1708.07575v3 [cs.DC] 19 Oct 2017

arXiv

Generalized Paxos Made Byzantine
(and Less Complex)

Miguel Pires! Srivatsan Ravi?> Rodrigo Rodrigues!

YNESC-ID and Instituto Superior Técnico (U. Lisboa), Lisbon, Portugal
2University of Southern California, Los Angeles, USA

October 23, 2017

Abstract

One of the most recent members of the Pazos family of protocols is
Generalized Paxos. This variant of Paxos has the characteristic that it
departs from the original specification of consensus, allowing for a weaker
safety condition where different processes can have a different views on
a sequence being agreed upon. However, much like the original Paxos
counterpart, Generalized Paxos does not have a simple implementation.
Furthermore, with the recent practical adoption of Byzantine fault tolerant
protocols, it is timely and important to understand how Generalized Paxos
can be implemented in the Byzantine model. In this paper, we make
two main contributions. First, we provide a description of Generalized
Paxos that is easier to understand, based on a simpler specification and
the pseudocode for a solution that can be readily implemented. Second,
we extend the protocol to the Byzantine fault model.

1 Introduction

The evolution of the Paxos [12] protocol is an unique chapter in the history of
Computer Science. It was first described in 1989 through a technical report [I1],
and was only published a decade later [12]. Another long wait took place until the
protocol started to be studied in depth and used by researchers in various fields,
namely the distributed algorithms [5] and the distributed systems [I8] research
communities. And finally, another decade later, the protocol made its way to the
core of the implementation of the services that are used by millions of people over
the Internet, in particular since Paxos-based state machine replication is the key
component of Google’s Chubby lock service [2], or the open source ZooKeeper
project [§], used by Yahoo! among others. Arguably, the complexity of the
presentation may have stood in the way of a faster adoption of the protocol,
and several attempts have been made at writing more concise explanations of
it [13} 25].

More recently, several variants of Paxos have been proposed and studied.
Two important lines of research can be highlighted in this regard. First, a
series of papers hardened the protocol against malicious adversaries by solving
consensus in a Byzantine fault model [21, [16]. The importance of this line

of research is now being confirmed as these protocols are now in widespread
use in the context of cryptocurrencies and distributed ledger schemes such as
blockchain [23]. Second, many proposals target improving the Paxos protocol
by eliminating communication costs [I5], including an important evolution of
the protocol called Generalized Paxos [14], which has the noteworthy aspect of
having lower communication costs by leveraging a more general specification
than traditional consensus that can lead to a weaker requirement in terms
of ordering of commands across replicas. In particular, instead of forcing all
processes to agree on the same value, it allows processes to pick an increasing
sequence of commands that differs from process to process in that commutative
commands may appear in a different order. The practical importance of such
weaker specifications is underlined by a significant research activity on the
corresponding weaker consistency models for replicated systems [10, [6].

In this paper, we draw a parallel between the evolution of the Paxos protocol
and the current status of Generalized Paxos. In particular, we argue that, much
in the same way that the clarification of the Paxos protocol contributed to its
practical adoption, it is also important to simplify the description of Generalized
Paxos. Furthermore, we believe that evolving this protocol to the Byzantine
model is an important task, since it will contribute to the understanding and
also open the possibility of adopting Generalized Paxos in scenarios such as a
Blockchain deployment.

As such, the paper makes several contributions, which are listed next.

e We present a simplified version of the specification of Generalized Consen-
sus, which is focused on the most commonly used case of the solutions to
this problem, which is to agree on a sequence of commands;

e we extend the Generalized Paxos protocol to the Byzantine model;

e we present a description of the Byzantine Generalized Paxos protocol
that is more accessible than the original description, namely including the
respective pseudocode, in order to to make it easier to implement;

e we prove the correctness of the Byzantine Generalize Paxos protocol;

e and we discuss several extensions to the protocol in the context of relaxed
consistency models and fault tolerance.

The remainder of the paper is organized as follows: Section [2] gives an overview
of Paxos and its family of related protocols. Section [3| introduces the model and
simplified specification of Generalized Paxos. Section [4] presents the Generalized
Paxos protocol that is resilient against Byzantine failures. Section [5| presents
a correctness proof for Byzantine Generalized Paxos. Section [6] concludes the
paper with a discussion of several optimizations and practical considerations.

2 Background and related work

2.1 Paxos and its variants

The Paxos protocol family solves consensus by finding an equilibrium in face of
the well-known FLP impossibility result [7]. It does this by always guaranteeing
safety despite asynchrony, but foregoing progress during the temporary periods
of asynchrony, or if more than f faults occur for a system of N > 2 replicas [13].
The classic form of Paxos uses a set of proposers, acceptors and learners, runs
in a sequence of ballots, and employs two phases (numbered 1 and 2), with a

similar message pattern: proposer to acceptors (phase la or 2a), acceptors to
proposer (phase 1b or 2b), and, in phase 2b, also acceptors to learners. To ensure
progress during synchronous periods, proposals are serialized by a distinguished
proposer, which is called the leader.

Paxos is most commonly deployed as Multi (Decree)-Paxos, which provides
an optimization of the basic message pattern by omitting the first phase of
messages from all but the first ballot for each leader [25]. This means that a
leader only needs to send a phase 1a message once and subsequent proposals
may be sent directly in phase 2a messages. This reduces the message pattern
in the common case from five message delays to just three (from proposing to
learning).

Fast Paxos observes that it is possible to improve on the previous latency
(in the common case) by allowing proposers to propose values directly to accep-
tors [I5]. To this end, the protocol distinguishes between fast and classic ballots,
where fast ballots bypass the leader by sending proposals directly to acceptors
and classic ballots work as in the original Paxos protocol. The reduced latency
of fast ballots comes at the added cost of using a quorum size of N — e instead of
a classic majority quorum, where e is the number of faults that can be tolerated
while using fast ballots. In addition, instead of the usual requirement that
N > 2f, to ensure that fast and classic quorums intersect, a new requirement
must be met: N > 2e + f. This means that if we wish to tolerate the same
number of faults for classic and fast ballots (i.e., e = f), then the minimum
number of replicas is 3f + 1 instead of the usual 2f 4+ 1. Since fast ballots only
take two message steps (phase 2a messages between a proposer and the acceptors,
and phase 2b messages between acceptors and learners), there is the possibility
of two proposers concurrently proposing values and generating a conflict, which
must be resolved by falling back to a recovery protocol.

Generalized Paxos improves the performance of Fast Paxos by addressing the
issue of collisions. In particular, it allows acceptors to accept different sequences
of commands as long as non-commutative operations are totally ordered [14]. In
the original description, non-commutativity between operations is generically
represented as an interference relation. In this context, Generalized Paxos
abstracts the traditional consensus problem of agreeing on a single value to
the problem of agreeing on an increasing set of values. C-structs provide this
increasing sequence abstraction and allow the definition of different consensus
problems. If we define the sequence of learned commands of a learner [; as a
c-struct learned;,, then the consistency requirement for generalized consensus
can be defined as: learned;, and learned;, must have a common upper bound,
for all learners /3 and lp. This means that, for any learned;, and learned,,,
there must exist some c-struct of which they are both prefixes. This prohibits
interfering commands from being concurrently accepted because no subsequent
c-struct would extend them both.

