
Validation of Service Blueprint models by means
of formal simulation techniques

Montserrat Estañol2, Esperanza Marcos1, Xavier Oriol2, Francisco J. Pérez1,
Ernest Teniente2, Juan M. Vara1

1 Kybele Research Group, University Rey Juan Carlos, Madrid, Spain
{esperanza.marcos, francisco.perez, juanmanuel.vara}@urjc.es

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{estanyol, oriol, teniente}@essi.upc.edu

Abstract. As service design has gained interest in the last years, so
has gained one of its primary tools: the Service Blueprint. In essence, a
service blueprint is a graphical tool for the design of business models,
specifically for the design of business service operations. Despite its level
of adoption, tool support for service design tasks is still on its early days
and available tools for service blueprint modeling are mainly focused on
enhancing usability and enabling collaborative edition, disregarding the
formal aspects of modeling. In this paper we present a way to support
the validation of service blueprint models by simulation. This approach
is based on annotating the models with formal semantics, so that each
task can be translated into formal logics, and from them, to executable
SQL statements. This works opens a new direction in the way to bridge
formal techniques and creative service design processes.

Keywords: Service Blueprint, Validation, Simulation

1 Introduction

Beyond the computational point of view, services have been a matter of interest
for the academia since the appearance of the first studies on services marketing
in the early 50’s [1] to the advent of Service Science from IBM [2]. More recently,
the fact that approximately 60% of the world’s workforce is currently employed
by either public or private branches of the Service Sector and this value rises to
80% in developed countries has significantly contributed to renew the interest in
services and related disciplines.

One of those disciplines is Service Design, which aims at helping in the devel-
opment or improvement of services in order to deliver user-centered services by
focusing on the interactions (or touchpoints) between the provider and the con-
sumer [3]. Its main principles are: human-orientation, value co-creation, process-
based nature, tangible evidences and holistic view. Born also in the context of
research on services marketing, service design evolved and gained impact through
the impulse of IDEO3 and has finally been established as the entry point to ser-
vice development for any organization seriously concerned about user experience,
3 https://www.ideo.com/

montse aragues
Texto escrito a máquina
Estañol, M., Marcos, E., Oriol, X., Pérez, F. J., Teniente, E., Vara, J.M. Validation of Service Blueprint models by means of formal simulation techniques. A: International Conference on Service-Oriented Computing. "Service-Oriented Computing: 15th International Conference, ICSOC 2017: Málaga, Spain, November 13-16, 2017: proceedings". Springer, 2017, p. 80-95.
The final publication is available at https://link.springer.com/chapter/10.1007%2F978-3-319-69035-3_6

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina



digital transformation and the like (see for instance the efforts on this issue of
the British government around the Government Digital Service 4).

The most popular service design technique is service blueprinting [4]. In
essence, a (service) blueprint is a graphical tool to visualize the different parts
of a given service and the interactions between the stakeholders of such service.
In contrast with BPMN, an organization-focused notation for business process
modeling, service blueprinting is a user-centered approach to business process
modeling. This has turned to be key for service designers in the digital age, where
most of the innovation has to happen at the touch points between provider and
consumer.

Despite the fact that service blueprinting was originally intended to enable a
more rigorous control and analysis of service delivery, it has partially failed since
despite its widespread adoption, it is most commonly used as an sketching tool
to provide first-draft solutions but they are rarely used to support any kind of
formal reasoning.

By contrast, bringing some degree of formability to service blueprinting has
proven to contribute to ensure the success of the process and in turn increases the
effectiveness of the blueprint, improving the rationality of the decisions within
the company [5]. As a matter of fact, even though there exists a number of
proposals to bring formalization to other existing techniques for business process
modeling exist (see [6,7] for instance), to the best of our knowledge there exists
no similar proposal for service blueprinting.

The main goal of this paper is to introduce a framework that permits for-
mally defining service blueprints, and validating them. To do so, we propose to,
during the definition of the service blueprint, annotate its tasks with some for-
mal semantics. Thus, each task unambiguously specify its behavior. As a result,
we can validate the service blueprint by interpreting such semantics, simulat-
ing its execution, and checking that no undesirable situation occurs during the
simulation.

