
TorBricks: Blocking-Resistant Tor Bridge Distribution

Mahdi Zamani
Yale University
New Haven, CT

mahdi.zamani@yale.edu

Jared Saia
University of New Mexico

Albuquerque, NM
saia@cs.unm.edu

Jedidiah Crandall
University of New Mexico

Albuquerque, NM
crandall@cs.unm.edu

ABSTRACT
Tor is currently the most popular network for anonymous
Internet access. It critically relies on volunteer nodes called
bridges for relaying Internet traffic when a user’s ISP blocks
connections to Tor. Unfortunately, current methods for dis-
tributing bridges are vulnerable to malicious users who ob-
tain and block bridge addresses. In this paper, we propose
TorBricks, a protocol for distributing Tor bridges to n users,
even when an unknown number t < n of these users are
controlled by a malicious adversary. TorBricks distributes
O(t logn) bridges and guarantees that all honest users can
connect to Tor with high probability after O(log t) rounds
of communication with the distributor.
We also extend our algorithm to perform privacy-preserving
bridge distribution when run among multiple untrusted dis-
tributors. This not only prevents the distributors from
learning bridge addresses and bridge assignment informa-
tion, but also provides resistance against malicious attacks
from a bm/3c fraction of the distributors, where m is the
number of distributors.

1. INTRODUCTION
Mass surveillance and censorship increasingly threaten

democracy and freedom of speech. A growing number of
governments around the world control the Internet to pro-
tect their domestic political, social, financial, and security
interests [30, 27]. Countering this trend is the rise of anony-
mous communication systems which strive to preserve the
privacy of individuals in cyberspace. Tor [12] is the most
popular of such systems with more than 2.5 million users
on average per day [2]. Tor relays Internet traffic via more
than 6,500 volunteer nodes called relays spread across the
world [3]. By routing data through random paths in the
network, Tor can protect the private information of its users
such as identity and geographical location.

Since the list of all relays is available publicly,
state-sponsored organizations can enforce Internet service
providers (ISPs) to block access to all of them making Tor
unavailable in territories ruled by the state. When access to
the Tor network is blocked, Tor users have the option to use
bridges, which are volunteer relays not listed in Tor’s public
directory [11]. Bridges serve only as entry points into the
rest of the Tor network, and their addresses are carefully
distributed to the users, with the hope that they cannot all
be learned by censors. As of March 2016, about 3,000 bridge
nodes were running daily in the Tor network [5].

Currently, bridges are distributed to users based on dif-
ferent strategies such as CAPTCHA-enabled email-based
distribution and IP-based distribution [11]. Unfortunately,
censors are using sophisticated attacks to obtain and block
bridges, rendering Tor unavailable for many users [10, 22,
32]. Also, state of the art techniques for bridge distribu-
tion either (1) cannot provably guarantee that all honest
users can access Tor [31, 24, 29]; (2) can only work when
the number of corrupt users is known in advance [23]; (3)
require fully trusted distributors [24, 23, 29]; and/or (4) can-
not resist malicious attacks from the distributors [31, 24, 23,
29].

We believe that it is challenging in practice to identify or
even estimate the number of corrupt users, due to the so-
phisticated nature of Internet censorship in many countries
such as China [1, 15]. Moreover, we believe it is desirable for
a system to be robust to attacks on the distributors. For ex-
ample, powerful adversaries can hack into these systems, not
only to break users’ anonymity by obtaining bridge assign-
ment information, but also to prevent the bridge distribution
protocol from achieving its goals.

In this paper, we propose TorBricks, a bridge distribution
algorithm that provably ensures Tor is available to all honest
users with high probability, without requiring any a priori
knowledge about the number of corrupt users. TorBricks
guarantees that the number of rounds until all honest users
can connect to Tor is bounded by O(log t), where t < n is the
number of corrupt users. This is achieved by distributing at
mostO(t logn) bridge addresses, where n is the total number
of users.

We also describe a privacy-preserving bridge distribution
mechanism for the scenarios where a certain fraction of the
distributors may be controlled maliciously by the adversary.
We stress that TorBricks can run independently from Tor
so that the Tor network can focus on its main purpose of
providing anonymity.

The rest of this paper is organized as follows. In Sec-
tion 1.1, we describe our network and threat model. In Sec-
tion 1.2, we state our main result as a theorem. We review
related work in Section 2. In Section 3, we describe our
algorithms for reliable bridge distribution; we start from a
simple algorithm and improve it as we continue. We de-
scribe our implementation of TorBricks and our simulation
results in Section 4. Finally, we summarize and state our
open problems in Section 5.

1.1 Network and Threat Model

ar
X

iv
:1

60
8.

00
50

9v
1

 [
cs

.C
R

]
 1

 A
ug

 2
01

6

Distributor(s)

ISP

Destination Tor network

BridgeRelay

Relay

Censorship territory

Users

Firewall

Figure 1: Our network model

In this section, we first define a basic model, where a sin-
gle distributor performs the bridge distribution task, and
then define a multiple distributors model, where a group of
distributors collectively run our algorithm. Figure 1 depicts
our high-level network model.

Basic Model. We assume there are n users (or clients) who
need to obtain bridge addresses to access Tor. Initially, we
assume a single trusted server called the bridge distributor
(or simply the distributor), which has access to a reliable
supply of bridge addresses.

We assume an adversary (or censor) who can view the
internal state and control the actions of t of the clients;
we call these adversarially-controlled clients corrupt users.
The adversary can corrupt clients probably by hacking into
their computers, eavesdropping their communication, or in-
troducing colluding nodes to the network. The adversary is
adaptive meaning that it can corrupt users at any point of
the algorithm, up to the point of taking over t users.

The corrupt users have the ability to block bridges whose
IP addresses they receive. A bridge that is blocked cannot be
used by any user. When a bridge is blocked, we assume that
the distributor is aware of this fact.1 The adversary does
not have to block a bridge as soon as it finds its address; he
is allowed to strategically (perhaps by colluding with other
corrupt users) decide when to block a bridge. We refer to the
other n− t users as honest users. Each honest user wants
to obtain a list of bridge addresses, at least one of which is
not blocked and hence can be used to connect to Tor. We
further assume that the adversary has no knowledge of the
private random bits used by our algorithm.