More recently, other Paxos variants have been proposed to address specific
issues. For example, Mencius [20] avoids the latency penalty in wide-area deploy-
ments of having a single leader, through which every proposal must go through.
In Mencius, the leader of each round rotates between every process: the leader
of round 17 is process pg, such that k = n mod i. Another variant is Egalitarian
Paxos (EPaxos), which achieves a better throughput than Paxos by removing
the bottleneck caused by having a leader [22]. To avoid choosing a leader, the
proposal of commands for a command slot is done in a decentralized manner,

taking advantage of the commutativity observations made by Generalized Paxos
[14]. Conflicts between commands are handled by having replicas reply with a
command dependency, which then leads to falling back to using another protocol
phase with f 4+ [£ replicas.

2.2 Byzantine fault tolerant replication

Consensus in the Byzantine model was originally defined by Lamport et al. [I7].
Almost two decades later, a surge of research in the area started with the
PBFT protocol, which solves consensus for state machine replication with 3f + 1
replicas while tolerating up to f Byzantine faults [4]. In PBFT, the system moves
through configurations called views, in which one replica is the primary and the
remaining replicas are the backups. The protocol proceeds in a sequence of steps,
where messages are sent from the client to the primary, from the primary to the
backups, followed by two all-to-all steps between the replicas, with the last step
proceeding in parallel with sending a reply to the clients.

Zeno is a Byzantine fault tolerance state machine replication protocol that
trades availability for consistency [24]. In particular, it offers eventual consistency
by allowing state machine commands to execute in a weak quorum of f 4+ 1
replicas. This ensures that at least one correct replica will execute the request
and commit it to the linear history, but does not guarantee the intersection
property that is required for linearizability.

The closest related work is Fast Byzantine Paxos (FaB), which solves con-
sensus in the Byzantine setting within two message communication steps in the
common case, while requiring 5f + 1 acceptors to ensure safety and liveness [21].
A variant that is proposed in the same paper is the Parameterized FaB Paxos
protocol, which generalizes FaB by decoupling replication for fault tolerance from
replication for performance. As such, the Parameterized FaB Paxos requires
3f + 2t + 1 replicas to solve consensus, preserving safety while tolerating up to f
faults and completing in two steps despite up to t faults. Therefore, FaB Paxos is
a special case of Parameterized FaB Paxos where t = f. It has also been shown
that N > 5f is a lower bound on the number of acceptors required to guarantee
2-step execution in the Byzantine model. In this sense, the FaB protocol is tight
since it requires 5f + 1 acceptors to provide the same guarantees.

In comparison to the FaB Paxos protocol, our BGP protocol requires a lower
number of acceptors than what is stipulated by FaB Paxos’ lower bound [21].
However, this does not constitute a violation of the result since BGP does not
guarantee a two step execution in the Byzantine scenario. Instead, BGP only pro-
vides a two communication step latency when proposed sequences are universally
commutative with any other sequence. In the common case, BGP requires three
messages steps for a sequence to be learned. In other words, Byzantine General-
ized Paxos introduces an additional broadcast phase to decrease the requirements
regarding the minimum number of acceptor processes. This may be a sensible
trade-off in systems that target datacenter environments where communication
between machines is fast and a high percentage of costs is directly related to
equipment. The fast communication links would mitigate the latency cost of hav-
ing an additional phase between the acceptors and the high cost of equipment and
power consumption makes the reduced number of acceptor processes attractive.

3 Model

We consider an asynchronous system in which a set of n € N processes commu-
nicate by sending and receiving messages. Each process executes an algorithm
assigned to it, but may fail in two different ways. First, it may stop executing
it by crashing. Second, it may stop following the algorithm assigned to it, in
which case it is considered Byzantine. We say that a non-Byzantine process is
correct. This paper considers the authenticated Byzantine model: every process
can produce cryptographic digital signatures [26]. Furthermore, for clarity of
exposition, we assume authenticated perfect links [3], where a message that is
sent by a non-faulty sender is eventually received and messages cannot be forged
(such links can be implemented trivially using retransmission, elimination of
duplicates, and point-to-point message authentication codes [3].) A process may
be a learner, proposer or acceptor. Informally, proposers provide input values
that must be agreed upon by learners, the acceptors help the learners agree on
a value, and learners learn commands by appending them to a local sequence
of commands to be executed, learned; . Our protocols require a minimum
number of acceptor processes (N), which is a function of the maximum number
of tolerated Byzantine faults (f), namely N > 3f + 1. We assume that acceptor
processes have identifiers in the set {0,..., N — 1}. In contrast, the number of
proposer and learner processes can be set arbitrarily.

Problem Statement. In our simplified specification of Generalized Paxos, each
learner [maintains a monotonically increasing sequence of commands learned;.
We define two learned sequences of commands to be equivalent (~) if one can
be transformed into the other by permuting the elements in a way such that the
order of non-commutative pairs is preserved. A sequence x is defined to be an
eg-prefixz of another sequence y (z C y), if the subsequence of y that contains
all the elements in z is equivalent (~) to x. We present the requirements for
this consensus problem, stated in terms of learned sequences of commands for a
correct learner [, learned;. To simplify the original specification, instead of using
c-structs (as explained in Section , we specialize to agreeing on equivalent
sequences of commands:

1. Nontriviality. If all proposers are correct, learned; can only contain
proposed commands.

2. Stability. If learned; = s then, at all later times, s C learned;, for any
sequence s and correct learner [.

3. Consistency. At any time and for any two correct learners [; and [;,
learned;; and learned;, can subsequently be extended to equivalent se-
quences.

4. Liveness. For any proposal s from a correct proposer, and correct learner
l, eventually learned; contains s.

4 Protocol

This section presents our Byzantine fault tolerant Generalized Paxos Protocol
(or BGP, for short).

Algorithm 1 Byzantine Generalized Paxos - Proposer p
Local variables: ballot_type = L

1. upon receive(BALLOT, type) do

2: ballot type = type;

3:

+ upon command_request(c) do

5: if ballot_type == fast_ballot then

6: SEND(P2A_F AST, ¢) to acceptors;
7 else
s: SEND(PROPOSE, ¢) to leader;

4.1 Overview

We modularize our protocol explanation according to the following main compo-
nents, which are also present in other protocols of the Paxos family:

e View Change — The goal of this subprotocol is to ensure that, at any
given moment, one of the proposers is chosen as a distinguished leader,
who runs a specific version of the agreement subprotocol. To achieve this,
the view change subprotocol continuously replaces leaders, until one is
found that can ensure progress (i.e., commands are eventually appended
to the current sequence).

e Agreement — Given a fixed leader, this subprotocol extends the current
sequence with a new command or set of commands. Analogously to Fast
Paxos [I5] and Generalized Paxos [14], choosing this extension can be
done through two variants of the protocol: using either classic ballots or
fast ballots, with the characteristic that fast ballots complete in fewer
communication steps, but may have to fall back to using a classic ballot
when there is contention among concurrent requests.

4.2 View Change

The goal of the view change subprotocol is to elect a distinguished proposer
process, called the leader, that carries through the agreement protocol (i.e.,
enables proposed commands to eventually be learned by all the learners). The
overall design of this subprotocol is similar to the corresponding part of existing
BFT state machine replication protocols [4].

