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Abstract. In this paper, we study normative multi-agent systems from
a supervisory control theory perspective. Concretely, we show how to
model three well-known types of norm enforcement mechanisms by
adopting well-studied supervisory control theory techniques for discrete
event systems. Doing so provides a semantics for normative multi-agent
systems rooted in formal languages and the ability to automatically syn-
thesize SCT-based norm enforcement mechanisms for special, but still
fairly expressive, type of systems and properties.

1 Introduction

In multi-agent systems literature, norms are proposed as a flexible means to reg-
ulate and control the behavior of autonomous agents in multi-agent settings [5].
Norms, for example, may indicate that certain states or actions are obligatory
(obligation norms) or prohibited (prohibition norms) [15,19]. There are various
ways to enforce norms on a multi-agent system. For example, norms can be enforced
by means of regimentation (i.e., by preventing violating behaviors), sanctioning
(i.e., by allowing but sanctioning violating behaviors), or reparation (i.e., by allow-
ing violating behaviors if some external repair event is expected). We empha-
size that this paper merely focuses on regulative norms and dismiss constitutive
norms [10]. Multi-agent systems that are controlled by means of norms are called
normative multi-agent systems. In such systems, norms are often represented by
logical formulas, which specify good or bad behaviors, while norm enforcement
mechanisms are explained by means of model update, i.e., enforcing a norm on
a multi-agent system is seen as updating the multi-agent model with the norm.
Although these approaches contribute to the formal understanding and analysis
of crucial concepts in normative multi-agent systems, they are less concerned with
the implementability and complexity issues that are involved in synthesizing norm
enforcement mechanisms.

In this paper, we consider norm enforcement as a “controllability” problem.
Controlling autonomous processes has been the focus of extensive studies in Super-
visory Control Theory (SCT) for (physical) Discrete Event Systems (DESs), with
applications in a wide spectrum of (physical) systems, including manufacturing,
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traffic, logistics, and communication systems [13]. The general goal in SCT is
to control the system at hand by restricting its behavior as little as possible so
that undesirable sequences of (discrete) events are prevented [21]. The significant
advantage of SCT is its reliance on standard formal language theory, one of the
most well known and accessible areas in Computer Science. This enables us to
come-up with rigorous and implementable semantics for control mechanisms [9].
Indeed, the attractive computational properties in SCT have led to the devel-
opment of various tools to synthesize control mechanisms (e.g., TCT/STCT [27],
GRAIL [23], DESUMA [24], and SUPREMICA [20]).

In order to adopt techniques from SCT to synthesize norm-based enforcement
mechanisms, we need to bridge the two mature fields of normative multi-agent
systems and discrete event systems. To that end, we start by considering a multi-
agent system as a plant and use in the rest of the paper the terms “plant” and
“multi-agent systems” interchangeably. In our formalization, all possible behav-
iors of a plant can be generated by a finite state automaton; in case of a multi-
agent system the automaton’s transitions represent joint actions. In SCT, the
behavior of a plant is meant to be controlled—restricted—by a so-called super-
visor. We assume perfect observability but limited control for plant supervisors.
Plant supervisors have partial control in the sense that they can prevent/allow
some but not all events. Using results and models from SCT, we propose reg-
imentation, sanctioning, and repairing supervisors to model the corresponding
forms of norm enforcement. We stress that it is not the objective of this work
to claim that an SCT approach to norm modeling and reasoning is “better”
than existing norm enforcement approaches. The novelty and significance of our
contribution comes from connecting SCT and normative systems, two other-
wise unrelated fields/problems, which has the potential of opening the door for
synergies between the two.

The text is structured as follows. Section2 provides some background on
norms and norm enforcement mechanisms in multi-agent systems and Sect. 3
introduces a normative framework rooted in discrete event systems and super-
visory control theory. Sections4, 5, and 6 present formal models for regimenta-
tion, sanctioning, and repairing supervisors. Finally, Sects. 7 and 8 review related
studies and conclude the paper.

