
Cryptocurrency Smart Contracts for Distributed
Consensus of Public Randomness

Peter Mell1, John Kelsey12, and James Shook1

1
National Institute of Standards and Technology, Gaithersburg MD, USA

2
Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium

Abstract. Most modern electronic devices can produce a random number.
However, it is difficult to see how a group of mutually distrusting entities
can have confidence in any such hardware-produced stream of random
numbers, since the producer could control the output to their gain. In this
work, we use public and immutable cryptocurrency smart contracts, along
with a set of potentially malicious randomness providers, to produce a
trustworthy stream of timestamped public random numbers. Our contract
eliminates the ability of a producer to predict or control the generated

random numbers, including the stored history of random numbers. We
consider and mitigate the threat of collusion between the randomness
providers and miners in a second, more complex contract.

1 Introduction

Most modern computing devices can produce secure random numbers. However,

there are applications which require that many parties share and trust some

source of random numbers. For example, running a lottery requires some

trustworthy source of public random numbers. In the rest of the paper, we define

a lottery abstractly as any mechanism that randomly picks a proper subset of

elements from some larger set. It is necessary to ensure that the chosen subset

cannot be predicted (before some published time), controlled (deliberately set),

or influenced (biased toward values that are more desirable for some party). The

interesting research question is: how can we get trustworthy public random

numbers sampled from a uniform distribution, especially when the producer of

random numbers has a financial incentive to cheat?

Currently an individual ‘beacon’ service, a public producer of randomness, may

use specialized hardware setups and cryptography to reduce the possibility of the

numbers to be compromised [3]. However, the ability to control the numbers (by

the beacon owner or some attacker that has compromised the beacon) may

remain. What is needed is a consensus protocol for a set of mutually distrusting

entities to collaborate to produce a trustworthy stream of publicly available

random numbers.

Our solution is to create an Ethereum1 [22] smart contract, called a lighthouse,

which implements a beacon service while taking as input random numbers from

one or more external and potentially malicious randomness producers. To

produce the lighthouse output, we combine producer input with blockchain

hashes while forcing producers to commit to future values. In creating the

distributed consensus protocol, we leverage the security capabilities associated

with smart contracts and blockchains along with a novel commitment system we

call Merlin chains (which mitigates a vulnerability common in other systems). Our

lighthouse service’s timestamped random outputs are published on the Ethereum

blockchain, which ensures their immutability and their public visibility. This

merging of beacons, smart contracts, and blockchains enables the production of

public random numbers at an extremely high level of security, even when

assuming the presence of powerful malicious actors in the system (as long as all

participating actors aren’t malicious).

We provide two main proposed designs:

1. A single-producer contract which provides security against control or

influence from the randomness producer or a large coalition of miners

competing in the digital currency system, but not against both.

2. A multiple-producer contract which provides security against control or

influence from all k of the randomness providers colluding, or a large coalition

of miners conspiring with k − 1 of the randomness providers.

Both designs publish random numbers along with a time before which the

random number could not have been predicted by any entity, thus eliminating

prediction attacks. With these designs, we have provided a solution for the

trustworthy public production of streams of immutable public random numbers.

Finally, we create such a contract and empirically test it on the Ethereum test

network using both the single and multiple producer models.

Usage of lighthouse services can greatly benefit any public lottery so that

selection of random numbers is no longer done behind closed doors, where the

public has to trust that no cheating is taking place. Lotteries enable a limited set of

resources to be fairly chosen for, or distributed to, a set of customers. Among many

other areas, their uses include school placements, dorm rooms allocations,

gambling, military drafts, jury duty, immigration applications, election site

auditing, and large public financial games run by governments. The utility of a

beacon extends far beyond lotteries, but a complete discussion of those

applications is outside the scope of this paper.

Different types of public lotteries are more or less sensitive to the three attack

types mentioned previously: prediction, control, and influence. For example, with

election site auditing an attacker primarily wants to ensure that the election sites

chosen for auditing do not correspond to the compromised sites. The attacker then

1 Any mention of commercial products is for information only; it does not imply

recommendation or endorsement by NIST.

primarily wants influence to change the sites chosen for audit if the unmodified

result is going to include a compromised site. However, in a gambling scenario, the

attacker probably wants to predict the winning number or, even better, control the

result. Our approach must mitigate all three types of attack.