In this subprotocol, the system moves through sequentially numbered views,
and the leader for each view is chosen in a rotating fashion using the simple
equation leader(view) = view mod N. The protocol works continuously by having
acceptor processes monitor whether progress is being made on adding commands
to the current sequence, and, if not, by multicasting a signed SUSPICION message
for the current view to all acceptors suspecting the current leader. Then, if
enough suspicions are collected, processes can move to the subsequent view.
However, the required number of suspicions must be chosen in a way that
prevents Byzantine processes from triggering view changes spuriously. To this
end, acceptor processes will multicast a view change message indicating their
commitment to starting a new view only after hearing that f 4+ 1 processes
suspect the leader to be faulty. This message contains the new view number, the
f + 1 signed suspicions, and is signed by the acceptor that sends it. This way,

if a process receives a view-change message without previously receiving f + 1
suspicions, it can also multicast a view-change message, after verifying that the
suspicions are correctly signed by f+1 distinct processes. This guarantees that if
one correct process receives the f + 1 suspicions and multicasts the view-change
message, then all correct processes, upon receiving this message, will be able
to validate the proof of f + 1 suspicions and also multicast the view-change
message.

Finally, an acceptor process must wait for N — f view-change messages
to start participating in the new view (i.e., update its view number and the
corresponding leader process). At this point, the acceptor also assembles the
N — f view-change messages proving that others are committing to the new
view, and sends them to the new leader. This allows the new leader to start its
leadership role in the new view once it validates the N — f signatures contained
in a single message.

4.3 Agreement Protocol

The consensus protocol allows learner processes to agree on equivalent sequences
of commands (according to the definition of equivalence present in Section .
An important conceptual distinction between Fast Paxos [15] and our protocol
is that ballots correspond to an extension to the sequence of learned commands
of a single ongoing consensus instance, instead of being a separate instance of
consensus,. Proposers can try to extend the current sequence by either single
commands or sequences of commands. We use the term proposal to denote either
the command or sequence of commands that was proposed.

Ballots can either be classic or fast. In classic ballots, a leader proposes a
single proposal to be appended to the commands learned by the learners. The
protocol is then similar to the one used by classic Paxos [12], with a first phase
where each acceptor conveys to the leader the sequences that the acceptor has
already voted for (so that the leader can resend commands that may not have
gathered enough votes), followed by a second phase where the leader instructs
and gathers support for appending the new proposal to the current sequence
of learned commands. Fast ballots, in turn, allow any proposer to contact all
acceptors directly in order to extend the current sequence (in case there are
no conflicts between concurrent proposals). However, both types of ballots
contain an additional round, called the verification phase, in which acceptors
broadcast proofs among each other indicating their committal to a sequence.
This additional round comes after the acceptors receive a proposal and before
they send their votes to the learners.

Next, we present the protocol for each type of ballot in detail. We start
by describing fast ballots since their structure has consequences that implicate
classic ballots. Figures|l| and [2|illustrate the message pattern for fast and classic
ballots, respectively. In these illustrations, arrows that are composed of solid
lines represent messages that can be sent multiple times per ballot (once per
proposal) while arrows composed of dotted lines represent messages that are
sent only once per ballot.

Algorithm 2 Byzantine Generalized Paxos - Leader 1
Local variables: ballot; = 0,proposals = 1, accepted = 1, notAccepted =
1, view =10

1. upon receive(LEADER, view,, proofs) from acceptor a do
2: valid_proofs = 0

3 for p in acceptors do

4 view_proof = proofs[pl;

5: if view_proofyu, == (view_change,view,) then
6: valid_proofs +=1;

7 if valid_proofs > f then

8: view = viewy;

o: upon trigger_next_ballot(type) do

11: ballot; +=1;

12: SEND(BALLOT, type) to proposers;
13: if type == fast then

[

14: SEND(F AST, ballot;, view) to acceptors;
15: else
16: SEND(P1A, ballot;, view) to acceptors;

1. upon receive(PROPOSE, prop) from proposer do
1. if ISUNIVERSALLYCOMMUTATIVE(prop) then

20: SEND(P2A_CLASSIC, ballot;, view, prop);
21: else
22: proposals = proposals e prop;

24 upon receive(P1B, ballot, bal,, proven, val,, proofs) from acceptor a do
25: if ballot # ballot; then

26: return;

27:

28: valid_proofs = 0;

20: for i in acceptors do

30: proof = proofs[proven]lil;

s1: if proofyus, == (bal,, proven) then
32: valid_proofs +=1;

33:

34: if valid_proofs > N — f then

a5: accepted|ballot;][a] = proven;

36: not Accepted|ballot;] = notAccepted|ballot;] e (val, \ proven);
37:

38: if #(acceptedlballot;]) > N — f then

39: PHASE_2A();

40:

a1: function PHASE_2A()

a2. maxTried = LARGEST_SEQ(accepted[ballot;));

a3 previousProposals = REMOVE_DUPLICATES (not Accepted|ballot;));
1. maxTried = maxTried e previousProposals e proposals;

4. SEND(P2A_CLASSIC,ballot;, view, mazTried) to acceptors;

4. proposals = L;

4. end function

Algorithm 3 Byzantine Generalized Paxos - Acceptor a (view change)

Local variables: suspicions = 1, newwview = L, leader = L1, view =
0,bal, =0, val, = L, fast.bal = L, checkpoint = L
1. upon suspect_leader do

2. if suspicions[p| # true then

s suspicions[p] = true;

4 proof = (suspicion, view)priv, ;

5: SEND(SUSPICION, view, proof);

6:

7. upon receive(SUSPICION, view;, proof) from acceptor i do
8: if view; # view then

9: return;

10: if proofpus, == (suspicion, view) then

11: suspicionsli] = proof;

2. if #(suspicions) > f and new_view[view + 1|[p] == L then
13: change_proof = (view_change, view + 1) priv,;

14 new _view[view + 1][p] = change_proof;

15: SEND(VIEW _CHANGE, view + 1, suspicions, change_proof);

1. upon receive(VIEW _CHANGE, new_view;, suspicions, change_proof;)
from acceptor ¢ do

18: if new_view; < view then

19: return;

20:

21: valid_proofs = 0;

22: for p in acceptors do

23: proof = suspicions[pl;

24 last_view = new_view; — 1;

25: if proofpuy, == (suspicion, last view) then
26: valid_proofs +=1;

27:

28: if valid_proofs < f then

29: return;

30:

s new-view[new_view;|[i] = change_proof;;

s2. if new_view[view;][a] == L then

33: change_proof = (view_change, new_view;) priv, ;

84 new _view|[view;][a] = change_proof;

35: SEND(VIEW _CHANGE, view;, suspicions, change_proof);
36:

s if #(new_viewnew_view;]) > N — f then

38: view = View;;

39: leader = view mod N

40: suspicions = L;

at: SEND(LEADER, view, new_view[view;]) to leader;

Fast Proposal Werification P2b

Proposer

VA

Acceptor \ \

Acceptor \\\W
Accegtor “""‘H‘ \ \‘%\
Acceptor I‘I;' \j{\\x \\\

Learner RN

Learner

Figure 1: BGP’s fast ballot message pattern

4.3.1 Fast Ballots

Fast ballots leverage the weaker specification of generalized consensus (compared
to classic consensus) in terms of command ordering at different replicas, to allow
for the faster execution of commands in some cases. The basic idea of fast
ballots is that proposers contact the acceptors directly, bypassing the leader,
and then the acceptors send their vote for the current sequence to the learners.
If a conflict exists and progress isn’t being made, the protocol reverts to using a
classic ballot. This is where generalized consensus allows us to avoid falling back
to this slow path, namely in the case where commands that ordered differently
at different acceptors commute.