We make the standard assumption that there exists a rate-
limited channel such as email that the users can use to send
their requests for bridges to the distributor, but which is not
suitable for interactive Internet communication such as web
surfing.2 The distributor runs our bridge distribution algo-
rithm locally and sends bridge assignments back to the users

1This can be done using a bridge reachability mechanism
discussed in Section 2.
2Completely blocking a service such as email would usually
impose major economic and political consequences for cen-
sors.

via the same channel. We imagine that all communications
over this channel are pseudonymous meaning that they do
not reveal any information about the actual identities (i.e.,
IP addresses) of the sender and the recipient to the either
sides of the communication.

Multiple Distributors Model. We also consider a multiple dis-
tributors model, where a group of m� n distributors collec-
tively distribute bridge addresses among the users such that
none of the distributors can learn any information about
the user-bridge assignments. We assume that the distribu-
tors are connected to each other pairwise via a synchronous
network with reliable and authenticated channels.

In this model, the adversary not only can corrupt an un-
known number of the users, t, but can also maliciously con-
trol and read the internal state of up to bm/3c of the dis-
tributors. The corrupt distributors can deviate from our
protocols in any arbitrary manner, e.g., by sending invalid
messages or remaining silent. We assume that the bridges
also use the rate-limited channel for communicating with the
distributors with the purpose of registering themselves in the
system. Figure 3 shows our multiple distributors model.

1.2 Our Result
Below is our main theorem, which we prove in Section 3.

Theorem 1. There exists a bridge distribution protocol
that can run among m distributors and guarantee the follow-
ing properties with probability 1− 1/nκ, for some constant
κ ≥ 1, in the presence of a malicious adversary corrupting
at most bm/3c of the distributors:

1. All honest users can connect to Tor after
dlog d(t+ 1)/32ee+ 1 rounds of communication
with the distributors;

2. The total number of bridges required is O(t logn);

3. Each user receives m messages in each round;

4. Each distributor sends/receives O(m2 + n) messages;

5. Each message has length O(logn) bits.

We also implement a prototype of TorBricks and conduct
simulations to measure the running time and bridge cost of

Bridges
Users

Distributor

Figure 2: Single distributor model

the protocol. We discuss our experimental results in Sec-
tion 4.

1.3 Technical Challenges
The key technical novelties in the design of TorBricks are

as follows:

1. Resource-Competitive Costs. Our protocol adaptively in-
creases the number of bridges distributed among the
users with respect to the number of bridges recently
blocked by the adversary. This reduces the number of
bridges used by the algorithm at the expense of a small
(logarithmic) latency cost, which is also a function of the
adversary’s cost. As a result, the overhead of TorBricks
will always be proportional to the amount of corrup-
tion by the adversary. The details are described in Sec-
tion 3.1.

2. Handling Client Churn. In practice, users join and leave
the system frequently. Adding new users to the system
while offering provable robustness against an unknown
number of corrupt users is challenging. This is because
either (1) the adversary can cause denial of service to
the new users if the algorithm’s “next move” is based
on the adversary’s behavior; or (2) the protocol cannot
guarantee every user receives a usable bridge. We pro-
pose a simple technique to handle this with very small
(constant) latency overhead. The details are described
in Section 3.1.2.

3. Oblivious Bridge Distribution. Our technique for comput-
ing user-bridge assignments does not depend on actual
bridge addresses. Thus, the distributor does not need to
know which bridges are being assigned to which users;
the distributor can rather assign“bridge pseudonyms”to
the users. This prevents an honest-but-curious distrib-
utor from snooping on the user-bridge assignments. We
also show how to distribute these pseudonyms among a
group of geographically-dispersed servers who can col-
lectively give the users the information needed to re-
construct their bridge addresses. This protects the
anonymity of the users against colluding distributors.
The details are described in Sections 3.2.1 and 3.2.2.

4. Distributed Random Generation. We show how a dis-
tributed random generation (DRG) protocol can be

Users
Distributors

Bridges

Figure 3: Multiple distributors model

used to solve the bridge distribution problem efficiently
among multiple untrusted distributors. A DRG protocol
allows a group of nodes to collectively generate a uni-
form random number in a way that none of the nodes
can learn it before others, or bias it from the uniform
distribution. We employ a well known DRG protocol in
TorBricks to provide the first bridge distribution mech-
anism that can resist malicious (active) attacks from a
subset of the distributors. The details are described in
Section 3.2.2.

2. RELATED WORK
Proxy Distribution. The bridge distribution problem has been
studied as the proxy distribution, where a set of proxy servers
outside a censorship territory are distributed among a set of
users inside the territory. These proxies are used to relay
Internet traffic to blocked websites.

Feamster et al. [17] propose a proxy distribution algorithm
that requires every user to solve a cryptographic puzzle to
discover a proxy. In this way, the algorithm prevents cor-
rupt users from learning a large number of proxies. Unfortu-
nately, empirical results of [17] show that a computationally
powerful censor can easily block a very large fraction of the
proxies.

The Kaleidoscope system of Sovran et al. [29] disseminates
proxy addresses over a social network whose links correspond
to existing real world social relationships among users. Un-
fortunately, this algorithm assumes the existence of a few
internal trusted users who can relay other users’ traffic. In
addition, Kaleidoscope cannot guarantee its users’ access to
Tor.

McCoy et al. [24] propose Proximax; a proxy distribution
system that uses social networks such as Facebook as trust
networks that can provide a degree of protection against
discovery by censors. Proximax estimates each user’s effec-
tiveness, and chooses the most effective users for advertising
proxies, with the goals of maximizing the usage of these
proxies while minimizing the risk of having them blocked.

Mahdian [23] studies the proxy distribution problem when
the number of corrupt users, t, is known in advance. He
proposes algorithms for both large and small values of t
and provides a lower bound for dynamic proxy distribu-
tion that is useful only when t� n. Unfortunately, it is
usually hard in practice to reliably estimate the value of
t. Mahdian’s algorithm for large known t requires at most

t (1 + dlog (n/t)e) bridges, and his algorithm for small known
t uses O(t2 logn/ log logn) bridges.