In order to support the full process of this framework, we extend the INNo-
VaServ5 modeling tool, and propose its integration with the OpExec simulating
library6. The former is an EMF-based toolkit [8] with a visual DSL for service
blueprint modeling, thus, offering very good capabilities for easily defining ser-
vice blueprints. The latter is a Java library that permits simulating processes
described in formal logics, while checking validation conditions (aka integrity
constraints). Thus, the integration of both tools covers our framework entirely,
permitting the definition and formal validation of service blueprints.

4 https://gds.blog.gov.uk/
5 http://www.kybele.etsii.urjc.es/innovaserv/index.php
6 http://www.essi.upc.edu/ xoriol/opexec/



2 Context

This section presents the research context of this work. To that end, we first sum-
marize service blueprinting notions, to later introduce INNoVaServ, the toolkit
in which to integrate the process simulation capabilities.

2.1 Service Blueprinting

The service blueprint is a graphical tool for the design of business models, specif-
ically for the design of business service operations, which is focused on detailing
the interaction between the customer and the service provider in the provision of
a given service [9]. Being a tool for service design and giving the process nature of
services, service blueprinting is actually another technique for process modeling.
The notably difference being in this case the focus on the customer experience,
which is clearly illustrated by making explicit the touchpoints, the physical evi-
dences related with the provision of the service and the limits between frontstage
and backstage.

For instance, Figure 1 shows an excerpt7 of the renting process of car2go
service blueprint: the user needs to rent a car and therefore he turns to the
car2go app (online/physical evidence); a couple of consumer-provider interac-
tions take then place along the line of interaction. Data provided by the user is
then checked in the backstage whereas external entities are contacted to order
vehicle maintenance and process payments.

As can be shown, a service blueprint is composed by five lanes or regions
of activity that help to distinguish those actions that are specific to the service
provider from those performed by the customer/consumer. Such lanes are listed
below from top to bottom:

– Physical Evidence. This region represents the evidences, facts or global ac-
tions that give rise to the interaction between the customer and the service
provider. A user who has the need of renting a car for private transportation
to go somewhere is something that gives rise to the interaction between the
customer and car2go.

– Attendee Action. It is devoted to describing the actions that a client performs
while interacting with the front-end of the service, like selecting the car
to rent or notifying car2go when he has arrived to the destination. Lower
bound of this region is called Line of Interaction and it detaches the actions
performed by the customer from those performed by the service provider.

– Frontstage Interactions. The activities performed by the service provider
which entail some type of interaction with the customer are represented here.
Asking the user to select a car or to check his car2go account are examples
of this kind of activities.

7 Full version can be found at http://www.kybele.es/publications/-
car2go_rentingProcess_extended.png



– Back of Stage Interactions. The activities performed in the shadow by the
provider to operate the service, like updating the vehicle status when a car
is rented, are represented in this region. These are actions needed to deliver
the service but which the customer cannot see or interact with.

– Support Processes. Actions supporting the service, sometimes performed by
third parties, are represented here. The interaction between the maintenance
company and car2go to order vehicles maintenance is one of those actions
that remain hidden for the customer.

Fig. 1. Excerpt of a service blueprint made with INNoVaServ - car2Go renting process

As the next section will show, service blueprint diagrams can be faithfully
represented with the modeling environment provided by INNoVaServ.

2.2 Introducing INNoVaServ

INNoVaServ8 is a modeling environment for the design of business models and
service process operations which, to date, supports 4 different notations: Canvas
[10], e3Value [11], Process Chain Network (PCN) [12] and the Service Blueprint.

It is a first step towards solving the lack of proper tool support for bridging
existing business modeling notations. To that end, INNoVaServ integrates differ-
ent tools to register and manage the relationships between models defined with
8 http://www.kybele.etsii.urjc.es/innovaserv



the different techniques for business (process) modeling. In the medium term,
the aim is at automating the identification of such relationships and enlarge the
number of notations supported.

Basically, the toolkit can be thought of as a set of four integrated visual
DSLs, one for each modeling notation supported by the tool. Each of such DSLs
was developed atop EMF and GMF [8] following the guidelines sketched in [13]
for the development of model-based tools that take the shape of DSL toolkits.

It is worth noting that due to the fact that it has been entirely developed atop
of EMF/GMF, it is immediately interoperable with any other EMF/GMF based
tool. Since EMF/GMF has converted in the de-facto standard for the develop-
ment of model-based tooling, the scope of tools with which INNoVaServ can
then interoperate is huge. The different tools supporting BPMN, like the Eclipse
BPMN Modeler9 or the Obeo BPMN Designer10 (there is indeed many others
BPMN editors based on EMF/GMF), Papyrus UML and any other EMG/GMF-
based editor, etc.