However, this concurrency introduces safety problems even when a quorum
is reached for some sequence. If we keep the original Fast Paxos message
pattern [I5], it’s possible for one sequence s to be learned at one learner {; while
another non-commutative sequence s’ is learned before s at another learner Is.
Suppose s obtains a quorum of votes and is learned by [; but the same votes
are delayed indefinitely before reaching l5. In the next classic ballot, when the
leader gathers a quorum of phase 1b messages it must arbitrate an order for the
commands that it received from the acceptors and it doesn’t know the order in
which they were learned. This is because, of the N — f messages it received, f
may not have participated in the quorum and another f may be Byzantine and
lie about their vote, which only leaves one correct acceptor that participated
in the quorum and a single vote isn’t enough to determine if the sequence was
learned or not. If the leader picks the wrong sequence, it would be proposing a
sequence s’ that is non-commutative to a learned sequence s. Since the learning
of s was delayed before reaching lo, Iy could learn s’ and be in a conflicting state
with respect to l;, violating consistency. In order to prevent this, sequences
accepted by a quorum of acceptors must be monotonic extensions of previous
accepted sequences. Regardless of the order in which a learner learns a set of
monotonically increasing sequences, the resulting state will be the same. The
additional verification phase is what allows acceptors to prove to the leader that

10

some sequence was accepted by a quorum. By gathering N — f proofs for some
sequence, an acceptor can prove that at least f + 1 correct acceptors voted for
that sequence. Since there are only another 2 f acceptors in the system, no other
non-commutative value may have been voted for by a quorum.

An interesting alternative to requiring N — f proofs from each acceptor, would
be for the leader to wait for 2f + 1 matching phase 1b messages. Since at least
f+1 of those would be correct, only that sequence could’ve been learned since any
other non-commutative sequence would obtain at most 2f votes. Zyzzyva uses a
similar approach of waiting for 3f + 1 to commit requests in single round-trip in
executions where no faults occur [9]. However, this approach is unsuitable for
BGP since it’s possible for a sequence to be chosen by a quorum without the
leader being aware of more than f + 1 votes in its quorum. Since f + 1 votes
aren’t enough to ensure the leader that the sequence was chosen by a quorum,
the leader wouldn’t be able to pick a learned sequence.

Next, we explain each of the protocol’s steps for fast ballots in greater detail.
Step 1: Proposer to acceptors. To initiate a fast ballot, the leader informs
both proposers and acceptors that the proposals may be sent directly to the
acceptors. Unlike classic ballots, where the sequence proposed by the leader
consists of the commands received from the proposers appended to previously
proposed commands, in a fast ballot, proposals can be sent to the acceptors
in the form of either a single command or a sequence to be appended to the
command history. These proposals are sent directly from the proposers to the
acceptors.

Step 2: Acceptors to acceptors. Acceptors append the proposals they receive
to the proposals they have previously accepted in the current ballot and broadcast
the resulting sequence and the current ballot to the other acceptors, along with
a signed tuple of these two values. Intuitively, this broadcast corresponds to a
verification phase where acceptors gather proofs that a sequence gathered enough
support to be committed. This proofs will be sent to the leader in the subsequent
classic ballot in order for it to pick a sequence that preserves consistency. To
ensure safety, correct learners must learn non-commutative commands in a total
order. When an acceptor gathers N — f proofs for equivalent values, it proceeds
to the next phase. That is, sequences do not necessarily have to be equal in
order to be learned since commutative commands may be reordered. Recall
that a sequence is equivalent to another if it can be transformed into the second
one by reordering its elements without changing the order of any pair of non-
commutative commands (in the pseudocode, proofs for equivalent sequences are
being treated as belonging to the same index of the proofs variable, to simplify the
presentation). By requiring N — f votes for a sequence of commands, we ensure
that, given two sequences where non-commutative commands are differently
ordered, only one sequence will receive enough votes even if f Byzantine acceptors
vote for both sequences. Outside the set of (up to) f Byzantine acceptors, the
remaining 2f + 1 correct acceptors will only vote for a single sequence, which
means there are only enough correct processes to commit one of them. Note that
the fact that proposals are sent as extensions to previous sequences is critical to
the safety of the protocol. In particular, since the votes from acceptors can be
reordered by the network before being delivered to the learners, if these values
were single commands, it would be impossible to guarantee that non-commutative
commands would be learned in a total order.

Step 3: Acceptors to learners. Similarly to what happens in classic ballots,

11

Algorithm 4 Byzantine Generalized Paxos - Acceptor a (agreement)

Local variables: leader = 1, view = 0,bal, = 0, val, = 1, fast.bal =

1

)

® » 3 2

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

47:

proven = L
upon receive(P1A, ballot, view;) from leader [do
if view; == view and bal, < ballot then
SEND(P1B, ballot, bal ., proven, val,, proofslbal,]) to leader;
bal, = ballot;
valg, = 1;

upon receive(FAST, ballot, view;) from leader do
if view; == view then
fast_ bal[ballot] = true;

upon receive(VERIFY, view;, ballot;, val;, proof) from acceptor i do
if proofpup, == (ballot;,val;) and view == view; then
proofslballot;|[val;][i] = proof;
if #(proofslballot;][val;]) > N — f then
proven = valj;
SEND(P2B, ballot;, val;, proof s[ballot;|[value;]) to learners;

upon receive(P2A_CLASSIC, ballot, view, value) from leader do
if view; == view then
PHASE_2B_CLASSIC(ballot, value);

upon receive(P2A_F AST,value) from proposer do
PHASE_2B_FAST(value);

function PHASE_2B_CLASSIC(ballot, value)
univ_commut = ISUNIVERSALLY COMMUTATIVE(val,);
if ballot > bal, and val, == 1 and !fast_bal[bal,] and (univ_commut
or proven == L or proven == SUBSEQUENCE (value, 0, #(proven))) then
bal, = ballot;
if univ_commut then
SEND(P2B, bal,,value) to learners;
else
val, = value;
proof = (ballot, valy)priv, ;
proofs[ballot][val,][a] = proof;
SEND(VERIFY, view, ballot,val,, proof) to acceptors;

. end function

function PHASE_2B_FAST(ballot, value)
if ballot == bal, and fast_bal[bal,] then
if ISUNIVERSALLY COMMUTATIVE(value) then
SEND(P2B, bal,,value) to learners;
else
val, = val, ® value;
proof = (ballot, valy)priv, ;
proofs[ballot][val,][a] = proof;
SEND(V ERIFY, view, ballot,val,, proof) to acceptors;
end function

12

Pla P1b P2a Verification P2h

Proposer

Proposer

AN/
Acce pto r \ \‘X /)i
: E/ A%

Acceptor \m
AN\
AN

Learner

Acceptor

Figure 2: BGP’s classic ballot message pattern

the fast ballot equivalent of the phase 2b message, which is sent from acceptors
to learners, contains the current ballot number, the command sequence and the
N — f proofs gathered in the verification round. One could think that, since
acceptors are already gathering proofs that a value will eventually be committed,
learners are not required to gather N — f votes and they can wait for a single
phase 2b message and validate the N — f proofs contained in it. However, this
is not the case due to the possibility of learners learning sequences without the
leader being aware of it. If we allowed the learners to learn after witnessing N — f
proofs for just one acceptor then that would raise the possibility of that acceptor
not being present in the quorum of phase 1b messages. Therefore, the leader
wouldn’t be aware that some value was proven and learned. The only way to
guarantee that at least one correct acceptor will relay the latest proven sequence
to the leader is by forcing the learner to require N — f phase 2b messages since
only then will one correct acceptor be in the intersection of the two quorums.
Arbitrating an order after a conflict. When, in a fast ballot, non-commutative
commands are concurrently proposed, these commands may be incorporated
into the sequences of various acceptors in different orders and, therefore, the
sequences sent by the acceptors in phase 2b messages will not be equivalent
and will not be learned. In this case, the leader subsequently runs a classic
ballot and gathers these unlearned sequences in phase 1b. Then, the leader will
arbitrate a single serialization for every previously proposed command, which it
will then send to the acceptors. Therefore, if non-commutative commands are
concurrently proposed in a fast ballot, they will be included in the subsequent
classic ballot and the learners will learn them in a total order, thus preserving
consistency.

