for xml documents. In: 19th International Conference on Data Engineering (2003)
YAML: http://www.yaml.org/spec/1.2/spec.html, Accessed: 2017-06-02
Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between
Trees and Related Problems. SIAM J. Comput. 18(6) (Dec 1989)

Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered
labeled trees. Information Processing Letters 42(3) (1992)


http://goessner.net/articles/JsonPath
http://www.yaml.org/spec/1.2/spec.html

	Polly: A Language-Based Approach for Custom Change Detection of Web Service Data
	Introduction
	Challenges in service data change detection
	Approach
	Overview of the Polly language
	State construction
	Change detection

	Evaluation
	Scenarios
	Language verbosity evaluation
	Diff performance experiment

	Related work
	Conclusion