Wang et al. [31] propose a reputation-based bridge distri-
bution mechanism called rBridge that computes every user’s
reputation based on the uptime of its assigned bridges and
allows the user to replace a blocked bridge by paying some
reputation credits. Interestingly, rBridge is the first model
to provide user privacy against an honest-but-curious dis-
tributor. This is achieved by performing oblivious transfer
between the distributor and the users along with commit-
ments and zero-knowledge proofs for achieving unlinkability
of transactions.

Bridge Reachability. Our algorithm relies on a technique for
testing reachability of bridges from outside the censored ter-
ritory. This assumption is justified via work by Dingle-
dine [9] and Ensafi et al. [16], which describe active scanning
mechanisms for testing reachability of bridges from outside
the censored territory.

Handling DPI and Active Probing. The Tor Project has devel-
oped a variety of tools known as pluggable transports [4]
to obfuscate the traffic transmitted between clients and
bridges. This makes it hard for the censor to perform deep
packet inspection (DPI) attacks, since distinguishing actual
Tor traffic from legitimate-looking obfuscated traffic is hard.

The censor can also block bridges using active probing :
he can passively monitor the network for suspicious traffic,
and then actively probe dubious servers to block those that
are determined to run the Tor protocol [15]. We believe
that active probing will be defeated in the future using a
combination of ideas from CAPTCHAs, port knocking [20],
and format transforming encryption [14]. Depending on the
sophistication of the censor, TorBricks may be used in par-
allel with tools that can handle DPI and active probing to
provide further protection against blocking.

Resource-Competitive Analysis. Our analytical approach
to bridge distribution can be seen as an applica-
tion of the resource-competitive analysis introduced by
Gilbert et al. [18, 6]. This approach evaluates the perfor-
mance of any distributed algorithm under attack by an ad-
versary in the following way: if the adversary has a budget
of t, then the worst-case resource cost of the algorithm is
measured by some function of t. The adversary’s budget is
frequently expressed by the number of corrupt nodes con-
trolled by the adversary. This model allows the system to
adaptively increase/decrease its resource cost with respect
to the current amount of corruption by the adversary. In-
spired by this model, we design resource-competitive algo-
rithms for bridge distribution that scale reasonably with the
adversary’s budget.

3. OUR ALGORITHMS
We first construct a bridge distribution algorithm that is

run locally by a single distributor. In Section 3.2, we extend
this algorithm to the multiple distributor model. We prove
the desired properties of these algorithms in Section 3.1.1
and Section 3.2 respectively. Before proceeding to our algo-
rithms, we define standard terms and notation used in the
rest of the paper.

Notation. We say an event occurs with high probability, if it
occurs with probability at least 1− 1/nκ, for some constant
κ ≥ 1. We denote the set of integers {1, ..., n} by [n], the
natural logarithm of any real number x by lnx, and the
logarithm to the base 2 of x by log x. We denote a set
of n users participating in our algorithms by {u1, ..., un}.
We define the latency of our algorithm as the maximum
number of rounds of communication that any user has to
perform with the distributor(s) until he obtains at least one
unblocked bridge. We say a bridge is blocked when the censor
has restricted users’ access to this bridge. We refer to the
remaining bridges as unblocked bridges.

3.1 Basic Algorithm
Our basic algorithm (shown in Algorithm 1) is run lo-

cally by one distributor.3 The algorithm proceeds in rounds,
where each round corresponds to an increment of the vari-
able i in the while loop. In each round, the algorithm assigns
a set of bridges randomly to a fixed group of users and pro-
ceeds to the next round only if the number of blocked bridges
exceeds a threshold that is increased in each round.

The number of bridges distributed in every round is de-
termined based on the threshold in that round as depicted
in Figure 4. If the number of bridges to be distributed in the
current round becomes larger than the number of users, n,
then the algorithm simply assigns a unique unblocked bridge
to every user. This happens only if the adversary blocks a
large number of bridges and we believe it does not happen in
most practical cases. If it happens though, it becomes more
reasonable for the algorithm to give each user a unique user.

The exponential growth of the number of bridges dis-
tributed in each round allows us to achieve a logarithmic
number of rounds (with respect to t) until all users can con-
nect to Tor with high probability. In Lemma 3, we calculate
the exact number of rounds required to achieve this goal.

We later show that if one instance of Steps 1–19 of Algo-
rithm 1 is run, then it guarantees that all users can connect
to Tor with some constant probability. Therefore, if we re-
peat these steps 3 logn times, then we can guarantee that
all users can connect to Tor with high probability. If the
3 logn instances run completely independently, then the ad-
versary can take advantage of this to increase the latency of
the algorithm by a factor of 3 logn using a serialization at-
tack : it can strategically coordinate with its corrupt users to
block the assigned bridges in such a way that the instances
proceed to the next round one at a time. We prevent this
attack by maintaining a single round counter, i, for all in-
stances: whenever the number of blocked bridges in any of
the instances exceeds the threshold for the current round
(i.e., 0.6× 2i+4), all instances proceed to the next round.

In every round, TorBricks only distributes unblocked
bridges. To minimize the total number of bridges required,
we use unblocked bridges from previous rounds in the cur-
rent distribution round. This can be done by removing
blocked bridges from the pile of previously recruited bridges
and adding a sufficient number of new bridges to accommo-
date the new load.

3By “run locally”, we mean the distributor computes user-
bridge assignments independent of any other distributor and
without exchanging any information with them.

Algorithm 1 TorBricks – Basic Algorithm

Goal: Distributes a set of O(t logn) bridges among a set of
users {u1, ..., un}.

Run 3 log n instances of this algorithm in parallel:

1: Initialize parameters: i← 0; bi ← 16

2: while true do

3: if bi ≥ 0.6× 2i+4 then

4: i← i+ 1

5: di ← 2i+4

6: if di <
n

3 logn then

7: {B1, ..., Bdi} ← di unblocked bridges

8: for each j ∈ [n] do

9: Pick k ∈ [di] uniformly at random

10: Assign bridge Bk to user uj

11: end for

12: else

13: Assign a unique bridge to every user

14: break

15: end if

16: end if

17:

18: Check for bi ← number of blocked bridges in

{B1, ..., Bdi}
19: end while

In each round, TorBricks sends to every user a single mes-
sage containing 3 logn bridge addresses assigned to this user
in all instances of Algorithm 1 that run in parallel. This mes-
sage is sent to the user via the rate-limited channel (e.g.,
email). This is done without requiring the distributor to
know the actual IP address of the user. Once the user ob-
tains the set of bridge addresses, he can try to connect to
these bridges in parallel to reduce latency.