2 Norms and Norm Enforcement

Imagine a computer system of a university that provides access to an intranet
network. Students can log-in the computer system to browse material provided
by the university. Via this account, students can also log-in to the Internet
after which they are enabled to either watch some study-relevant tutorials or
enjoy watching some study-irrelevant movies. The purpose of giving access to
the Internet is to enable students to watch study-relevant tutorials, not to watch
study-irrelevant movies. So, through the eyes of the system designer, it is not
normal to watch movies using the provided Internet access. Any sequence of
events that ends with a movie watching event (and all its extensions) is thus
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seen as a wiolating behavior. For example, if a student logs into the university
intranet and thereafter to the Internet, and then watches a movie followed by
a tutorial, the behavior is considered as a violating one too. In our approach, a
norm can be specified as a set of event strings that represent violating behaviors,
i.e., a norm can be seen as a (possibly infinite) set of event sequences that are
interpreted as “bad” behaviors. Note that this interpretation of norms is in line
with the general idea that norms distinguish good and bad behaviors [8]. In
our approach, a norm is specified by the bad behaviors; all other behaviors are
considered to be good behaviors.

In order to avoid or suppress violating behaviors, various mechanisms have
been proposed to enforce norms. For example, one may want to regiment norms
in the sense that all violating behaviors are prevented. In our running exam-
ple, regimentation would amount to blocking Internet access to students. This
is based on the assumption that the designer of the system has control over stu-
dents’ log-in access. Norm regimentation has some drawbacks, such as limiting
the autonomy of students and preventing some compliant/good behaviors. For
example, blocking the Internet access prevents students from watching study-
relevant tutorials. An alternative approach would be to allow violating behaviors,
but to impose sanctions on violating behaviors. In our scenario, this amounts
to giving students free Internet access, but sanction the violating behaviors by
closing the Internet access after some occurrences of watch-movie events, or to
charge students the cost of the Internet access. In general, a sanction can either
be modeled as an obligation for agents (in our case to oblige the student to
pay the cost of Internet access) or forced by a controller /supervisor (in our case
the supervisor withdraws money from the student’s deposit). The former type of
sanctioning may result in multiple sanctioning rounds, as the agent may not com-
ply to her obligations (e.g. to pay). In this paper, we follow the latter approach.
Although norm sanctioning does not guarantee the prevention of norm-violating
behaviors, it does not restrict the autonomy of agents nor prevents any norm-
compliant behavior. Finally, a third approach is to allow norm violations if these
are expected to be “repaired” by some other external events. In our scenario,
students may be allowed to watch a movie if they watch a tutorial thereafter.
This mechanism requires the possibility to predict the behavior of agents.

3 Preliminaries

In this section we develop a normative framework rooted in Discrete Event Sys-
tems (DESs) and Supervisory Control Theory (SCT) [13,21]. This will allow
us to take advantage of the existing models and results from the respective
communities and transfer them to norm-based multi-agent systems. Generally
speaking, SCT is concerned with imposing control on the sequences of events (or
strings/words) that such processes/systems -commonly referred to as the plant-
may generate [21]. The techniques used by SCT are based on standard formal
language theory [17].

We start by assuming a set of events X' that can be generated by the multi-
agent systems considered as the plant. A language L over the set of events X' is
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any set of finite sequences (strings/words) of events from X, ie., L C X*. We
use € € X" to denote the empty string. We assume the set of events to consist of
disjoint sets of controllable Y. and uncontrollable events Y, i.e., X = Y. U X,,.
The prefiz-closure of a language L, denoted by L, is the language of all prefixes of
words in L, that is, w € L if and only if w.w’ € L, for some w’ € X* (w.w’ denotes
the concatenation of words w and w’). A language L is prefiz-closed if L = L.

A multi-agent system is viewed then as a “generator” of the language of
string of events. We note here that for multi-agent systems, an event may be
an action profile in case we consider synchronized models or a single action
of an individual agent in case of a turn-based multi-agent system. Formally, a
generator is a deterministic finite-state machine G = (X, G, go,y, G ), where
2 is the finite alphabet of events; G is a finite set of states; go € G is the
initial state; v : G x X' — G is the transition function; and G,, C G is the set
of marked states. We generalize the transition function v to words as follows:
v : G x X* — G is such that v(g,€) = g and v(g,w.0) = y(y(g,w), o), with
w € X* and 0 € X. We say that a state g € G is reachable iff g = v(go, w) for
some word w € X*. Finally, given two words w1, ws € X* w1 E ws iff wy = wy.w
for some w € X*. Moreover, wy C we iff wy = wy.w for some w € X* \ {¢}.