4.3.2 Classic Ballots

Classic ballots work in a way that is very close to the original Paxos protocol [12].
Therefore, throughout our description, we will highlight the points where BGP
departs from that original protocol, either due to the Byzantine fault model,
or due to behaviors that are particular to our specification of the consensus
problem.

13

In this part of the protocol, the leader continuously collects proposals by
assembling all commands that are received from the proposers since the previous
ballot in a sequence (this differs from classic Paxos, where it suffices to keep a
single proposed value that the leader attempts to reach agreement on). When
the next ballot is triggered, the leader starts the first phase by sending phase
1a messages to all acceptors containing just the ballot number. Similarly to
classic Paxos, acceptors reply with a phase 1b message to the leader, which
reports all sequences of commands they voted for. In classic Paxos, acceptors
also promise not to participate in lower-numbered ballots, in order to prevent
safety violations [I2]. However, in BGP this promise is already implicit, given
(1) there is only one leader per view and it is the only process allowed to propose
in a classic ballot and (2) acceptors replying to that message must be in the
same view as that leader.

As previously mentioned, phase 1b messages contain N — f proofs for each
learned sequence. By waiting for N — f such messages, the leader is guaranteed
that, for any learned sequence s, at least one of the messages will be from a
correct acceptor that, due to the quorum intersection property, participated in
the verification phase of s. Note that waiting for NV — f phase 1b messages is not
what makes the leader be sure that a certain sequence was learned in a previous
ballot. The leader can be sure that some sequence was learned because each
phase 1b message contains cryptographic proofs from 2f + 1 acceptors stating
that they would vote for that sequence. Since there are only 3f + 1 acceptors in
the system, no other non-commutative sequence could’ve been learned. Even
though each phase 1b message relays enough proofs to ensure the leader that
some sequence was learned, the leader still needs to wait for IV — f such messages
to be sure that he is aware of any sequence that was previously learned. Note
that, since each command is signed by the proposer (this signature and its check
are not explicit in the pseudocode), a Byzantine acceptor can’t relay made-up
commands. However, it can omit commands from its phase 1b message, which is
why it’s necessary for the leader to be sure that at least one correct acceptor in
its quorum took part in the verification quorum of any learned sequence.

After gathering a quorum of N — f phase 1b messages, the leader initiates
phase 2a where it assembles a proposal and sends it to the acceptors. This
proposal sequence must be carefully constructed in order to ensure all of the
intended properties. In particular, the proposal cannot contain already learned
non-commutative commands in different relative orders than the one in which
they were learned, in order to preserve consistency, and it must contain unlearned
proposals from both the current and the previous ballots, in order to preserve
liveness (this differs from sending a single value with the highest ballot number
as in the classic specification). Due to the importance and required detail of the
leader’s value picking rule, it will be described next in its own subsection.

The acceptors reply to phase 2a messages by broadcasting their verification
messages containing the current ballot, the proposed sequence and proof of their
committal to that sequence. After receiving N — f verification messages, an
acceptor sends its phase 2b messages to the learners, containing the ballot, the
proposal from the leader and the NV — f proofs gathered in the verification phase.
As is the case in the fast ballot, when a learner receives a phase 2b vote, it
validates the N — f proofs contained in it. Waiting for a quorum of N — f
messages for a sequence ensures the learners that at least one of those messages
was sent by a correct acceptor that will relay the sequence to the leader in

14

the next classic ballot (the learning of sequences also differs from the original
protocol in the quorum size, due to the fault model, and in that the learners
would wait for a quorum of matching values instead of equivalent sequences, due
to the consensus specification.)

4.3.3 Leader Value Picking Rule

Phase 2a is crucial for the correct functioning of the protocol because it requires
the leader to pick a value that allows new commands to be learned, ensuring
progress, while at the same time preserving a total order of non-commutative
commands at different learners, ensuring consistency. The value picked by
the leader is composed of three pieces: (1) the subsequence that has proven
to be accepted by a majority of acceptors in the previous fast ballot, (2) the
subsequence that has been proposed in the previous fast ballot but for which a
quorum hasn’t been gathered and (3) new proposals sent to the leader in the
current classic ballot.

The first part of the sequence will be the largest of the N — f proven sequences
sent in the phase 1b messages. The leader can pick such a value deterministically
because, for any two proven sequences, they are either equivalent or one can
be extended to the other. The leader is sure of this because for the quorums of
any two proven sequences there is at least one correct acceptor that voted in
both and votes from correct acceptors are always extensions of previous votes
from the same ballot. If there are multiple sequences with the maximum size
then they are equivalent (by same reasoning applied previously) and any can be
picked.

The second part of the sequence is simply the concatenation of unproven
sequences of commands in an arbitrary order. Since these commands are guar-
anteed to not have been learned at any learner, they can be appended to the
leader’s sequence in any order. Since N — f phase 2b messages are required for a
learner to learn a sequence and the intersection between the leader’s quorum and
the quorum gathered by a learner for any sequence contains at least one correct
acceptor, the leader can be sure that if a sequence of commands is unproven in
all of the gathered phase 1b messages, then that sequence wasn’t learned and
can be safely appended to the leader’s sequence in any order.

The third part consists simply of commands sent by proposers to the leader
with the intent of being learned at the current ballot. These values can be
appended in any order and without any restriction since they’re being proposed
for the first time.

4.3.4 Byzantine Leader

The correctness of the protocol is heavily dependent on the guarantee that the
sequence accepted by a quorum of acceptors is an extension of previous proven
sequences. Otherwise, if the network rearranges phase 2b messages such that
they’re seen by different learners in different orders, they will result in a state
divergence. If, however, every vote is a prefix of all subsequent votes then,
regardless of the order in which the sequences are learned, the final state will be
the same.