The rest of this paper is organized as follows. Section 2 discusses previous and

related work. Section 3 discusses background information. Section 4 provides

partial solutions that build towards our final solution. Section 5 describes our

design for a single producer contract. Section 6 describes our multiple producer

contract; Sect. 7 discusses our empirical work; and Sect. 8 concludes.

2 Previous and Related Work

The original idea of a beacon (a public service that publishes signed, timestamped

random numbers) comes from Rabin [16]. More recently, in [11], Fischer et. al.

propose the usefulness of a beacon service, and describe the NIST beacon. They

also propose a general protocol to allow many beacons to be used together to

decrease required trust in a single TTP/point of failure, and describe some

practical applications for a beacon service. There have also been many attempts to

find verifiable public random numbers for use in other applications, such as

election auditing [10] and the choice of parameters in cryptographic standards

[7].

The simplest way to build a beacon is to simply set up a trusted machine, which

generates and signs timestamped random numbers. Existing services such as the

NIST Beacon [3] and the beacon-like random.org [6] follow this approach. For

many applications of a beacon, this provides sufficient practical security. However,

it has a single point of failure – the owner of the beacon (or anyone who

compromises the trusted machine on which the beacon is running) can influence

or predict future random numbers2.

2.1 Entropy from the Environment

In order to avoid a single point of failure or trust, many people have tried to use

unpredictable data from the world to generate public random numbers. In order

to be useful, these numbers need to be public, widely-attested, and not under

anyone’s control.

In [10], the authors consider using financial data as a source of randomness,

particularly for election auditing, and use existing tools from finance to estimate

the entropy and difficulty of influencing these numbers. [7] considers the use of

public financial lotteries to generate random numbers (intended for use in

defining cryptographic standards). [8] uses the hash of a block from the Bitcoin

2 The NIST Beacon’s published format includes features to mitigate some attacks–for

example, the beacon operator cannot directly control the beacon outputs, as they’re the
result of a SHA512 hash. However, he can predict and influence future random numbers.

blockchain and analyzes the cost of exerting influence on these random numbers

by bribing miners to discard inconvenient mined blocks. Our approach uses block

hashes in a related way and we have to consider similar attacks.

2.2 Combining Randomness from Multiple Parties

Still another approach is to combine random values from multiple sources, with

the goal of getting a trustworthy public random number if enough of the

contributors are honest. This may be done by first collecting commitments from

participants3, and then asking each participant to reveal their commitments.

For example, if Alice and Bob want to each furnish a part of a shared random

number, Alice generates random number RA and publishes hash(RA), while Bob

generates RB and publishes hash(RB). After both commitments are published, Alice

and Bob reveal their random numbers, and agree to use RA ⊕RB as their shared

random number. (This is referred to as a commit-then-reveal protocol.) The

generic attack against this kind of scheme is for Alice to wait until Bob has

published RB, and then decide whether she likes the resulting random number or

not. If not, she can “hit the reset button,” claiming to have suffered a system failure

that caused her to lose RA. If this leads to the shared random number being

generated again in an actual random way (even in a way that excludes Alice), she

has now exerted some influence on the shared random number.

Commit-Then-Reveal Approaches The new NIST Beacon format [12] has a

precommitment field intended to allow for combining of beacons using a

committhen-reveal protocol. However, preventing the ‘hit the reset button’ attack

is left to be handled by reputation–a beacon that skips providing an output often

will get a reputation for unreliability. The Randao [4] is an Ethereum service that

tries to solve this problem by requiring each party that contributes a commitment

to also post a performance bond. Anyone who refuses to reveal their random

number forfeits the bond. [19] describes an elaborate set of protocols to use

verifiable secret sharing and Byzantine agreement to generate public random

numbers from 3k independent participants, so that the shared random numbers

will be trustworthy (and impossible to prevent from being published) so long as

at least k + 1 participants are trustworthy.