3 Enabling formal verification of service blueprint models
in INNoVaServ

This section describes our approach for enabling formal verification of service
blueprint models. We start by showing the architecture for integrating INNo-
VaServ with the OpExec tool, which will be the basis for this verification. Then,
we explain our proposal for formally defining service blueprint tasks and we show
how to achieve the intended formal semantics for validation.

3.1 Functional architecture and design

In Figure 2 we summarize the architecture of INNoVaServ (according to the
convention widely adopted by Eclipse developers to represent the architecture
of their proposals), together with our proposed integration with the OpExec
simulation tool.

The technological basis of INNoVaServ is Eclipse. DSLs are mainly developed
atop of EMF/GMF while some minor refinements coded with the aid of JFace
and SWT to obtain the desired functionality from diagrammers. INNoVaServ
can validate its defined processes by means of bringing them to the OpExec tool,
and simulating the execution of its tasks. In its turn, OpExec works by storing
in memory a logic representation of the process to simulate, and persisting the
data of the process in a relational database.

3.2 Formally defining Service Blueprint tasks

Service blueprints, as they are, provide an intuitive and understandable overview
of the different tasks and activities required to provide a service or achieve a
9 http://www.eclipse.org/bpmn2-modeler/

10 http://marketplace.obeonetwork.com/module/bpmn



Fig. 2. Overview of technological dependencies of INNoVaServ and OpExec

certain goal. However, there is no formal meaning attached to each of the tasks.
From their names, we may have an intuitive idea of what they imply, but we
do not know exactly what it is they do. Therefore, if we wish to validate the
model considering what the tasks do, it is necessary to enrich the initial service
blueprint as explained below.

In order to provide the tasks with meaning, it is necessary to have an under-
lying data model, to represent the relevant information that will be manipulated
by them. We propose using a UML class diagram for this purpose. Figure 3
shows the class diagram for the service blueprint in Figure 1.

This class diagram keeps information about the company’s Vehicles (id,
statuts, battery level, etc.) together with their Location and the ServiceBills
which have resulted from the use of the Vehicle. The system also stores informa-
tion about which User is currently using or has booked a Vehicle (if any) and
the ServiceBills of a certain User. Apart from the User basic information, such
as id, name or accountStatus, the system also keeps track of the BankAccounts
of User and their funds.

The data represented in the class diagram should satisfy some additional
conditions (aka integrity constraints), in order to ensure the correct behavior of
the service. For instance, each UML class could have an identifier (i.e. “primary
key”). In our example, Vehicle, User, ServiceBill and BankAccount are identified
by their id. Location, on the other hand, is identified by its coordinates. More
complex conditions might be observed. For example, damaged Vehicles cannot
be booked by a User.

Then, given the data model, it is possible to specify unambiguously what
each of the tasks is doing. Our approach will use structured natural language for
this purpose.



Fig. 3. Class diagram representing the underlying data model for car2go.

Structured Natural Language In order to formalize the meaning of the
tasks in the service blueprint we propose using structured natural language.
This language is based on using a few keywords and following certain patterns,
which result in sentences which can be easily understood. By using these it
is possible to state selection and basic changes over data (creation, updates,
deletions). Hence, we strike a balance between understandability, simplicity and
expressibility.

The grammar defining this structured language is the following:

select ClassName [with Att r ibute s ]
delete_c ClassName
ClassAct ion ClassName Att r ibute s

Assoc ia t i onAct ion AssociationName (ClassName , C la s s e s )

ClassAct ion → check | change | create
Assoc ia t i onAct ion → associate | delete_a

Att r ibute s → attributeName(value) | attributeName(value) , At t r ibute s
C la s s e s → ClassName | ClassName , C l a s s e s

Keywords are in bold. Class and attribute names are in italics, and should
be replaced by any class or attribute name in the model, respectively. Square
brackets represent optional parameters. value should be replaced by either a



value (e.g. string, integer) or an input parameter, the latter representing an
input value provided by the user.

select and check both refer to conditions that must be true of the particular
object they are applied to. check refers to an object that has been obtained
previosuly and which must fulfill a certain condition. select, on the other hand,
obtains a new object which had not been obtained previously; select...with...
obtains a new object which fulfills the conditions stated in the with (which will
refer to its attributes).