3.1.1 Analysis of Algorithm 1
We now prove that Algorithm 1 achieves the properties

described in Theorem 1 in the single distributor model. We
assume a user can connect to Tor in an iteration of the while
loop if and only if at least one unblocked bridge is assigned
to it. Although the adversary has a total budget of t cor-
rupt users, only some of the corrupt users might be actively
blocking bridges in any given round. Before stating our first
lemma, we define the following variables:

• bi: number of bridges blocked in round i.

• di: number of bridges distributed in round i.

• ti: number of corrupt users each of whom has blocked
at least one bridge in round i.

Lemma 1 (ROBUSTNESS). In round i of Algorithm 1,
if bi < 0.6× 2i+4, then all honest users can connect to Tor
with high probability.

Proof. We first consider the execution of one of the
3 logn repeats of Algorithm 1. For each user, the algorithm
chooses a bridge independently and uniformly at random

and assigns it to the user. Without loss of generality, as-
sume the corrupt users are assigned bridges first.

For k = 1, 2, ..., ti, let {Xk} be a sequence of random vari-
ables each representing the bridge assigned to the k-th cor-
rupt user. Also, let Y be a random variable corresponding
to the number of bad bridges (i.e., the bridges that are as-
signed to at least one corrupt user) after all ti corrupt users
are assigned bridges. The sequence {Zk = E[Y |X1, ..., Xk]}
defines a Doob martingale [13, Chapter 5], where Z0 = E[Y].
Since each corrupt user is assigned a fixed bridge with prob-
ability 1/di, the probability that the bridge is assigned to at
least one corrupt user is 1− (1− 1/di)

ti . By symmetry, this
probability is the same for all bridges. Thus, by linearity of
expectation,

E[Y] =
(
1− (1− 1/di)

ti
)
di < (1− e−(ti+1)/di)di.

We know ti < 2i+4, because in each round di = 2i+4

bridges are distributed and each corrupt user is assigned ex-
actly one bridge; thus, each corrupt user can block at most
one bridge. Hence,

E[Y] < (1− 1/e1+1/2i+4

)di ≤ (1− 1/e2)di (1)

Therefore, in expectation at most a constant fraction of the
bridges become bad in each instance of the algorithm.

Since |Zk+1 − Zk| ≤ 1, Z0 = E[Y], and Zti = Y , by the
Azuma-Hoeffding inequality [13, Theorem 5.2],

Pr (Y > E[Y] + λ) ≤ e−2λ2/ti ,

for any λ > 0. By setting λ =
√
di, we have

Pr(Y > E[Y] +
√
di) ≤ e−2di/ti < 1/e2. (2)

The last step holds since ti < di. Therefore, with at most
a constant probability, the actual number of bad bridges is
larger than its expected value by at most

√
di. Therefore,

the probability that an honest user is assigned a bad bridge
is at most

E[Y] +
√
di

di
<

(1− 1/e1+1/2i+4

)di +
√
di

di

= 1/e1+1/2i+4

+ 1/
√
di, (3)

where the first step is achieved using (1).
Now, let p1 = Pr(Y > E[Y] +

√
di), and let p2 be the

probability that a fixed honest user is assigned a bad bridge
in a fixed instance and a fixed round. From (2) and (3), we
have

p1 < 1/e2 and p2 < 1/e1+1/2i+4

+ 1/
√
di.

Thus, the probability that a fixed user fails to receive a
good bridge in a fixed instance and a fixed round is equal to
p1 + (1− p1)p2, which is at most 0.6.

If the algorithm is repeated d3 logne times in parallel, then
the probability that the user is assigned to only bad bridges
in the last round is at most 0.6d3 logne ≤ 1/n2. By a union
bound, the probability that any of the n users is assigned a
bad bridge in a round is at most 1/n. Therefore, all honest
users can connect to Tor with high probability.

Algorithm 1 does not necessarily assign the same number
of users to each bridge. However, in the following lemma, we

… S U S S S U S S S S S U S S U S …

Round 𝑖−1 Round 𝑖 Round 𝑖+1

Iterations 

……

Figure 4: Number of bridges distributed in round i of Algorithm 1. S and U indicate successful and unsuc-
cessful rounds.

show that each bridge is assigned to almost the same number
of users as other bridges with high probability providing a
reasonable level of load-balancing.

Lemma 2 (BRIDGE LOAD-BALANCING). Let X be a ran-
dom variable representing the maximum number of users as-
signed to any bridge, Y be a random variable representing
the minimum number of users assigned to any bridge, and
z = Θ

(
lnn

ln lnn

)
. Then, we have

Pr (X ≥ µz) ≤ 2/n and Pr (Y ≤ µz) ≤ 2/n,

where µ = n/di.

Proof. Each round of Algorithm 1 can be seen as the
classic balls-and-bins process: n balls (users) are thrown in-
dependently and uniformly at random into di bins (bridges).
It is well known that the distribution of the number of users
assigned to a bridge is approximately Poisson with µ = n/di
[25, Chapter 5].

Let Xj be the random variable corresponding to the num-
ber of users assigned to the j-th bridge, and let X̃j be
the Poisson random variable approximating Xj . We have
µ = E[Xj] = E[X̃j] = n/di. We use the following Chernoff
bounds from [25, Chapter 5] for Poisson random variables:

Pr(X̃j ≥ x) ≤ e−µ(eµ/x)x, when x > µ (4)

Pr(X̃j ≤ x) ≤ e−µ(eµ/x)x, when x < µ (5)

Let x = µy, where y = ez. From (4), we have

Pr(X̃j ≥ µy) ≤
(
ey−1

yy

)µ
≤ ey−1

yy

=
1

e

(
1

zz

)e
<

1

n2
. (6)

The second step is because yy > ey−1 (since z > 1) and
µ > 1. The last step is because z = Θ

(
lnn

ln lnn

)
is the so-

lution of zz = n. To show this, we take log of both sides of
zz = n twice, which yields

ln z + ln ln z = ln lnn.