Variants Using Slow Computations [13] takes a different approach to combining

contributions from multiple parties. Contributions from the public as well as

environmental inputs from a public video camera are hashed together and the

hash is published. The inputs are fed into an inherently sequential

computationally slow hash function, and much later after the hash is computed the

3 Without these commitments, Alice can always wait for Bob to publish a random

number, and then choose hers to control the resulting shared value.

result is published. Since nobody could have known the result of the slow hash

function when the inputs were hashed and published, nobody could have

influenced the output by deciding what or whether to send an input in. A related

approach is considered in [9], in which a computationally slow function is used to

produce shared random numbers from Bitcoin or Ethereum block hashes while

preventing miners from influencing the resulting random numbers. The same

paper describes a set of protocols for ensuring that the computationally slow

function is correctly computed, and considers the necessary financial rewards for

incentivizing participants to keep verifying the correctness of the computation.

Another related possibility to prevent an attacker “hitting the reset button” is to

use time-lock puzzles, as described in [17]. If Alice publishes TL(RA), where TL() is

a time-lock scheme with a minimum time to unlock of one hour, and then five

minutes later all parties reveal their random numbers, the attack is prevented.

Even if Alice wants to hit the reset button (refuse to publish her number to stop

the beacon from publishing), she can only delay knowledge of the shared random

number for one hour.

Merlin Chains In this paper, we describe still another approach, called a Merlin

chain, to address this problem by giving participants a way to credibly commit to

being able to recover their ‘lost’ random numbers after hitting the reset button.

This is an example of a common situation, in which a party in a protocol becomes

more capable by restricting its future freedom of action4.

3 Background

Beacons are entities that produce a stream of random numbers [16] (see [3] for a

currently-operating example). Each time a beacon releases a random number, it is

called a ‘pulse’. Beacons have three properties:

1. A beacon will put a random number R, unpredictable to anyone outside the

beacon itself, in each message.

2. A beacon will never release a signed random number with a timestamp T

before time T (so nobody outside the beacon could have known the random

number earlier than that time).

3. A beacon will emit only one random number for each timestamp T.

In order to be useful, the outputs from a beacon must be publicly available and

must be immutable. A beacon pulse may have many fields, but only two are really

essential: the random number, R, and the timestamp, T.

4 A more general version of this idea appears in [18], applied to many real-world

situations that can be modeled by game theory.

Blockchains are immutable digital ledger systems and were first used for

digital cash with Bitcoin [15]. Each ‘block’ contains a set of transactions as well as

the hash of the previous block (thus forming the ‘chain’). They can be implemented

in a distributed fashion (without any central authority) and enable a community

of users to record transactions in an immutable public ledger. This technology has

undergirded the emergence of cryptocurrencies where digital transfers of money

take place in distributed systems; it has enabled the success of currencies such as

Bitcoin [15] and Litecoin [2]. In such systems, a community of ‘miners’ maintain a

blockchain by competing to solve a mathematical puzzle. The solution is evidence

that the miner is performing computation, and for this reason such system are

called ‘proof-of-work’ systems. The ‘miner’ that solves the current puzzle can then

publish the next ‘block’ which contains recent digital cash transactions. The

winning miner receives a block award and may receive fees from included

transactions, both in terms of the applicable electronic currency. Some

blockchains use other techniques, such as consensus among trusted nodes, proof-

of-stake, or proof-of-storage. Without modification, our protocol will work only

with ‘proof-of-work’ systems.

Ethereum [22] is a blockchain-based cryptocurrency that supports ‘smart

contracts’. Contracts are programs whose code and state exist on the public

blockchain and they can both send and receive funds while performing arbitrary

computations. They can act as a trusted third party in financial transactions, since

the code is public but immutable. The programming language used for contract

transactions, Solidity [5], is limited in functionality but is Turing Complete [20].

Ethereum charges a fee for contract execution, called ‘gas’. The originator of any

transaction must pay this fee or the transaction aborts. There is a maximum gas

limit, currently 3000000, to prevent computationally expensive programs from

being submitted to the Ethereum miners (since each miner will execute each

transaction in parallel).