The remaining keywords correspond to changes made to the underlying data.
create will create a new instance of a class with the given attribute values.
delete_c will delete the given instance of a class. change will update an at-
tribute (or several) of a class to the given values or input parameters.

Similarly, associate will create an instance of the named association with
the indicated classes. delete_a will delete the instance of the association with
the given name and the participating classes.

This results in statements such as the following, where the first corresponds
to task User chooses and selects a car and the second to Change Vehicle Status
(reserved):

select Vehicle with status(‘available’)
change Vehicle status(‘reserved’)

We assume that references to a class point to an instance or object of the class
in question which has obtained previously. Therefore, in the previous example
statements refer to the same vehicle.

3.3 Executing the Formal Semantics for Validation

Once the service blueprint is annotated with the formal semantics, it is unam-
biguous enough to validate its execution. In particular, we aim at ensuring that,
when executing the process, its data state never becomes inconsistent (i.e., never
stores a state that cannot occur in the real world). For doing so, we need to define
some integrity constraints, that is, some conditions that consistent data states
always satisfy, thus, any violation of a constraint points an inconsistency.

Hence, our validation approach consists in (1) translating such annotations
into an executable language, (2) run the process, and (3) check that such execu-
tion satisfies our defined set of integrity constraints.

For our purposes, we use as executable language (a subset of) the executable
logic rules stated in [14]. Such rules can be executed by means of a prototype
tool we call OpExec, which essentially persists the data of the process into a rela-
tional database, and checks that such data satisfy a set of user-defined integrity
constraints. In this manner, if the OpExec tool detects a violation of some of
these constraints, we can realise that the service is ill-defined.

In the following, we first present the executable logic rules we use. Then, we
show how to translate the previous patterns annotated in the service blueprint
into such logics. Finally, we show how to validate the service blueprint by running
these rules over the OpExec tool.



Executable logic rules In our particular case, the executable logic rules are
some rules following one of these forms:

ins_C (x) : −taskName(), arg0 (x0), ..., argn(xn)

ins_Select_C (x) : −taskName(), arg0 (x0), ..., argn(xn),C (x )

del_C (x) : −taskName(),Select_C (x )

del_Select_C (x) : −taskName(),Select_C (x )

ins_R(x) : −taskName(), Select_C0(x), ..., Select_Cn(x)

del_R(x) : −taskName(), Select_C0(x), ..., Select_Cn(x)

query(x) : −taskName(), arg0 (x0), ..., argn(xn),C (x )

Intuitively, the first two rules state that an insertion/selection of an instance of
class C should be realized if the task called taskName is invoked with arguments
x0, ..., xn, where such arguments are used to specify the values of attributes of
the object being created/selected. In addition, the second rule forces the instance
of C to exists in order to be selected. Similarly, the third and forth rule states a
deletion/deselection of an instance of C that was previously selected. Then, the
fifth and sixth rules state that a creation/deletion of an association R with the
selected objects should be performed. The last rule is only a query to check the
existence/inexistence of some instance of C.

Translating natural language patterns into executable logic rules Now,
we show how to translate the natural language patterns used to annotate the
service blueprint into such executable logic rules.

Table 1. Natural language patterns to executable logic rules

N.L. Pattern Derivation Rules to Create

create C ins_C(c, v0, ..., vn) :- taskName(), arg0(v0), ..., argn(vn)
at0(v0), ..., atn(vn) ins_C’(c, v0, ..., v0) :- taskName(), arg0(v0), ..., argn(vn); for each C v C’

delete_c C del_C(c) :- taskName(), Select_C(c)
del_C’(c) :- taskName(), Select_C(c), C’(c); for each C’ v C
del_C”(c) :- taskName(), Select_C(c); for each C v C”

associate R(C0,...,Cn) ins_R(c0,...,cn) :- taskName(), Select_C0(c0), ..., Select_Cn(cn)

delete_a R(C0,...,Cn) del_R(c0,...,cn) :- taskName(), Select_C0(c0), ..., Select_Cn(cn)

change C at(vi) ins_C(c, ..., vi, ...) :- taskName(), arg0(vi), Select_C(c), C(c, v0, ..., vn)
del_C(c) :- taskName(), Select_C(c)

select C with ins_Select_C(c) :- taskName(), arg0(v0), ..., arg0(vn), C(c, v0, ..., vn)
at0(v0), ..., atn(vn) del_Select_C(c) :- taskName(), Select_C(c)

check C query(v0, ..., vn) :- taskName(), arg0(v0), ..., argn(vn), C(c, v0, ..., vn)
at0(v0), ..., atn(vn)

Intuitively, each natural pattern presented is mapped to one or more exe-
cutable rules. This is because, for instance, the creation/deletion of an object



in some class C might encompass the creation/deletion of the same object in
its sub/superclasses C ′/C ′′, and each creation requires its own executable logic
rule.