This state equivalence between learners is ensured by the correct execution
of the protocol since every vote in a fast ballot is equal to the previous vote with

15

Algorithm 5 Byzantine Generalized Paxos - Learner 1

Local variables: learned = 1, messages = L

1. upon receive(P2B, ballot, value, proofs) from acceptor a do
2: valid_proofs = 0;

3: for i in acceptors do

4 proof = proofsil;

5: if proofpups, == (ballot,value) then
6: valid_proofs +=1;

8: if valid_proofs > N — f then
o messages|ballot][value][a] = proofs;

-
-

if #(messages[ballot][value]) > N — f then
12: learned = MERGE_SEQUENCES(learned, value);

12. upon receive(P2B, ballot, value) from acceptor a do
15 if ISUNIVERSALLY COMMUTATIVE(value) then

16: messages|ballot][value][a] = true;
Ite if #(messages[ballot][value]) > f then
18: learned = learned e value;

20. function MERGE_SEQUENCES(old_seq, new_seq)
21: for ¢ in new_seq do

22: if lcoNTAINS(0ld_seq, c) then

23: old_seq = old_seq e c;

22. return old_segq;

25. end function

16

a sequence appended at the end (Algorithm [4]lines {43-46}) and every vote in a
classic ballot is equal to all the learned votes concatenated with unlearned votes
and new proposals (Algorithm [2[lines {42-45}) which means that new votes will
be extensions of previous proven sequences. However, this begs the question of
how the protocol fares when Byzantine faults occur. In particular, the worst case
scenario occurs when both f acceptors and the leader are Byzantine (remember
that a process can have multiple roles, such as leader and acceptor). In this
scenario, the leader can purposely send phase 2a messages for a sequence that is
not prefixed by the previously accepted values. Coupled with an asynchronous
network, this malicious message can be delivered before the correct votes of the
previous ballot, resulting in different learners learning sequences that may not
be extensible to equivalent sequences.

To prevent this scenario, the acceptors must ensure that the proposals they
receive from the leader are prefixed by the values they have previously voted for.
Since an acceptor votes for its val, sequence after receiving N — f verification votes
for an equivalent sequence and stores it in its proven variable, the acceptor can
verify that it is a prefix of the leader’s proposed value (i.e., proven C value). A
practical implementation of this condition is simply to verify that the subsequence
of value starting at the index 0 up to index length(proven) — 1 is equivalent to
the acceptor’s proven sequence.

4.4 Checkpointing

BGP includes an additional feature that deals with the indefinite accumulation
of state at the acceptors and learners. This is of great practical importance since
it can be used to prevent the storage of commands sequences from depleting
the system’s resources. This feature is implemented by a special command C*,
proposed by the leader, which causes both acceptors and learners to safely discard
previously stored commands. However, the reason why acceptors accumulate
state continuously is because each new proven sequence must contain any previous
proven sequence. This ensures that an asynchronous network can’t reorder
messages and cause learners to learn in different orders. In order to safely
discard state, we must implement a mechanism that allows us to deal with
reordered messages that don’t contain the entire history of learned commands.

To this end, when a learner learns a sequence that contains a checkpointing
command C* at the end, it discards every command in its learned sequence
except C™ and sends a message to the acceptors notifying them that it executed
the checkpoint for some command C*. Acceptors stop participating in the
protocol after sending phase 2b messages with checkpointing commands and wait
for N — f notifications from learners. After gathering a quorum of notifications,
the acceptors discard their state, except for the command C*, and resume
their participation in the protocol. Note that, since the acceptors also leave
the checkpointing command in their sequence of proven commands, every valid
subsequent sequence will begin with C*. The purpose of this command is to
allow a learner to detect when an incoming message was reordered. The learner
can check the first position of an incoming sequence against the first position
of its learned and, if a mismatch is detected, it knows that either a pre and
post-checkpoint message has been reordered.

When performing this check, two possible anomalies that can occur: either
(1) the first position of the incoming sequence contains a C* command and the

17

learner’s learned sequence doesn’t, in which case the incoming sequence was sent
post-checkpoint and the learner is missing a sequence containing the respective
checkpoint command; or (2) the first position of the learned sequence contains
a checkpoint command and the incoming sequence doesn’t, in which case the
incoming sequence was assembled pre-checkpoint and the learner has already
executed the checkpoint.

In the first case, the learner can simply store the post-checkpoint sequences
until it receives the sequence containing the appropriate C* command at which
point it can learn the stored sequences. Note that the order in which the
post-checkpoint sequences are executed is irrelevant since they’re extensions of
each other. In the second case, the learner receives sequences sent before the
checkpoint sequence that it has already executed. In this scenario, the learner
can simply discard these sequences since it knows that it executed a subsequent
sequence (i.e., the one containing the checkpoint command) and proven sequences
are guaranteed to be extensions of previous proven sequences.

For brevity, this extension to the protocol isn’t included in the pseudocode
description.

5 Correctness Proofs

This section argues for the correctness of the Byzantine Generalized Paxos
protocol in terms of the specified consensus properties.

Invariant/Symbol | Definition

~ Equivalence relation between sequences

X =Y X implies that Y is eventually true

XCY The sequence X is a prefix of sequence Y

L Set of learner processes
P Set of proposals (commands or sequences of commands)
B Set of ballots
1 Empty command

learned, Learner [;’s learned sequence of commands

learned(l;, s) learned;; contains the sequence s

maj_accepted(s,b) | N — f acceptors sent phase 2b messages to the learners
for sequence s in ballot b

min_accepted(s,b) | f+ 1 acceptors sent phase 2b messages to the learners
for sequence s in ballot b

proposed(s) A correct proposer proposed s

Table 1: BGP proof notation

18

5.0.1 Consistency

Theorem 1 At any time and for any two correct learners l; and l;, learned;,
and learned;; can subsequently be extended to equivalent sequences

Proof:
1. At any given instant, Vs,s’ € P,Vi;,l; € L, learned(l;,s) A
learned(l;,s') = Jo1,00 € PU{L},s001 ~ 5 @0y
Proof:

1.1. At any given instant, Vs,s' € P,V l; € L, learned(l;,s) N

learned(l;,s') = (maj_accepted(s,b) V (min_accepted(s,b) Ase oy ~

x ® 02)) A (maj-accepted(s’,b') V (min_accepted(s’,b/) Ns' e o1 ~ x

039)),Jo1,00 € PU{L},Vx € P, Vb,V € B
Proof: A sequence can only be learned in some ballot b if the learner
gathers N — f votes (i.e., maj_accepted(s,b)), each containing N — f
valid proofs, or if it is universally commutative (i.e., s® oy ~ z e
o9, do1,00 € PU{L},Vx € P) and the learner gathers f + 1 votes
(i.e., min_accepted(s,b)). The first case requires gathering N — f votes
from each acceptor and validating that each proof corresponds to the
correct ballot and value (Algorithm [5] lines {1-12}). The second case
requires that the sequence must be commutative with any other and
at least f + 1 matching values are gathered (Algorithm [5] {14-18}).
This is encoded in the logical expression s e o1 ~ x ® o5 which is true if
the accepted sequence s and any other sequence x can be extended to
an equivalent sequence, therefore making it impossible to result in a

conflict.
1.2. At any given instant, Vs,s’ € P,Vb,b' € B, maj_accepted(s,b) A
maj_accepted(s’,b') = Joy1,00 € PU{L},s00) ~ 5 @0y
Proof: We divide the following proof in two main cases: (1.2.1.)
sequences s and s’ are accepted in the same ballot b and (1.2.2.)
sequences s and s’ are accepted in different ballots b and ¥'.
1.2.1. At any given instant, Vs, s € P,Vb € B, maj_accepted(s,b) A
maj_accepted(s’,b) = Jo1,00 € PU{L},se0; ~ 5 e09
Proof: Proved by contradiction.
1.2.1.1. At any given instant, Vs, s’ € P,Voy,00 € PU{L}, Vb€
B, maj_accepted(s,b) A maj_accepted(s’;b) Nse gy % s' @0y
Proof: Contradiction assumption.
1.2.1.2. Take a pair proposals s and s’ that meet the conditions
of 1.2.1 (and are certain to exist by the previous point), then s

and s’ contain non-commutative commands.
Proof: The statement Vs,s' € P,Voi,00 € PU{L},se

o1 # s e 0y is trivially false because it implies that, for any
combination of sequences and suffixes, the extended sequences
would never be equivalent. Since there must be some s, s, oy
and o9 for which the extensions are equivalent (e.g., s = ¢’
and o1 = 03), then the statement is false.
1.2.1.3. A contradiction is found, Q.E.D.
1.2.2. At any given instant, Vs, s’ € P,Vb, b’ € B, maj_accepted(s,b)A\
maj_accepted(s',b') Nb £V = Jo1,00 € PU{L},se00; ~ s e0y