3.1 Merlin Chains

In the rest of this paper, we use a sequence of unpredictable numbers we call a

Merlin chain5. This is a (usually long) sequence of values where every value Vx is

the hash of the value with the next higher index Vx+1 (i.e., Vx = SHA3(Vx+1)). This use

of a hash function then provides a series of random values taken from a uniform

distribution but where each value is related to the previous value (because the

current value is created by hashing the previous value).

A Merlin chain has three important properties:

5 The Merlin Chain is named after the character of Merlin in T.H. White’s The Once and

Future King[21], who lives his life backwards in time.

1. An attacker who has seen all previous entries (V0,1,2,...,j−1) in the Merlin chain

cannot predict anything about the next entry (Vj).

2. Each entry in the chain works as a commitment to the next entry in the chain.

Once an entity has revealed V0, it has no valid choice except to follow this with

V1, then V2, and so on.

3. By storing Vn offsite, the entity revealing the chain entries can guarantee that

even a catastrophic hardware or software failure will not prohibit the

production of chain values (as would happen were the chain data lost).

The most important feature of the Merlin chain is that it takes away the choices

of the entity using it, while still allowing that entity to produce numbers

(unpredictable to everyone else). For the user of the Merlin chain, “Everything not

forbidden is compulsory”[21].

4 Preliminary Approaches

In this section, we describe some plausible-sounding strategies to make a beacon.

These approaches don’t work but will build towards our proposed solution, thus

motivating our design choices in the rest of the paper.

4.1 Block hashes

Each block in the Ethereum blockchain is hashed using 256-bit SHA3 and this

result is published on the blockchain along with a timestamp. This meets our

definition of a beacon in Sect. 3 and one might consider using these hashes as a

source of public randomness. However, in this case it turns out that it is possible

for the Ethereum miners to influence the beacon results. Consider the situation

where a coalition controlling a fraction F of all the processing power of the

Ethereum miners is working to predict, control, or influence a block hash.

Predicting the block hash would require knowing all transactions to be included

in the blockchain up to and including the block whose hash will be used for a

random number. Thus, prediction a very short time in advance is sometimes

possible for a coalition of miners but prediction far in advance would require

control of the whole mining pool and a very visible-to-the-world denial of service

attack on the transactions submitted to Ethereum. With respect to control, it’s

clear that even when F = 100%, there is no way for the coalition to control the

value of the block hash, since it’s the output of a hash function.

However, influencing the block hash is quite feasible. Consider a coalition

controlling F % of the total mining power, which wants to force a single bit of the

block hash to be a one. The coalition members attempt to mine the next block, but

when they reach a valid proof of work (so that they’ve successfully mined a block)

they check to see whether the resulting block hash has the desired bit set. If not,

they simply throw the block hash away and keep trying to mine the next block.

Table 4.1 shows the result of simulating this attack, for various fractions of mining

power controlled by the coalition.

Table 1. Extent to which a coalition of miners can influence one bit of the block hash

 Fraction of Bias in
processing power targeted bit in
coalition

5% 0.01 10%
 0.03

 20% 0.06
 30% 0.09
 40% 0.13
 50% 0.17

As the table shows, even a coalition with only 10% of the miners’ processing

power can impose a potentially significant amount of bias on a selected bit of the

block hash, causing the selected bit to have probability 0.53 of being a one.

4.2 Adding a Producer of Randomness

The above analysis demonstrates why the block hash alone cannot be used as a

public source of randomness. We now consider adding an external producer of

randomness, moving us closer to a useful solution. The producer sends a random

number V , and then the contract produces an output R = SHA3(H k V), where H is

the block hash of the previous block. If the producer does not reveal V until the

block hash is calculated, the miners no longer can exert any influence over R.

However, in this scenario the producer can choose V after H is generated and thus

influence R. In addition, this influence is greater since it is very easy for the

producer to compute many R values by simply changing the V input (it is much

harder for the miners because to compute a new candidate R value they must

create a blockchain block that wins the current block competition).

Our solution to these residual security issues is for the contract to require the

producer to generate V prior to H being computed. It does this by requiring that

the producer submit the hash of V before it records the value of H to be used. Then

only after H is computed by the miners, the producer submits V to the contract.