Table 1 summarizes these mappings. For each task in the service blueprint
with its corresponding annotation in natural language, we generate the exe-
cutable logic rules stated in the right column. In particular, the task name of
the pattern brings the name to the taskName() atom of the rule, and each user
given value vi in the pattern originates a argi(vi) atom. As expected, the atoms
using classes/associations C/R take its name from the classes/associations C/R
used in the pattern, and user-defined constants from the pattern are propagated
to the rule.

For instance, in our example, the annotation of the tasks User chooses vehicle
and Change vehicle status would be translated into:

ins_Select_Vehicle(v) :- UserChoosesVehicle(),Vehicle(v, ‘available’, b, d, rt)
del_Select_Vehicle(v) :- UserChoosesVehicle(),Select_Vehicle(v)

ins_Vehicle(v, ‘reserved’, b, d, rt):-ChangeVehicleStatus(), Select_V ehicle(v), V ehicle(v, s, b, d, rt)

del_Vehicle(v, s, b, d, rt) :- ChangeVehicleStatus(),Select_Vehicle(v),Vehicle(v, s, b, d, rt)

The first rule selects a vehicle that is available when the user executes the
task UserChoosesVehicle. The second rule is used to deselect any other previ-
ously selected vehicle. The third and forth rule are in charge of updating the
state status of the selected vehicle to "reserved" when the user executes the
ChangeVehicleStatus task.

Validation through executing the logic rules The idea now is to use the
OpExec tool to (1) load the executable logic rules representing the business
process tasks, (2) load some integrity constraints to check while executing the
process, and (3) execute the process to validate the satisfaction of the constraints.

In order to load the executable logic rules, OpExec only needs the rules
themselves, and some relational database connection containing one table for
each class/association, and one Select_C table for each class C in order to store
the current instances selected for each class.

OpExec can then load integrity constraints written in the of form denial
constraints, that is, logic formulas stating the condition that should never occur
in the database. For instance, the condition damaged Vehicles cannot be booked
by a User can be written as

⊥ :- Vehicle(v, s, b, d, rt), s = ‘reserved’, d = ‘true’

Then, at runtime, OpExec is in charge of executing the logic rules according
to the client invocations (INNoVaServ, in this case). Such invocations cause
the insertion/deletion of objects in the database, or their selection (which is



stored in the corresponding Select_C table), according to the translation of the
natural language patterns. The check pattern requires special attention since it
is translated as a new query that checks the condition. In this case, OpExec
executes the query and returns the result to the client, so, the client can take
the decision of what to do next (such as repeating the last task if the checking
did not succeed).

The important feature of OpExec w.r.t. validating the process is its ability to
validate user-defined integrity constraints over its execution. That is, whenever
a new object/relation is created/deleted, OpExec ensures that no defined con-
straint is being violated, otherwise, the data update is rejected and a warning is
returned to the client. For instance, when executing the Change Vehicle Status
task, we might violate the condition that damagedVehicles cannot be booked by a
User. If this is the case, OpExec notifies the client about this problem and rejects
the execution of the task. Thus, the user might notice that the User chooses and
selects a car task, requires selecting a car which is not only available, but also
not damaged. Note that data inconsistencies might arise independently of the
Service Blueprint lane in which the data update is performed, thus, they are not
taken into account in our validation approach.

In order to ensure the efficiency of these checking, OpExec integrates an
incremental checking approach [15], that is, it only checks those constraints that
might be violated according to the data update, and only for the relevant values.
It is worth mentioning that OpExec is implemented as a Java library that can
be invoked from any other tool.