We have

ln z ≤ ln z + ln ln z = ln lnn < 2 ln z.

Since z ln z = lnn,

z/2 <
lnn

ln lnn
≤ z.

Therefore, z = Θ
(

lnn
ln lnn

)
.

It is shown in [25, Corollary 5.11] that for any event that
is monotone in the number of balls, if the event occurs with
probability at most p in the Poisson approximation, then it
occurs with probability at most 2p in the exact case. Since
the maximum and minimum bridge loads are both monoton-
ically increasing in the number of users, from (6) we have

Pr(Xj ≥ µy) ≤ 2 Pr(X̃j ≥ µy) < 2/n2.

By applying a union bound over all bridges, the probabil-
ity that the number of users assigned to any bridge will be
more than µz is at most 2/n. The bound on the minimum
load can be shown using inequality (5) in a similar way.

Lemma 3 (LATENCY). By running Algorithm 1, all
honest users can connect to Tor with high probability after
at most dlog d(t+ 1)/32ee+ 1 iterations of the while loop.

Proof. Let k denote the smallest number of rounds re-
quired until all users can connect to Tor with high probabil-
ity. Intuitively, k is bounded, because the number of corrupt
nodes, t, is bounded. In the following, we find k with respect
to t.

Without loss of generality, we only consider one of the
3 logn parallel instances of Steps 1–19 of Algorithm 1. The
best strategy for the adversary is to maximize k, because
this prevents the algorithm from succeeding soon. In each
round i, this can be achieved by minimizing the number
of bridges blocked (i.e., bi), while ensuring the algorithm
proceeds to the next round. However, the adversary has
to block at least 0.6× 2i+4 bridges in each round to force
the algorithm to proceed to the next round. Let ` be the
smallest integer such that 2` ≥ t. In round `, the adversary
has enough corrupt users to take the algorithm to round
`+ 1. However, in round `+ 1, the adversary can block

at most 2` < 2`+1 bridges, which is insufficient for proceed-
ing to round `+ 2. Therefore, `+ 1 is the last round and
k = `+ 1. Since 2` ≥ t, and the algorithm starts by dis-
tributing 32 bridges,

k = dlog d(t+ 1)/32ee+ 1.

In other words, if the while loop runs for at least
dlog d(t+ 1)/32ee+ 1 iterations, then with high probability
all honest users can connect to Tor.

Lemma 4 (BRIDGE COST). The total number of bridges
used by Algorithm 1 is at most (10t+ 96) logn.

Proof. Consider one of the 3 logn instances of Algo-
rithm 1. The algorithm starts by distributing 32 bridges.
In every round i > 0, the algorithm distributes a new bridge
only to replace a bridge blocked in round i− 1. Thus, the
total number of bridges used until round i, denoted by Mi,
is equal to the number of bridges blocked until round i plus
the number of new bridges distributed in round i, which we
denote by ai. Therefore,

Mi = ai +

i−1∑
j=0

bj . (7)

In round i, the algorithm recruits ai ≤ 2i+4 new bridges,
because some of the bridges required for this round might
be reused from previous rounds. Since in round i we have
bi < 0.6× 2i+4,

Mi < 2i+4 + 0.6

i−1∑
j=1

2j+4 = 9.6(2i − 2) + 2i+4

From Lemma 3, it is sufficient to run the algorithm
k = dlog d(t+ 1)/32ee+ 1 rounds. Therefore,

Mk < 9.6(2k − 2) + 2k+4 ≤ 3.2t+ 32.

Since the algorithm is repeated 3 logn times, the to-
tal number of bridges used by the algorithm is at most
(10t+ 96) logn.

3.1.2 Handling Client Churn
Algorithm 1 can only distribute bridges among a fixed set

of users. A more realistic scenario is when users join or leave
the algorithm frequently. One way to handle this is to add
the new users to the algorithm from the next round (i.e.,
increment of i). This, however, introduces two technical
challenges:

1. The number of corrupt users is unknown, and hence
the adversary can arbitrarily delay the next round,
causing a denial of service attack; and

2. Our proof of robustness (Lemma 1) does not neces-
sarily hold if n is changed, because we repeat the al-
gorithm 3 logn times to ensure it succeeds with high
probability.

To handle these challenges, we add the following steps to
Algorithm 1:

1. Each time a user wants to join the system, assign him
to 3 log n random bridges from the set of bridges re-
cruited in the last round (i.e., the last time i was in-
cremented);

2. If the total number of users, n, is doubled since the last
round, recruit 3× 2i+4 unblocked bridges and assign 3
of them randomly to each user.

The first step guarantees that the new users are always
assigned bridges once they join the system. The second step
ensures that the number of parallel instances always remains
3 logn even if n is changed. This is because log n is increased
by one when n is doubled. Therefore, each existing user must
receive 3 new bridges so that the proof of Lemma 1 holds in
the setting with churn. Our previous lemmas hold if users
leave the system; thus, we only need to update n once they
leave.

Since distributing new bridges among existing users is
done only after the number of users is doubled, the latency
is increased by at most a logn term, where n is the largest
number of users in the system during a complete run of the
algorithm.

3.2 Privacy-Preserving Algorithm
We now adapt Algorithm 1 to the multiple distributor

setting. Our goal is to run a protocol jointly among multi-
ple distributors to keep user-bridge assignments hidden from
each distributor and from any coalition of up to a 1/3 frac-
tion of them. We assume that a sufficient number of bridges
have already registered their email addresses in the system
so that in each round the protocol can ask some of them to
provide their IP addresses to the system to be distributed
by the protocol.

We first construct a leader-based protocol, where an
honest-but-curious distributor called the leader locally runs
Algorithm 1 over anonymous bridge addresses. The leader
then sends anonymous user-bridge assignments to other dis-
tributors who can collectively“open”the assignments for the
users.

Next, we construct a fully decentralized protocol, where a
group of m distributors collectively compute the bridge dis-
tribution functionality while resisting malicious fault from
up to a bm/3c fraction of the distributors. Malicious distrib-
utors not only may share information with other malicious
entities, but also can deviate from our protocol in any arbi-
trary manner, e.g., by sending invalid messages or remaining
silent.