19

Proof: To prove that values accepted in different ballots are
extensible to equivalent sequences, it suffices to prove that for any
sequences s and s’ accepted at ballots b and ¥’, respectively, such
that b < b’ then s C s’. By Algorithm [lines {11-16,35,46}, any
correct acceptor only votes for a value in variable val, when it
receives 2f + 1 proofs for a matching value. Therefore, we prove
that a value val, that receives 2 f 41 verification messages is always
an extension of a previous val, that received 2f + 1 verification
messages. By Algorithm [lines {32,43}, val, only changes when
a leader sends a proposal in a classic ballot or when a proposer
sends a sequence in a fast ballot.
In the first case, val, is substituted by the leader’s proposal which
means we must prove that this proposal is an extension of any val,
that previously obtained 2f + 1 verification votes. By Algorithm
lines {24-39,41-47}, the leader’s proposal is prefixed by the largest
of the proven sequences (i.e., val, sequences that received 2f + 1
votes in the verification phase) relayed by a quorum of acceptors in
phase 1b messages. Note that, the verification in Algorithm [line
{27} prevents a Byzantine leader from sending a sequence that isn’t
an extension of previous proved sequences. Since the verification
phase prevents non-commutative sequences from being accepted
by a quorum, every proven sequence in a ballot is extensible to
equivalent sequences which means that the largest proven sequence
is simply the most up-to-date sequence of the previous ballot.
To prove that the leader can only propose extensions to previous
values by picking the largest proven sequence as its proposal’s
prefix, we need to assert that a proven sequence is an extension
any previous sequence. However, since that is the same result that
we are trying to prove, we must use induction to do so:
1. Base Case: In the first ballot, any proven sequence will
be an extension of the empty command 1 and, therefore, an
extension of the previous sequence.
2. Induction Hypothesis: Assume that, for some ballot b,
any sequence that gathers 2 f+1 verification votes from acceptors
is an extension of previous proven sequences.
3. Inductive Step: By the quorum intersection property, in a
classic ballot b + 1, the phase 1b quorum will contain ballot b’s
proven sequences. Given the largest proven sequence s in the
phase 1b quorum (which, by our hypothesis, is an extension of
any previous proven sequences), by picking s as the prefix of its
phase 2a proposal (Algorithm [2] lines {41-47}), the leader will
assemble a proposal that is an extension of any previous proven
sequence.
In the second case, a proposer’s proposal ¢ is appended to an
acceptor’s val, variable. By definition of the append operation,
val, E val, ¢ which means that the acceptor’s new value val, ® ¢
is an extension of previous ones.

20

1.3. For any pair of proposals s and s, at any given instant,
Ve € P,Joy,09,03,04 € P U{L}, Vb,V € B, (maj_accepted(s,b) V
(min_accepted(s,b) N\ s @ g1 ~ x e 03)) A (maj-accepted(s’,b’) V
(min_accepted(s’,b') Nseo1 ~ze03)) = seo3~s eoy
Proof: By 1.2 and by definition of se oy ~ x e 05.
1.4. At any given instant, Vs,s’ € P,V l; € L, learned(l;,s) A
learned(lj,s') = Jo1,00 € PU{Ll},s00; ~ s e0y
Proof: By 1.1 and 1.3.
1.5. Q.E.D.
2. At any given instant, Vi;,l; € L, learned(l;,learned;) A
learned(l;,learned;) = 3Jo1,09 € PU{L},learned; 001 ~ learned;ecs,
Proof: By 1.
3. Q.E.D.

5.0.2 Nontriviality

Theorem 2 If all proposers are correct, learned; can only contain proposed
commands.

Proof:

1. At any given instant, Vi; € L,Vs € P,learned(l;,s) = Vax € P,3o €

P,Vb € B, maj_accepted(s,b) V (min_accepted(s,b) AN(s~z ooV ~seq))
Proof: By Algorithm || lines {16,30,41} and Algorithm [5|lines {1-18}, if a
correct learner learned a sequence s at any given instant then either N — f
or f+ 1 (if s is universally commutative) acceptors must have executed
phase 2b for s.

2. At any given instant, Vs € P,Vb € B,maj-accepted(s,b) V

min_accepted(s,b) = proposed(s)
Proof: By Algorithm lines {18-23}, for either N — f or f + 1 acceptors
to accept a proposal it must have been proposed by a proposer (note that
the leader is considered a distinguished proposer).

3. At any given instant, Vs € P,VI; € L, learned(l;,s) = proposed(s)
Proof: By 1 and 2.

4. Q.E.D.

5.0.3 Stability

Theorem 3 If learned; = s then, at all later times, s C learned;, for any
sequence s and correct learner |

Proof: By Algorithm [5|lines {12,18,20-26}, a correct learner can only append
new commands to its learned command sequence.
5.0.4 Liveness

Theorem 4 For any proposal s from a correct proposer, and correct learner [,
eventually learned; contains s

Proof:
1. VI, € LVs,x € P,3o € P,Vb € B,maj_accepted(s,b) V

(min_accepted(s,b) A (s ~z eV ~sec)) = learned(l;,s)

21

Proof: By Algorithm [4] lines {10-15,28-29,41-42} and Algorithm [5| lines
{1-18}, when either N — f or f+1 (if s is universally commutative) acceptors
accept a sequence s (or some equivalent sequence), eventually s will be
learned by any correct learner.

2. Vs € P, proposed(s) = VYa € P,3o € P,¥b € B, maj_accepted(s,b) V

(min_accepted(s,b) N(s ~x ooV ~seq))
Proof: A proposed sequence is either conflict-free when its incorporated
into every acceptor’s current sequence or it creates conflicting sequences at
different acceptors. In the first case, it’s accepted by a quorum (Algorithm
lines {10-15,28-29,41-42}) and, in the second case, it’s sent in phase 1b
messages to the in leader in the next ballot (Algorithm 4] lines {1-4}) and
incorporated in the next proposal (Algorithm [2] lines {24-47}).

3. Vl; € L,¥s € P,proposed(s) == learned(l;, s)
Proof: By 1 and 2.

4. Q.E.D.

6 Conclusion and discussion

We presented a simplified description of the Generalized Paxos specification and
protocol, and an implementation of Generalized Paxos that is resilient against
Byzantine faults. We now draw some lessons and outline some extensions to
our protocol that present interesting directions for future work and hopefully a
better understanding of its practical applicability.