We plan then to integrate both OpExec and INNoVaServ as follows: model
validation will rely on EVL scripts bundled in INNoVaServ, so that when such
validation is run, the EVL rules invoke internally OpExec functions, which will
then return the results that will be graphically displayed by INNoVaServ. Even
though this process is slightly less efficient than simple EVL or OCL-based val-
idation, it ensures not only syntactic but also semantic correctness

4 Related Works

This section reviews existing works in the are of service blueprinting and process
executability.

Even though service blueprinting emerged in the 80’s [4], it has not attracted
too much attention from academics until recently and most of the existing lit-
erature is focused on the application of the technique to different contexts. Re-
garding the combination with formal techniques, in [16] Berkley uses phase dis-
tributions to control service operations whereas fuzzy graph is used in [17] to
modularize product extension service blueprints. There are also some works on
the combination of service blueprinting with the Theory of Inventive Problem
Solving (TRIZ), like the one from Lee et al. [18]. As well, there are different works
on the revision or extension of service blueprinting for specific purposes. For in-
stance, Flieb and Kleinatelkamp presented a revised version of service blueprints



in [19] based on the production-theoretic approach to identify starting points for
improving process efficiency.

Regarding tool-support for service blueprinting, as the rise of product-service-
systems [20] has contributed to increase the interest in this user-centered tech-
nique for business process modeling, most of existing works have emerged re-
cently from the industry. This way, tools like Canvanaizer11 and Real Time
Board12 to name a few are web-based applications that support collaborative
edition of (canvas and) service blueprints. They bundle a simple and intuitive
graphical interface (specially the latter) but, in contrast with INNoVaServ they
were not devised to work with models, so they are limited to offer graphical
representations of the blueprint, which can not be processed later.

From a more academic point of view, some remarkable works are those from
Liang et al. [21], who use a CAD-based system for service blueprinting and the
one from Lao [22] who developed a collaborative tabletop tool for service design
based on some of the principles of service blueprinting. All in all, these are tools
focused on usability and collaborative properties which have dismissed the utility
of model-based tool support as a way to enable the systematic processing of the
information collected in the blueprint. Thus they are very far from being ready
to incorporate any kind of formal reasoning.

On the other hand, a quick look at the plenty of systematic literature re-
views on business process modeling and the topics covered by them shows that
this is somehow a most mature field. Recent reviews are indeed not focused on
characterizing existing proposals, since that has been largely done in the past,
but on available mechanisms to assess their quality [23] or complexity [24].

Regarding process executability, the approach in [14] uses a UML class dia-
gram, a BPMN diagram and a set of OCL operation contracts to achieve process
executability. Some of the advantages of [14] in contrast to our work are that it
uses the de-facto standard modeling languages for data and processes, together
with the fact that the OCL language has a more expressive power than structured
natural language. Thus, it requires that the modeler and business people know
BPMN and OCL, whereas service blueprints and structured natural language
are simpler and more intuitive.

BPEL (or WS-BPEL) allows to specify executable business processes using
an XML format which makes it difficult to read. Although there is a mapping
between BPMN 2.0 and BPEL it is incomplete and suffers from several issues
[25]. The approach in [26] uses XML nets, a Petri-net-based process modelling
approach which is meant to be executable. It uses a graphical language, which
maps to a DTD (XML Document Type Definition) to represent the data re-
quired by the process, and the data manipulations are graphically shown in
the XML net. In contrast to our approach, this solution is technology-based, as
the specification of the models is based on XML, and details of how to achieve
executability are not explained.

11 https://canvanizer.com/
12 https://realtimeboard.com/



YAWL [27] is a workflow graphical language whose semantics are formally
defined and based on Petri nets, with its corresponding execution engine. Intu-
itively, the tasks are annotated with their inputs and outputs, without defining
what changes are made by each of them. Thus, the execution engine only detects
missing information and it is not able to fully execute the operation.

In [28] it is possible to obtain automatically an imperative model that is
executable in a standard Business Process Management System. However, data
is defined as a set of unstructured variables and the pre and postconditions
merely state conditions over the data, instead of indicating exactly what is done
by the different tasks.

Earlier attempts are [29,30]. Both approaches focus on defining a conceptual
model which can then be automatically translated to achieve execution. How-
ever, the purpose of [29] is different to ours: their main goal is to be able to
validate the model through execution, while ours is to achieve executability by
using a combination of UML class diagram and service blueprint enriched with
structured natural language. Similarly, the approach in [30] - which translates
the models into Pascal - is outdated by object-oriented programming languages.