The language generated by generator G is L(G) = {w € X* | v(go,w)
is defined}, where the marked language of G is L,,(G) = {w € L(G) | v(go,w) €
G }. Words in the former language stand for, possibly partial, operations or
tasks, while words in the marked language represent the completion of some
operations or tasks. Note that L,,(G) C L(G) and that L(G) is always prefix
closed, while L,,(G) may not be.

A norm n is specified by a set of (finite) words, i.e., n C X*. An element of n
is interpreted as a sequence of events that causes a violation. In case wy,ws € n
such that wy C ws, we interpret wsy as a word causing more than one violation.
Note that we take a semantic approach to norms and norm enforcement by
focusing on agents’ (norm-compliant/-violating) behaviors. The language itself
for describing such behaviors is out of the scope of this paper. The following
example illustrates our formal framework by means of the running scenario.

Example 1. Norm Enforcement Mechanisms. Our running student scenario
can be formally represented as S = (¥, G, go, ), where X, = {I,, I;, O, 0;} is
the set of controllable events, X, = {W;, W,,, B} is the set of uncontrollable
events, and X = X, U X.. The controllable events I,, and I; stand for logging-in
for the University intranet and the Internet, respectively; O, and O; stand for
logging-out from the university intranet and the Internet, respectively. Moreover,
the uncontrollable events W; and W,,, stand for watching tutorial and watching
movie, respectively, and B for browsing in the university intranet. The set of
states GG consists of three possible states S, U, and I, representing the states
where (1) the student is neither logged-in for the university intranet nor for the
Internet, (2) the student is logged-in for the university intranet and has access
only to the provided university material, and (3) the student is logged-in for the
Internet and has access to both tutorials and movies on the Internet. The initial
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state of this plant is state S (i.e., go = {S}) and the transition function = is
represented by the following graph.

B Wy
D
~(_ () (o
O, O;

In this scenario, we consider the norm of not watching a movie on the Internet
to be specified by n = X*.W,,. Note that all the members of norm n in this
example end with a specific event W,,,, suggesting that W,, is in fact the event
that causes the violation. This is not the case in general as we do not use the
concept of violating events in our framework. For instance, under an alternative
norm n' = X* Wp,e, with e € X\ {W;}, there is no single event causing the
violation: watching a movie and not watching a tutorial immediately afterwards
is the problem. While there are sequences of events containing W,, that are a
case of violation (e.g. I, I;W,,0;0,,), there are also sequences of events containing
W, but that are not a case of violation (e.g. I,I;W,,W;0,0,). It follows then
that, given a sequence of events &, verifying the occurrence of violation with
respect to an arbitrary norm n is not, in general, reducible to syntactically
checking whether £ contains (or ends with) a specific class of violating events.
This highlights our semantic approach to norms, as we focus on sequences of
events (system behaviors) and see them as (potential) norm violations. Such
view intrinsically contrasts to syntactic ones that are sensitive to the incidence
of so called “violating events”. In further sections, we present a formal account
of normative behaviors and illustrate how norm-violating/-compliant behaviors
can be expressed in our SCT-based setting.