Both of these protocols rely on a secret sharing scheme
for the bridges to share their IP addresses with the group of
distributors. Before proceeding to our protocols, we briefly
describe the secret sharing scheme used in our protocol.

Secret Sharing. A secret sharing protocol allows a party
(called the dealer) to share a secret among m parties such
that any set of τ or less parties cannot gain any informa-
tion about the secret, but any set of at least τ + 1 parties
can reconstruct it. Shamir [28] proposed a secret sharing
scheme, where the dealer shares a secret s among m par-
ties by choosing a random polynomial f(x) of degree τ such
that f(0) = s. For all j ∈ [m], the dealer sends f(j) to the
j-th party. Since at least τ + 1 points are required to recon-
struct f(x), no coalition of τ or less parties can reconstruct
s. The reconstruction algorithm requires a Reed-Solomon
decoding algorithm [26] to correct up to 1/3 invalid shares
sent by dishonest distributors. In our protocol, we use the

error correcting algorithm of Berlekamp and Welch [7].
We now briefly describe the reconstruction algorithm.

Let Fp denote a finite field of prime order p, and S =
{(x1, y1) | xj , yj ∈ Fp}ηj=1 be a set of η points, where η − ε
of them are on a polynomial y = P (x) of degree τ , and
the rest ε < (η − τ + 1)/2 points are erroneous. Given
the set of points S, the goal is to find the polynomial
P (x). The algorithm proceeds as follows. Consider two
polynomials E(x) = e0 + e1x + ... + eεx

ε of degree ε, and
Q(x) = q0 +q1x+ ...+qkx

k of degree k ≤ ε+τ −1 such that
yiE(xi) = Q(xi) for all i ∈ [η]. This defines a system of η
linear equations with ε + k = η variables e0, ..., eε, q0, ..., qk
that can be solved efficiently using Gaussian elimination
technique to get the coefficients of E(x) and Q(x). Finally,
calculate P (x) = Q(x)/E(x).

3.2.1 Leader-Based Protocol
Similar to Algorithm 1, the leader-based protocol also

proceeds in rounds. In each round i, the leader requests
a group of at most di bridges to secret-share their IP ad-
dresses among all distributors (including the leader) using
Shamir’s scheme [28].

Let (B1, ...Bdi) denote the sequence of shares the leader
receives once the bridges finish the secret sharing protocol.
The leader runs Algorithm 1 locally to assign Bj ’s to the
users randomly, for all j ∈ [di]. Then, the leader broadcasts
the pair (uk, Ik) to all distributors, where Ik is the set of
indices of bridges assigned to user uk, for all k ∈ [1, ..., n].

Each distributor then sends its shares of bridge addresses
to the appropriate user with respect to the assignment infor-
mation received from the leader. Finally, each user is able to
reconstruct the bridge addresses assigned to him, because at
least a 2/3 fraction of the distributors are honest and have
correctly sent their shares to the user.

3.2.2 Fully Decentralized Protocol
In each round, Algorithm 1 picks one of the di bridges

uniformly at random. For each user u, if the group of dis-
tributors described in the leader-based protocol can collec-
tively agree on a random number k ∈ [di], then each of them
can individually run Algorithm 1 to assign u to the bridge
corresponding to k.

Assuming each distributor holds a share of every bridge
address (similar to the leader-based protocol), he can then
send his own share to u, allowing the user to privately re-
construct the bridge address even if at most a 1/3 fraction
of the shares are invalid.

Distributed Random Generation. We uses a well known
commit-and-reveal technique for distributed random gener-
ation [21, 19]. This protocol has at most four rounds of
communication and can run efficiently among a small num-
ber of distributors to generate unbiased random numbers
even if up to a m/3 distributors play maliciously.

Let D1, ..., Dm denote the distributors. The DRG proto-
col starts by each distributor Dj choosing a uniform random
number rj locally, and then publishing a commitment cj to
it. Once all commitments have been received, the distrib-
utors reveal their random numbers and verify the commit-
ments. Finally, each distributor computes r =

∑m
k=1 rj . In

TorBricks, we use the simple commitment mechanism de-

scribed in [19].
Although this protocol can generate unbiased random

numbers, it is vulnerable to equivocation attacks4: A dis-
honest distributor can send different random values to dif-
ferent distributors while the corresponding commitments are
correct and check out. We prevent this by asking the dis-
tributors to participate in a Byzantine agreement protocol
to agree on the random value r at the end of the protocol.
In TorBricks, we use the small scale Byzantine agreement
protocol of Castro and Liskov [8] known as BFT. This pro-
tocol is efficient for small numbers of participants (about
10) and can tolerate faults from up to a third fraction of the
participants. If any of the distributors equivocates, then the
BFT protocol fails, and the DRG protocol restarts.

Another vulnerability is denial of service attacks: A dis-
honest distributor can bias the random number by choos-
ing whether or not to open his commitment; using this he
can repeatedly cause the protocol to abort and restart until
the resulting value is what he desires. In both equivocation
and denial of service attacks, the cheating distributors can
be detected easily using administrative mechanisms, espe-
cially since the number of distributors is small in our model.
Therefore, we believe these attacks do not offer much gain
to the adversary. We finish this section by analyzing the
communication complexity of our protocol.

Lemma 5 (COMMUNICATION COMPLEXITY). In each
round of TorBricks, each user sends/receives at most m
messages and each distributor sends/receives O(m2 + n)
messages. Each message has length O(logn) bits.

Proof. In the single distributor model, the distributor
sends one message to each client per round. Each message
contains a list of 3 logn bridge addresses, therefore it has
length O(logn) bits.

In the multiple distributors models (leader-based and
fully-decentralized), each distributor sends one message to
each client per round. Therefore, each client receives m mes-
sages in each round. Since each message contains a list of
3 logn secret-shared values (each corresponding to a bridge
address), each message is of size O(logn) bits.

In the multiple distributor models, each distributor re-
ceives a secret-shared value from each bridge. Since the total
number of bridges used by the protocol is O(t logn), each
distributor receives O(t logn) field elements in all rounds
from the bridges.