Finally, there are many different works that deal with verification and vali-
dation in business process models, such as [31,32]. However, these techniques do
not execute the model as we do and, to the best of our knowledge, none of them
use service blueprints.

To sum up, none of the analysed works rely on service blueprints as a way of
modeling the business process. Moreover, not all of them provide the ability of
executing the model automatically using a structured data model. Finally, none
use structured natural language to specify the meaning of each of the tasks, thus
requiring concrete knowledge of the language used to do so.

5 Conclusion and further work

This work has presented a framework for defining service blueprints that can be
validated using simulation techniques. Moreover, we have proposed the imple-
mentation of the framework integrating two tools: INNoVaServ, which is model-
based tool for service blueprinting, and OpExec which is a model simulator. The
linkage is done by attaching semantic annotations to service blueprint tasks, and
translating them into executable logic rules.

To the best of our knowledge, this is the first work that relies on service
blueprinting as an executable business process modeling technique. Moreover,
it does so in the context of a toolkit for business modeling that enables the
development of bridges with other notations for business (process) like Canvas
[33], e3Value [11], Process Chain Networks [12] or BPMN.

This paper addresses consequently one of those which has been acknowledged
to be the main problems of service design: the lack of proper technical support
[20]. The constant and rapid development of new services, products or product-
service offerings to address new needs as soon as they appear is indeed a must for
any organization, giving rise to an increasing interest in the discipline of service



design. However, being an emerging field, this is one of those areas in which
industry is ahead of academia, giving rise to the advent of solutions which does
not always meet the desirable criteria in terms of quality.

The development of this type of proposals will help as well to mitigate the
differences and challenges that emerge between different worlds that speak differ-
ent languages, as it is the case with the variety of stakeholders typically involved
in the development of digital products or services nowadays [34].

Acknowledgments. This research has been funded by the Ministry of Sci-
ence and Innovation under the ELASTIC project (TIN2014-52938-C2-1-R), the
Government of Madrid under the SICOMORo-CM project (S2013/ICE- 3006)
and by the SSME Research Excellence Group (Ref. 30VCPIGI05) co-funded by
URJC and Banco Santander.

References

1. Fisk, R.P., Brown, S.W., Bitner, M.J.: Tracking the evolution of the services
marketing literature. Journal of retailing 69(1) (1993) 61–103

2. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps toward a science of service
systems. Computer 40(1) (2007)

3. Cook, L.S., Bowen, D.E., Chase, R.B., Dasu, S., Stewart, D.M., Tansik, D.A.:
Human issues in service design. Journal of Operations Management 20(2) (2002)
159–174

4. Shostack, G.L.: Designing services that deliver. Harvard Business Review 62(1)
(January 1984) 133–139

5. Gounaris, S., Tanyeri, M., Kostopoulos, G., Gounaris, S., Boukis, A.: Service
blueprinting effectiveness: drivers of success. Managing Service Quality: An Inter-
national Journal 22(6) (2012) 580–591

6. Van Gorp, P., Dijkman, R.: A visual token-based formalization of bpmn 2.0 based
on in-place transformations. Information and Software Technology 55(2) (2013)
365–394

7. Noguera, M., Hurtado, M.V., Rodríguez, M.L., Chung, L., Garrido, J.L.: Ontology-
driven analysis of uml-based collaborative processes using owl-dl and cpn. Science
of Computer Programming 75(8) (2010) 726–760

8. Gronback, R.C.: Eclipse modeling project: a domain-specific language (DSL)
toolkit. Pearson Education (2009)

9. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical tech-
nique for service innovation. California management review 50(3) (2008) 66–94

10. Osterwalder, A., Pigneur, Y.: Business model generation: a handbook for vision-
aries, game changers, and challengers. John Wiley & Sons (2010)

11. Gordijn, J., Akkermans, H., Van Vliet, J.: Designing and evaluating e-business
models. IEEE intelligent Systems 16(4) (2001) 11–17

12. Sampson, S.E.: Visualizing service operations. Journal of Service Research 15(2)
(2012) 182–198

13. Vara, J.M., Marcos, E.: A framework for model-driven development of information
systems: Technical decisions and lessons learned. Journal of Systems and Software
85(10) (2012) 2368–2384