Given a multi-agent system and a norm specification, we aim at modeling the
enforcement of the norm on the multi-agent system by means of a system super-
visor. There are various forms of norm enforcement. In the following sections we
model three well-known forms of norm enforcement in multi-agent systems using
the concept of supervisory control in DESs. These three forms of norm enforce-
ment are called regimentation, sanctioning and reparation. We say a supervisor
enforces a norm on a multi-agent system by means of regimentation if norm
violations are prevented. A norm is said to be enforced by means of sanctions
if norm violations are allowed (not prevented), but compensated by some sanc-
tions. Finally, a norm is said to be enforced by means of reparation if norm
violations are followed by some reparation events generated by the multi-agent
system itself. Norm sanctioning and norm reparation are similar in the sense
that the system supervisor allows norms to be violated. However, they differ as
norm sanctioning responds to norm violations by adding an external sanction
event to repair the violations, while the reparation mechanism considers some
system events as reparation events and allows norm violations when they are
followed by reparation events. These forms of norm enforcement will be formally
modeled in the following three sections.
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4 Regiment-Based Supervision

In order to enforce a norm n C X* on a multi-agent system by means of
regimentation, we first identify norm violating and norm compliant behaviors
under the regimentation mechanism. Given a norm specification containing all
words that causes violations, the set of all “bad/undesired” behaviors (norm-
violating behaviors) under regimentation consists of all words that simply extend
a word from the norm specification. The set of “good/desired” behaviors (norm-
compliant behaviors) under regimentation consists of all other behaviors.

Definition 1. Norm Violating and Compliant behaviors. Letn C X* be
a norm. The set of n-violating behaviors under regimentation, denoted as Viol,,
1s the set of suffizes of n, i.e., Viol, = n.X*. The set of n-compliant behaviors
under regimentation, denoted as K,, is the complement of n-violating behaviors,

ie., K, = X%\ Viol,.

In our running example, I, BB, I,BBI;, I,I;W; € K,. It should be clear
that the concepts of norm specification, norm violating, and norm compliant
behaviors are defined independent of a plant G. Moreover, the set of norm vio-
lating behaviors and the set of norm compliant behaviors depend on the form
of norm enforcement that we consider, which is regimentation in this case. Note
that K, is prefix-closed, i.e., if w.w’ € K,, then w € K,,.

Since events that are involved in a system can be uncontrollable, it may not
always be possible for the system supervisor to regiment a norm in order to
prevent norm violating behaviors. For example, consider uncontrollable event
u € X, and suppose u € n. If the system generates a behavior that starts
with event u, then the system supervisor cannot regiment the norm specified
by n since w is an uncontrollable event. Therefore, given a system we identify
which norms can be regimented by the system supervisor. A norm is said to
be regimentable on a system if the occurrences of uncontrollable events in the
system directly after n-compliant behaviors are n-compliant as well.

Definition 2. Regimentability. A norm specified by n is regimentable in G
if Kp.XuNL(G) CK,.

Since K, is prefix-closed, i.e., K,, = K,,, norm n is regimentable if K,.X, N
L(G) C K,. Note that every norm is regimentable when the system does not
involve uncontrollable events, i.e., X, = 0. Also observe that the norm of our
running example is not regimentable since I, I;W; € K,,, but L, [ W, W,, & K,,.
The non-regimentability of norms does not mean that bad behaviors cannot be
prevented, it just states that not all good behaviors (which are also specified
by norms) can be guaranteed if all bad behaviors are to be prevented. This is
because, technically, the regimentability of a norm n is defined in terms of the
good behaviors K,,. So, as we have seen, regimentability is, in some sense, a
very demanding property. Then, given a norm n, one will generally be interested
in the largest subset of good behaviors of K, that can be allowed, if all bad
behaviors are prevented. The following definition captures this.
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Definition 3. Supremal Regimentability. Let G be a multi-agent system
and n C X* a norm such that K,, # 0. The supremally regimentable n-compliant

behavior in G is defined as K,I = U K where R(K,) = {K C K, :
KeR(Ky)

K.2,NLG) C K}.

That is, K, represents the largest sublanguage of K,, that satisfies the regi-
mentability condition (Definition 2). Clearly, K,! only includes good behaviors,
but maybe not all: some have to be sacrificed so as to guarantee the norm. Obvi-
ously, if the norm is (perfectly) regimentable, then the supremal is the whole
K,,. Importantly, the supremal for a given norm is unique.

Corollary 1. For any norm n C X*, we have that K, is unique. Moreover,
if n is regimentable, then K,' = K,.