The contract can check that this is the value the producer committed to upfront by

simply hashing V . The miners can’t influence R because they don’t know V when

computing the block hash. The producer can’t influence R because it can’t know

the block hash when initially committing to a V value (when it sends the hash of V

to the contract). The next sections more formally present this approach and handle

a variety of security issues that arise (including the possibility that the producer

and miners might collaborate to circumvent the security architecture).

5 Single Producer Contract

In this section we present a contract whose input comes from a single producer

and whose output is a beacon. It is designed to produce a 32-byte random number

on the blockchain with a maximum frequency of about once every 30 seconds

(more precisely once every other Ethereum block). To maximize the usability of

the provided beacon service, we recommend that the producer provide input to

the contract at some fixed interval greater than 30 seconds.

The producer will provide unpredictable values from a Merlin chain, and so

must pre-compute all inputs that will be provided to the contract for its lifetime.

Let n represent the chosen number of input values. The value Vn is chosen

randomly, Vn−1 = SHA3(Vn), Vn−2 = SHA3(Vn−1) and so on until the computation of

V1. The Merlin values are released to the contract starting with V1 (the reverse of

the order in which they were generated).

The function B() will provide the block number in which some input or output

is processed by the contract. The function BH() provides the block hash of some

block number. Lastly, the function timestamp() provides the Ethereum timestamp

for some block.

The producer will periodically provide the contract some message containing

a Vx value along with a timestamp Ux. The contract in response may produce a

random value Rx and a timestamp Tx (note that in certain circumstances the

contract may not publish an Rx value). Tx will be the time before which no entity

could have predicted Rx, including the producer (usually this will be about 30

seconds prior to Rx being publicly released).

The core idea is that for each message (containing some Vx) received from the

producer, the contract will attempt to generate Rx using as input both an Ethereum

block hash and Vx. The block hash used will be one that was generated after Vx−1

was submitted to the contract but before Vx was submitted. This way the miners

can’t know Vx when the relevant block hash is created and they can’t then influence

Rx (assuming that the producer and a group of miners are not colluding). Likewise,

the producer can’t influence Rx because Vx was predetermined by the submission

of Vx−1 and this was done before the relevant block hash was generated. Tx is then

generated by taking the minimum of Ux−1 and the Ethereum timestamp for the

block in which Vx−1 was submitted (taking the minimum eliminates malicious

producers from being able claim a Merlin value was revealed later than it was

revealed). The actual protocol is slightly more complicated (to account for

unexpected input, messages submitted too early, and Ethereum implementation

issues). It is outlined below.

5.1 Single Producer Protocol

For each message, with associated Vx and Ux values, the contract checks the

following prior to accepting the input:

1. The message must come from the Ethereum address registered in the contract

as the one pertaining to the producer.

2. Vx must be the next value on the producer’s Merlin chain (i.e., Vx−1 = SHA3(Vx)).

This ensures that the producer can’t influence Rx.

However, Vx is not considered ‘valid’ for producing a random number, Rx, and a

timestamp, Ux, unless the following hold (assume that Ry is the last produced R

value, usually Rx−1):

1. The block number in which Vx is processed by the contract must be at least 2

more than the block number where the last valid V value was processed by the

contract6 (i.e., B(Vx) ≥B(Ry)+2). This ensures that the miners can’t use the block

hash to influence Rx (since miners can discard a block after computing the

block hash).

2. The contract must have access to BH(B(Ry)+1). The contract will retrieve this

given any activity (either from the producer or any customer retrieving

random numbers) but Ethereum only provides access to the blockhashes for

the last 256 blocks. If this is not available7, the contract will output a public

error log message and reset the block hash used to be the one from the next

Ethereum block (i.e., BH(B(Vx)+1).)

If these conditions are satisfied, Rx and Tx are generated according to the

following formulas:

 Rx = SHA3(Vx kBH(B(Ry) + 1)) (1)

 Tx = min(timestamp(B(Ry)),Ux) (2)

Figure 5.1 provides an example of two valid messages arriving to the contract

and shows how the contract uses them to generate R and T values. In the figure,

we use bx to represent the block number at which some Vx arrived to the contract.