14. De Giacomo, G., Oriol, X., Estañol, M., Teniente, E.: Linking data and BPMN
processes to achieve executable models. In Dubois, E., Pohl, K., eds.: CAiSE 2017.
Volume 10253 of LNCS., Springer (2017) 612–628

15. Oriol, X., Teniente, E., Rull, G.: TINTIN: a tool for incremental integrity checking
of assertions in SQL server. In: Proceedings of the 19th International Conference
on Extending Database Technology, EDBT 2016, Bordeaux, France, March 15-16,
2016, Bordeaux, France, March 15-16, 2016. (2016) 632–635

16. Berkley, B.J.: Analyzing service blueprints using phase distributions. European
journal of operational research 88(1) (1996) 152–164

17. Song, W., Wu, Z., Li, X., Xu, Z.: Modularizing product extension services: An
approach based on modified service blueprint and fuzzy graph. Computers &
Industrial Engineering 85 (2015) 186 – 195

18. Lee, C.H., Wang, Y.H., Trappey, A.J.: Service design for intelligent parking based
on theory of inventive problem solving and service blueprint. Advanced Engineering
Informatics 29(3) (2015) 295 – 306

19. FlieB, S., Kleinaltenkamp, M.: Blueprinting the service company. Journal of Busi-
ness Research 57(4) (2004) 392 – 404 European Research in service marketing.

20. Cavalieri, S., Pezzotta, G.: Product - service systems engineering: State of the art
and research challenges. Computers in industry 63(4) (2012) 278–288

21. Liang, T.P., Wang, Y.W., Wu, P.J.: A system for service blueprint design. In:
Service Science and Innovation (ICSSI), 2013 Fifth International Conference on,
IEEE (2013) 252–253

22. Lau, N.: Servicesketch: A collaborative tabletop tool for service design. (2011)
23. de Oca, I.M.M., Snoeck, M., Reijers, H.A., Rodriguez-Morffi, A.: A systematic

literature review of studies on business process modeling quality. Information and
Software Technology 58 (2015) 187–205

24. Polančič, G., Cegnar, B.: Complexity metrics for process models - a systematic
literature review. Computer Standards & Interfaces 51 (2017) 104–117

25. Fabra, J., de Castro, V., Álvarez, P., Marcos, E.: Automatic execution of business
process models: Exploiting the benefits of model-driven engineering approaches.
Journal of Systems and Software 85(3) (2012) 607–625

26. Lenz, K., Oberweis, A.: Modeling interorganizational workflows with XML nets.
In: HICSS-34, IEEE Computer Society (2001)

27. Foundation, T.Y.: YAWL - User Manual. Version 4.1. (2016) Available at: http:
//www.yawlfoundation.org/pages/support/manuals.html.

28. Parody, L., López, M.T.G., Gasca, R.M.: Hybrid business process modeling for
the optimization of outcome data. Information & Software Technology 70 (2016)
140–154

29. Lindland, O.I., Krogstie, J.: Validating conceptual models by transformational
prototyping. In: CAiSE’93. Volume 685 of LNCS., Springer (1993) 165–183

30. Mylopoulos, J., Borgida, A., Greenspan, S.J., Wong, H.K.T.: Information system
design at the conceptual level - the taxis project. IEEE Database Eng. Bull. 7(4)
(1984) 4–9

31. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verification of GSM-based artifact-
centric systems by predicate abstraction. In: ICSOC 2015. Volume 9435 of LNCS.,
Springer (2015) 253–268

32. Deutsch, A., Hull, R., Vianu, V.: Automatic verification of database-centric sys-
tems. SIGMOD Record 43(3) (2014) 5–17

33. Ovans, A.: What is a business model. Harvard Business Review 23 (2015)
34. Gray, J., Rumpe, B.: Models for the digital transformation. Software & Systems

Modeling 16(2) (2017) 1–2

http://www.yawlfoundation.org/pages/support/manuals.html
http://www.yawlfoundation.org/pages/support/manuals.html

	Validation of Service Blueprint models by means of formal simulation techniques
	Introduction
	Context
	Service Blueprinting
	Introducing INNoVaServ

	Enabling formal verification of service blueprint models in INNoVaServ
	Functional architecture and design
	Formally defining Service Blueprint tasks
	Structured Natural Language

	Executing the Formal Semantics for Validation
	Executable logic rules
	Translating natural language patterns into executable logic rules
	Validation through executing the logic rules


	Related Works
	Conclusion and further work