In the leader-based model, the leader sends to every dis-
tributor one message each containing a list of 3 log n user-
bridge information. Therefore, the leader sends a total of m
messages each of size O(logn) bits in each round. Each dis-
tributor in this model sends to each client one message each
containing 3 logn secret-shared values, thus each distributor
sends/receives

O

(
m+ n+

t logn

log t

)
= O(m+ n)

messages of size O(logn) bits in each round.
In the fully decentralized model, each distributor partici-

pates in a run of the random generation protocol per round.

4In [19], these attack are referred to as partition attacks.

This protocol consists of one secret sharing round transmit-
tingm field elements per distributor, and one run of the BFT
protocol, which sends O(m2) field elements per distributor.
Finally, each distributor sends to each client one message
containing a list of 3 logn secret-shared values. Thus, each
distributor sends/receives

O

(
m2 + n+

t logn

log t

)
= O(m2 + n)

messages each of size O(logn) bits in each round.

4. EVALUATION
We implemented a proof-of-concept prototype and tested

it in a simulated environment under various adversarial be-
havior. The prototype is written in C# using .NET Frame-
work 4.5. We ran the simulations on an Intel Core i5-4250U
1.3GHz machine with 4GB of RAM running Windows 10
Pro. We set the parameters of TorBricks in such a way that
we ensure it fails with probability at most 10−4.

We consider three blocking strategies for the adversary:
prudent, aggressive, and stochastic. A prudent adversary
blocks the minimum number of bridges in each round such
that the algorithm is forced to go to the next round. An
aggressive adversary blocks immediately all of the bridges he
learns from the corrupt users. Finally, a stochastic adversary
blocks each bridge he receives with some fixed probability.

To evaluate the performance of TorBricks, we calculate
five measures of performance in two experiments. These
measures are:

1. Thirsty Users: Number of users who do not have any
unblocked bridge in the current round.

2. Bridges Distributed: Number of bridges distributed in
the current round (di).

3. Bridges Blocked: Number of bridges blocked in the cur-
rent round (bi).

4. Bridges Used: Total number of unique bridges dis-
tributed by the algorithm until this round (Mi).

5. Latency: Number of round until all users receive at
least one unblocked bridge.

In the first experiment (shown in Figure 5), we run the
algorithm in the basic algorithm for n = 65536 and t = 180,
and calculate Measures 1–4 at the end of each round af-
ter running the algorithm over 10 samples for a fixed set of
parameters. The experiment was run with the three differ-
ent adversarial strategies. For the stochastic blocking, the
adversary blocks each bridge with probability 0.95. In the
second experiment (shown in Figure 6), we run the algo-
rithm using a single distributor for n = 1024 and calculate
Measures 4 and 5 by varying t between 0 and 1023.

Our results indicate that TorBricks incurs a very small
cost when there is small or no corruption in the network.
Moreover, the algorithm scales well with the number of cor-
ruptions and can quickly adapt to the adversary’s behavior.
These all support our claim that TorBricks can be used for

practical bridge distribution with provable access guarantee
for all users.

5. CONCLUSION
We described TorBricks, a bridge distribution system that

allows all honest users to connect to Tor in the presence
of an adversary corrupting an unknown number of users.
Our algorithm can adaptively increase the number of bridges
according to the behavior of the adversary and use near-
optimal number bridges. We also modified our algorithm
slightly to handle user churn (join/leave) by adding small
(constant) amortized latency.

We also described a protocol for privacy-preserving bridge
distribution by running the distribution algorithm oblivi-
ously among a group of distributors. We showed that the
resulting protocol not only can protect the privacy of user-
bridge assignments from any coalition of up to a 1/3 fraction
of the distributors, but also can tolerate malicious attacks
from a 1/3 fraction of the distributors. We finally evaluated
a prototype of our protocol in different simulated scenarios
to show that TorBricks can be used efficiently in practice.

Although TorBricks represents a step towards robust and
privacy-preserving bridge distribution, many challenges re-
main for future work. For example, the current algorithm
uses a relatively large number of bridges when the num-
ber of corrupt users is large. Is it possible to make the
bridge cost sublinear in t with practical constant terms? An
interesting direction for answering this question to use in-
expensive honeypot bridges for detecting and blacklisting
corrupt users. This, however, requires a mechanism such as
CAPTCHA for preventing the adversary from distinguish-
ing real bridges from the fake ones. Moreover, a colluding
adversary may be able to compare bridges assigned to its
corrupt users to detect honeypots.

To better explore the possibility of achieving a sublinear
bridge cost, one may consider finding lower bounds for dif-
ferent scenarios. For example, when each user is assigned at
least one bridge, it seems impossible to achieve a sublinear
bridge cost unless some of the bridges are fake, or we only
distribute real bridges in random-chosen rounds. What is
the lower bound for the number of rounds in these scenar-
ios?

Another interesting open problem is to examine if our cur-
rent notion of robustness is overkill for practice. For exam-
ple, is it possible to significantly reduce our costs by guar-
anteeing access for all but a constant number of users?

6. REFERENCES
[1] The Open Net Initiative: China. URL:

https://goo.gl/YLb37p, 2012.

[2] The Tor Project metrics: Direct users connecting
between January 1, 2015 and March 31, 2015. URL:
https://goo.gl/mz1vLS, 2015.

[3] The Tor Project metrics: Relays in the network
between January 1, 2015 and March 31, 2015. URL:
https://goo.gl/Cs7R0Y, 2015.

[4] The Tor Project: Pluggable transport. URL:
https://goo.gl/SBGupD, 2015.

[5] The Tor Project metrics: Bridges in the network

https://goo.gl/YLb37p
https://goo.gl/mz1vLS
https://goo.gl/Cs7R0Y
https://goo.gl/SBGupD

0

5000

10000

15000

20000

0 1 2 3 4 5

Rounds

Thirsty users
Bridges distributed
Bridges blocked
Bridges used

0

20000

40000

60000

0 1 2 3 4 5

Rounds

0

5000

10000

15000

20000

25000

0 1 2 3 4 5

Rounds

Figure 5: Simulation results for n = 65536 and t = 180 with prudent (left), aggressive (middle), and stochastic
(right) adversary.