6 The producer can ensure this is always true by verifying that it doesn’t send the next

(Vx,Ux) message until it has seen at least one block go past on the blockchain since the last

random output.
7 This availability could be ensured by setting up another provider which does nothing

except send a message to the lighthouse contract once every 256 blocks (since
blockhashes produced more than 256 blocks in the past are irretrievable in the
Ethereum system).

5.2 Mitigated Security Flaws

We now analyze different attack scenarios and discuss how they are mitigated:

1. The producer might try to use Vx to influence Rx. However, this won’t work

because Vx is fixed based on Vx−1 and the block hash used was generated after

Vx−1 was revealed.

2. The producer might try to delay sending Vx to influence Rx. This was possible

in earlier designs where the block hash used for Rx was the one prior to Vx. In

this case, the producer could watch the block hashes being produced and then

quickly issue a pulse after a desirable block hash was published on the

blockchain. We mitigated this by fixing the block hash to be used to be

BH(B(Ry)+1).

3. A producer could purposefully submit a message too early. However, the

message is rejected as invalid and this simply updates the Merlin value V

stored on the contract (which is fine since the relevant block hash has not yet

been generated).

4. Because of a design limitation in the Ethereum Solidity language, the contract

is only able to retrieve up to the last 256 block hashes (about 68 minutes of

blockchain operation). The threat is that prior to revealing Vx, a producer

might calculate Rx and find it undesirable. The producer may then wait 256

blocks prior to releasing Vx so that the correct blockhash can’t be retrieved.

This effectively changes the result since the contract can no longer retrieve

Fig.1. TheSingleProducerProtocol

the block hash BH(B(Ry)+1). We mitigate this by enabling the contract to

retrieve the block hash during any transaction (including customer retrieval

of V values). Thus, even if the producer waits, other activity will enable the

contract to retrieve the needed value within the period of availability. If this

does not happen, the contract emits an error log and resets the block hash

used to be one not yet generated. To strongly mitigate this problem for little

used beacons, the contract owner should arrange for some party to access the

contract at least every 256 blocks to ensure that the block hash is retrieved

within the time constraints.

5. Miners (not collaborating with the producer) may try to affect Rx by throwing

out discovered blocks that have block hashes that will produce undesirable

random numbers. However, miners must compute the block hash to be used,

BH(B(Ry)+1), prior to Vx being revealed and thus this won’t work. This is why

the block number in which Vx is processed by the contract must be at least 2

more than the block number where the last valid V value was processed by the

contract. Note that a separate vulnerability arises if one uses the block hash of

the block where the last V value was processed and so that was not available

as an option.

6. The contract owner has only the ability to register and de-register the

producer. De-registration only occurs after a set number of blocks

(eliminating the possibility of the contract owner seeing a revealed Vx value

message and trying to remove the producer before the contract processes it).

With respect to registering a producer, its first message is used only to set the

initial Vx Merlin value and so registration can’t be used to influence or control

the V values.

7. An attacker could compromise the producer but they would still have to

produce the values on the pre-determined Merlin chain. To influence the

results they would have to collaborate with a group of miners (this attack is

discussed in the next section).

8. The producer who has sent some Vx can predict an Rx+1 after the next block

hash has been calculated. Our mitigation of this is for the contract to publish

Tx+1 which indicates at what time the producer could have predicted Rx+1 (this

is usually less than a minute in the past).

9. Since the producer can predict the next R value, it may not send some Vx

because revealing it will generate an Rx that is deemed undesirable (e.g., the

producer made a bet on the outcome). However, then it must stop producing

any values because the contract will wait for Vx. We mitigate this by requiring

producers to keep an offsite backup copy of their Merlin chain. This does not

stop a producer from refusing to reveal Vx. However, it does eliminate their

ability to claim an inability to reveal due to a hardware failure or natural

disaster. This weakness could be more strongly mitigated in future work by

requiring the producer to submit a timelock puzzle [17] along with each V

value. Such puzzles would allow contract customers to perform an expensive

computation on a Vx−1 to reveal any Vx withheld by the producer. The producer

couldn’t lie at the right moment because they can’t predict an Rx when sending

in a Vx−1 (and lying in general is easy to detect by solving the timelock puzzle).