Handling faults in the fast case. A result that was stated in the original
Generalized Paxos paper [14] is that to tolerate f crash faults and allow for fast
ballots whenever there are up to e crash faults, the total system size N must
uphold two conditions: N > 2f and N > 2¢ + f. Additionally, the fast and
classic quorums must be of size N —e and N — f, respectively. This implies that
there is a price to pay in terms of number of replicas and quorum size for being
able to run fast operations during faulty periods. An interesting observation
from our work is that, since Byzantine fault tolerance already requires a total
system size of 3f + 1 and a quorum size of 2f + 1, we are able to amortize the
cost of both features, i.e., we are able to tolerate the maximum number of faults
for fast execution without paying a price in terms of the replication factor and
quorum size.

Extending the protocol to universally commutative commands. A
downside of the use of commutative commands in the context of Generalized
Paxos is that the commutativity check is done at runtime, to determine if
non-commutative commands have been proposed concurrently. This raises the
possibility of extending the protocol to handle commands that are universally
commutative, i.e., commute with every other command. For these commands,
it is known before executing them that they will not generate any conflicts,
and therefore it is not necessary to check them against concurrently executing
commands. This allows us to optimize the protocol by decreasing the number
of phase 2b messages required to learn to a smaller f + 1 quorum. Since, by
definition, these sequences are guaranteed to never produce conflicts, the N — f

22

quorum is not required to prevent learners from learning conflicting sequences.
Instead, a quorum of f 4 1 is sufficient to ensure that a correct acceptor saw
the command and will eventually propagate it to a quorum of N — f acceptors.
This optimization is particularly useful in the context of geo-replicated systems,
since it can be significantly faster to wait for the f + 1st message instead of the
N — fth one.

The usefulness of this optimization is severely reduced if these sequences
are processed like any other, by being appended to previous sequences at the
leader and acceptors. New proposals are appended to previous proven sequences
to maintain the invariant that subsequent proven sequences are extensions of
previous ones. Since the previous proven sequences to which a proposal will be
appended to are probably not universally commutative, the resulting sequence will
not be as well. We can increase this optimization’s applicability by sending these
sequences immediately to the learners, without appending them to previously
accepted ones. This special handling has the added benefit of bypassing the
verification phase, resulting in reduced latency for the requests and less traffic
generated per sequence. This extension can also be easily implemented by adding
a single check in Algorithm [2| lines {19-20}, Algorithm [4] lines {29-30,40-41} and
Algorithm [5| lines {14-18}.

Generalized Paxos and weak consistency. The key distinguishing feature
of the specification of Generalized Paxos [I4] is allowing learners to learn con-
current proposals in a different order, when the proposals commute. This idea is
closely related to the work on weaker consistency models like eventual or causal
consistency [I], or consistency models that mix strong and weak consistency lev-
els like RedBlue [19], which attempt to decrease the cost of executing operations
by reducing coordination requirements between replicas. The link between the
two models becomes clearer with the introduction of universally commutative
commands in the previous paragraph. In the case of weakly consistent repli-
cation, weakly consistent requests can be executed as if they were universally
commutative, even if in practice that may not be the case. E.g., checking the
balance of a bank account and making a deposit do not commute since the
output of the former depends on their relative order. However, some systems
prefer to run both as weakly consistent operations, even though it may cause
executions that are not explained by a sequential execution, since the semantics
are still acceptable given that the final state that is reached is the same and no
invariants of the application are violated [19].

Acknowledgements. This work was supported by the European Research
Council (ERC-2012-StG-307732) and FCT (UID/CEC/50021/2013).

References

[1] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.
Hutto. Causal memory: definitions, implementation, and programming.
Distrib. Comput., 9(1):37-49, 1995.

[2] Mike Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proc. 7th Symposium on Operating Systems Design and Imple-
mentation, 2006.

23

3]

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to
Reliable and Secure Distributed Programming (2nd ed.). Springer, 2011.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In

Proc. 8rd Symposium on Operating Systems Design and Implementation
(OSDI), 1999.

R. De Prisco, B. Lampson, and N. A. Lynch. Revisiting the Paxos algorithm.
In Proc. 11th Workshop on Distributed Algorithms, LNCS 1320. Springer,
1997.

Giuseppe DeCandia et al. Dynamo: Amazon’s highly available key-value
store. In Proc. 21st Symposium on Operating Systems Principles (SOSP),
2007.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM,
32(2):374-382, April 1985.

Flavio Junqueira, Benjamin Reed, and Marco Serafini. Zab: High-
performance broadcast for primary-backup systems. In 41st Int. Conf.
Dependable Systems and Networks, 2011.

Ramakrishna Kotla, Allen Clement, Edmund Wong, Lorenzo Alvisi, and
Mike Dahlin. Zyzzyva: Speculative byzantine fault tolerance. Commun.
ACM, 51(11):86-95, November 2008.

Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: Exploit-
ing the semantics of distributed services. In Proc. 9th Symp. Principles
Distributed Computing, 1990.

Leslie Lamport. The part-time parliament. Technical report, DEC SRC,
1989.

Leslie Lamport. The Part-Time parliament. ACM Transactions on Com-
puter Systems, 16(2):133-169, May 1998.

Leslie Lamport. Paxos made simple. SIGACT News, 32(4):18-25, December
2001.

Leslie Lamport. Generalized consensus and paxos. Technical report, Tech-
nical Report MSR-TR-2005-33, Microsoft Research, 2005.

Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79-103, 2006.

Leslie Lamport. Byzantizing paxos by refinement. In Distributed Computing
- 25th International Symposium, DISC 2011. Proceedings, 2011.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382-401, July 1982.

Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed
virtual disks. In Proc. 7th Int. Conf. Architectural Support for Programming
Languages and Operating Systems, 1996.

24

[19]

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiga,
and Rodrigo Rodrigues. Making Geo-Replicated Systems Fast as Possible,
Consistent when Necessary. In Proc. 10th Symp. Operating Systems Design
and Implementation (OSDI), 2012.

Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building
Efficient Replicated State Machines for WANs. In Proc. 8th Symp. Operating
Systems Design and Implementation (OSDI), 2008.

Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEFE
Trans. Dependable Secur. Comput., 3(3):202-215, July 2006.

Tulian Moraru, David G Andersen, and Michael Kaminsky. There is more
consensus in Egalitarian parliaments. In Proc. Symposium on Operating
Systems Principles (SOSP), 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Atul Singh, Pedro Fonseca, and Petr Kuznetsov. Zeno: Eventually Con-
sistent Byzantine-Fault Tolerance. In Proc. 6th Symp. Networked Systems
Design and Implementation (NSDI), 2009.

Robbert van Renesse. Paxos Made Moderately Complex. ACM Computing
Surveys, 47(3):1-36, 2011.

Marko Vukolic. Quorum Systems: With Applications to Storage and Con-
sensus. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool, 2012.

25

	1 Introduction
	2 Background and related work
	2.1 Paxos and its variants
	2.2 Byzantine fault tolerant replication

	3 Model
	4 Protocol
	4.1 Overview
	4.2 View Change
	4.3 Agreement Protocol
	4.3.1 Fast Ballots
	4.3.2 Classic Ballots
	4.3.3 Leader Value Picking Rule
	4.3.4 Byzantine Leader

	4.4 Checkpointing

	5 Correctness Proofs
	5.0.1 Consistency
	5.0.2 Nontriviality
	5.0.3 Stability
	5.0.4 Liveness

	6 Conclusion and discussion