1

10

100

1000

10000

1 10 100 1000 10000

Number of corrupt users

Running time
Bridges used

1

10

100

1000

10000

1 10 100 1000 10000

Number of corrupt users

1

10

100

1000

10000

1 10 100 1000 10000

Number of corrupt users

Figure 6: Simulation results for n = 1024 and variable number of corrupt users with prudent (left), aggressive
(middle), and stochastic (right) adversary.

between March 1, 2016 and March 31, 2016. URL:
https://goo.gl/Cs7R0Y, 2016.

[6] Michael A. Bender, Jeremy T. Fineman, Mahnush
Movahedi, Jared Saia, Varsha Dani, Seth Gilbert, Seth
Pettie, and Maxwell Young. Resource-competitive
algorithms. ACM SIGACT News, 46(3):57–71,
September 2015.

[7] E Berlekamp and L Welch. Error correction for
algebraic block codes, US Patent 4,633,470, December
1986.

[8] Miguel Castro and Barbara Liskov. Practical
Byzantine Fault Tolerance. In Proceedings of the
Symposium on Operating Systems Design and
Implementation (OSDI), 1999.

[9] Roger Dingledine. Research problem: Five ways to
test bridge reachability. URL:
https://goo.gl/BTJuZP, 2011.

[10] Roger Dingledine. Research problems: Ten ways to
discover Tor bridges. URL: https://goo.gl/CYFfC4,
2011.

[11] Roger Dingledine and Nick Mathewson. Design of a
blocking-resistant anonymity system. Technical report,
The Tor Project Inc., 2006.

[12] Roger Dingledine, Nick Mathewson, and Paul

Syverson. Tor: the second-generation onion router. In
Proceedings of the 13th USENIX Security Symposium,
Berkeley, CA, USA, 2004.

[13] Devdatt P. Dubhashi and Alessandro Panconesi.
Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press,
New York, NY, USA, 2009.

[14] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart,
and Thomas Shrimpton. Protocol misidentification
made easy with format-transforming encryption. In
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13,
pages 61–72, New York, NY, USA, 2013. ACM.

[15] Roya Ensafi, David Fifield, Philipp Winter, Nick
Feamster, Nicholas Weaver, and Vern Paxson.
Examining how the Great Firewall discovers hidden
circumvention servers. In Internet Measurement
Conference (IMC). ACM, 2015.

[16] Roya Ensafi, Jeffrey Knockel, Geoffrey Alexander, and
Jedidiah R. Crandall. Detecting intentional packet
drops on the Internet via TCP/IP side channels. In
Proceedings of the 15th International Conference on
Passive and Active Measurement - Volume 8362, PAM
2014, pages 109–118, New York, NY, USA, 2014.

https://goo.gl/Cs7R0Y
https://goo.gl/BTJuZP
https://goo.gl/CYFfC4

Springer-Verlag New York, Inc.

[17] Nick Feamster, Magdalena Balazinska, Winston Wang,
Hari Balakrishnan, and David Karger. Thwarting web
censorship with untrusted messenger discovery. In
Roger Dingledine, editor, Privacy Enhancing
Technologies, volume 2760 of Lecture Notes in
Computer Science, pages 125–140. Springer Berlin
Heidelberg, 2003.

[18] Seth Gilbert, Jared Saia, Valerie King, and Maxwell
Young. Resource-competitive analysis: A new
perspective on attack-resistant distributed computing.
In Proceedings of the 8th International Workshop on
Foundations of Mobile Computing, FOMC ’12, pages
1:1–1:6, New York, NY, USA, 2012. ACM.

[19] David Goulet and George Kadianakis. Random
number generation during tor voting. Tor’s Protocol
Specifications – Proposal 250, August 2015. URL:
https://goo.gl/MfZkzD.

[20] Martin Krzywinski. Port knocking: Network
authentication across closed ports. Technical report,
2003.

[21] Arjen K. Lenstra and Benjamin Wesolowski. A
random zoo: sloth, unicorn, and trx. Cryptology
ePrint Archive, Report 2015/366, 2015.
http://eprint.iacr.org/.

[22] Z. Ling, J. Luo, W. Yu, M. Yang, and X. Fu.
Extensive analysis and large-scale empirical evaluation
of tor bridge discovery. In INFOCOM, 2012
Proceedings IEEE, pages 2381–2389, March 2012.

[23] Mohammad Mahdian. Fighting censorship with
algorithms. In Paolo Boldi and Luisa Gargano,
editors, Fun with Algorithms, volume 6099 of Lecture
Notes in Computer Science, pages 296–306. Springer
Berlin Heidelberg, 2010.

[24] Damon McCoy, Jose Andre Morales, and Kirill
Levchenko. Proximax: Measurement-driven proxy
dissemination. In Proceedings of the 15th International
Conference on Financial Cryptography and Data
Security, FC’11, pages 260–267, Berlin, Heidelberg,
2012. Springer-Verlag.

[25] Michael Mitzenmacher and Eli Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[26] Irving Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics (SIAM), pages
300–304, 1960.

[27] Dominic Rushe. Google reports ’alarming’ rise in
censorship by governments. The Guardian, June 2012.

[28] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[29] Yair Sovran, Alana Libonati, and Jinyang Li. Pass it
on: Social networks stymie censors. In Proceedings of
the 7th International Conference on Peer-to-peer
Systems, IPTPS’08, pages 3–3, Berkeley, CA, USA,
2008. USENIX Association.

[30] Karen Turner. Mass surveillance silences minority
opinions, according to study. The Washington Post,
March 2016.

[31] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas
Hopper. rbridge: User reputation based tor bridge
distribution with privacy preservation. In Network and
Distributed System Security Symposium, NDSS 2013.
The Internet Society, 2013.

[32] Philipp Winter and Stefan Lindskog. How the great
firewall of China is blocking Tor. In 2nd USENIX
Workshop on Free and Open Communications on the
Internet, Berkeley, CA, 2012.

https://goo.gl/MfZkzD
http://eprint.iacr.org/

	1 Introduction
	1.1 Network and Threat Model
	1.2 Our Result
	1.3 Technical Challenges

	2 Related Work
	3 Our Algorithms
	3.1 Basic Algorithm
	3.1.1 Analysis of Algorithm ??
	3.1.2 Handling Client Churn

	3.2 Privacy-Preserving Algorithm
	3.2.1 Leader-Based Protocol
	3.2.2 Fully Decentralized Protocol

	4 Evaluation
	5 Conclusion
	6 References