5.3 Residual Security Flaw

The remaining security flaw is that the producer (or an attacker that has

compromised the producer) may collaborate with a set of miners to attempt to

influence, but not control, Rx. The malicious producer would provide the

collaborating miners the value Vx, enabling them to compute a candidate Rx if they

successfully mine block B(Ry)+1. If this is a desirable outcome, they publish the

completed block to the mining community. If not, they discard the completed block

and lose the associated block reward and transaction fee funds. We mitigate this

attack with our multiple producer contract.

6 Multiple Producer Contract

The multiple producer contract permits multiple producers to submit values to

mitigate the possibility of a single producer collaborating with a group of miners.

Each producer is handled independently using the single producer protocol from

Sect. 5.1 (with some exceptions) and the contract maintains a beacon

independently for each producer. When all beacons have pulsed, the contract

pulses R and T values derived from the combination of beacon pulses. We call this

combined output a lighthouse pulse. We change our notation to handle multiple

producers as follows. We identify each producer with an integer, add this as a

subscript to each variable, and let each variable refer to its most recent value.

Thus, R1 references the most recent R value for producer 1. We use RL and TL to

refer to the most recent lighthouse output.

The contract handles each producer using the single producer protocol from

Sect. 5.1 with the following exceptions (that force the beacons to progress in a

lockstep manner):

1. Once pulsed, beacons are not allowed to pulse again until the lighthouse

pulses. If a producer sends additional messages prior to the lighthouse pulse,

they are marked as invalid.

2. The ‘Ry’ references in Sect. 5.1 now correspond to the RL values produced by

the lighthouse (not the particular producer’s beacon). This causes all beacons

to use the same block hash for each beacon pulse.

Once all beacons have pulsed, the lighthouse pulses as follows:

 RL = R1⊕ R2⊕ ... ⊕ Rm (3)

where ⊕ is exclusive or (XOR) and m represents the number of participating

beacons. This has the convenient feature that the lighthouse output using only a

single producer is identical to that producer’s beacon output.

 TL = max(T1,T2,...,Tm) (4)

While not necessary, the lighthouse will work more efficiently if all producers

synchronize their time (e.g., using the Network Time Protocol [14]) and issue

messages at some agreed upon interval.

Each producer’s beacon follows the single producer protocol and thus has the

same security advantages. The small exceptions to the protocol in Sect. 6 do not

affect the per beacon security analysis. Each beacon is still secure unless both the

producer and a group of miners collude. The small exceptions cause the beacons

to produce in lockstep. Due to the common block hash used, no beacon can predict

the lighthouse output until after the block hash has been calculated (at which point

the potentially malicious beacon has already committed to its next value).

This leaves open the possibility that a set of t malicious producers could

collaborate on which will refuse to reveal in order to try to manipulate 2t bits.

However, any such activity will be publicly viewable, will cause the lighthouse to

stop production, and cause the contract owner to deregister any such producers.

The producers can’t claim technical failures because they are required to keep a

backup copy of their Merlin chains.

The only way to influence the RL values then is for all producers to collaborate

with each other and also with a group of miners. They can then throw out

successfully mined but undesirable blocks (those that would produce an

unwanted RL value). In no situation can the RL value be controlled (i.e., directly

chosen).

However, there is one remaining weakness that must be addressed. If all

producers colluded when initially creating their Merlin chains then they could use

the same V value making the beacons all pulse the same value. If there are an even

number of producers, this will force RL to be 0 since it used XOR. To mitigate this,

our contract simply refuses to pulse an RL value equal to 0. This obviously reduces

the output state space by 1.

7 Empirical Work

We implemented our multiple producer contract using the Solidity language [5]

and deployed it to the Ethereum test network. The test network is identical to the

production network except the Ether has no real world value. Given that our

system does not rely on the transfer of digital assets, the test network works just

as well for our lighthouse as the real Ethereum network. We also created

distributed application (DApp) software to enable producers to submit pulses to

the contract and for customers to retrieve R values. We used multiple producers

and tested the contract’s ability to generate the independent beacon values as well

as the lighthouse values.

We found that coding our contracts in Solidity was rather straightforward. The

main challenges were that we easily ran out of gas (performed too much

computation) or ran out the very limited stack space for individual functions.

However, creating the beacon software that submitted pulses to the contract was

much more difficult since very little documentation exists on how to enable a

program outside of Ethereum to communicate with an Ethereum contract.

We didn’t use the main Ethereum network for our empirical testing because

the current contract execution prices made it too expensive (due to Ether currency

speculation). The price of Ethereum has risen from $8.00 per Ether to $358 per

Ether in six months [1] (as of June 20, 2017) and the gas fees have not dropped

accordingly although Ethereum has a mechanism to do so. Table 2 shows the costs

of the main functions in terms of Ether, USD on January 2017, and USD on June

2017.

If a producer pulses once a minute, the cost using June 2017 prices would be

$673,000 USD per year. Using January 2017 prices, it would be $17,870 USD

(which the authors believe to still be excessively high).

Table 2. Approximate Ether and USD Costs of Lighthouse Functions as of 2017-06-15
Request Type Gas Ether USD (2017-06-20) USD (2017-01-01)
Contract Deployment 1.9M .0399 $14.29 $0.32
Register Producer 205k .0043 $1.54 $0.035
Producer Pulse 200k .0042 $1.50 $0.034
Retrieve Output 22k .000462 $0.17 $0.0037

Due to these cost issues, future implementations of our contract may use an

alternate to Ethereum or a private Ethereum network. This latter approach is fully

supported by the Ethereum development tools and would be privately managed

but publicly accessible. Another option is to design the system so that the users of

the system pay the cost by charging a small fee for each delivered random number.

8 Conclusion

It is possible to use cryptocurrency smart contracts to create a distributed

consensus protocol to publicly produce a stream of trustworthy random numbers.

Our contract design eliminates both prediction and control attacks. Neither is it

possible for any entity to change the values once published. What is possible is that

the output might be indirectly influenced without being directly controlled but this

can be mitigated by registering multiple producers.

References

1. Ethereumprice, https://ethereumprice.org/, accessed: 2017-06-27
2. Litecoin, https://litecoin.org/, accessed: 2017-06-16

3. National Institute of Standards and Technology Beacon Program,
https://beacon.nist.gov/home, accessed: 2017-06-16

4. Randao, https://github.com/randao/randao, accessed: 2017-07-10
5. Solidity language, https://solidity.readthedocs.io/en/develop/, accessed: 2017-0616
6. www.random.org, https://www.random.org/, accessed: 2017-07-10
7. Baign`eres, T., Delerabl´ee, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.: Trap me if

you can - million dollar curve. IACR Cryptology ePrint Archive 2015, 1249 (2015)
8. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source. IACR

Cryptology ePrint Archive 2015, 1015 (2015)
9. Bunz, Goldfeder, B.: Proofs-of-delay and randomness beacons in ethereum. IEEE

Security & Privacy on the Blockchain (2017),
http://www.jbonneau.com/publications.html

10. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. IACR
Cryptology ePrint Archive 2010, 361 (2010), http://eprint.iacr.org/2010/361

11. Fischer, M.J., Iorga, M., Peralta, R.: A public randomness service. In: Security and
Cryptography (SECRYPT), 2011 Proceedings of the International Conference on. pp.
434–438. IEEE (2011)

12. Kelsey, J.: The new nist beacon protocol and combining beacons (2017)
13. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. IACR Cryptology

ePrint Archive 2015, 366 (2015)
14. Mills, D., Martin, J., Burbank, J., Kasch, W.: RFC 5905: Network Time Protocol Version 4:

Protocol and Algorithms Specification. Internet Engineering Task Force
(IETF), 2010. tools. ietf. org/html/rfc5905

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
16. Rabin, M.O.: Transaction protection by beacons. Journal of Computer and System

Sciences 27(2), 256–267 (1983)
17. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto

(1996)
18. Schelling, T.C.: The Strategy of Conflict. Oxford University Press (1960)
19. Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J.,

Ford, B.: Scalable bias-resistant distributed randomness. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. pp. 444–460 (2017),
https://doi.org/10.1109/SP.2017.45

20. Turing, A.M.: On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London mathematical society 2(1), 230–
265 (1937)

21. White, T.H.: The Once and Future King. Ace Books (1987)
22. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper 151 (2014)