Next, we discuss the concrete mechanism used to regiment a multi-agent sys-
tem so that violating behaviors are prevented. For this, we define a so-called
regimentation-based supervisor, which intuitively speaking, controls a system by
enabling/disabling controllable events at each execution moment.

Definition 4. Regiment-Based Supervisor. A regiment-based supervisor
for a multi-agent system G is a function of the form V, : L(G) — {X. | X. €
2% X, C X.}, where V.(w) denotes the set of events that are enabled (i.e.,
allowed) next.

Observe that supervisors must enable all uncontrollable events (i.e., X, C
XY.)—they cannot be disabled. However, a supervisor may decide to disable—
block—some controllable events (i.e., events in X.). The following definition
captures what it means to supervise a multi-agent system.

Definition 5. Regimentation-Based Supervision. Let G be a multi-agent
system and V,. a regimentation-based supervisor for G. The supervised language
of G under V,. is defined as L(V,/G) = {w.o € L(G) | w € L(V,/G),0 €
Vi(w)} U {e}.

That is, L(V;-/G) represents all behaviors that the multi-agent system G may
yield when supervised by V;.. Note that while recursively defined, the set L(V,./G)
is well-defined. Importing results from classical controllability [21], this supervi-
sion is a sufficient mechanism for regimentability of norms (if at all possible).

Theorem 1. LetG be a multi-agent system andn C X* a norm such that K,, # 0.
There exists a regiment-based norm supervisor V,. such that L(V,./G) = K, iff norm
n is regimentable in G.

Proof. We directly import the Controllability Theorem (CT) as presented in
[13] (Page 145). According to CT, having a plant G that generates L(G) and
a nonempty K C L(G), there exists a supervisor S such that L(S/G) = K iff
K.Y, N L(G) C K. By considering our Definition 2 (Regimentability), we have
Theorem 1.
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For our running example, this theorem implies the non-existence of
regimentation-based norm supervisor: norm n = X*.W,, is not (perfectly) regi-
mentable. Indeed, any supervisor should disable controllable event I; in state U
so as to prevent a behavior involving non-controllable event W,,, happening (thus
producing a norm violating behavior). However, doing so, will inevitably exclude
norm-compliant behaviors that choose W; in state I. Nonetheless, the next
proposition shows that for any norm and plant, regardless of its regimentability,
there exists a regiment-based supervisor that guarantees the supremally regi-
mentable n-compliant behavior.

Proposition 1. LetG be a multi-agent system andn C X* a norm such that K,, #
(0. Then, there exists a regiment-based supervisor V,* such that L(V*/G) = K.

Proof. K, satisfies the regimentability condition. The rest follows the proof of
Theorem 1.

For our running example, this proposition ensures that there exists indeed
a supervisor that can prevent all norm violating behaviors. Importantly, such a
supervisor is mazimally permissive: it is not possible to cater for more “good”
behaviors without running the risk of violating some norm. An important result
from SCT is that when both the plant and the specification are regular lan-
guages, and hence representable via finite automata (i.e., generators), the super-
visor realizing the supremal realizable language can be finitely represented and
in fact computed in polynomial time (w.r.t. the automata for the plant and
specification) [26]. We can import such results as follows.

Proposition 2. Let G be a multi-agent system and n C X* a norm for which
there exists a generator G, such that L(G,) = n. Suppose further that K, # 0.
Then, a generator R such that L(R) = K,,1 can be computed in polynomial time
w.r.t. G and G,,.

Proof. Because norm specification n is regular and implemented with G,,, lan-
guages Viol, and K, are regular as well (and implementable with a generator
that has one more state than G,,). Since G is a generator, we can directly apply
the results in [26] and the thesis follows.

We close by pointing out that besides leveraging on the solid theoretical
foundations of SCT, the development above allows us to apply the existing tools
for supervisor synthesis, such as TCT/STCT [27], GRAIL [23], DESUMA [24], and
SUPREMICA [20], to automatically compute norm regimentation policies.

5 Sanction-Based Supervision

For many applications, norm regimentation is too restrictive, limiting the auton-
omy of agents. In such applications it is more desirable to allow agent to violate
norms, but to compensate the violations with sanctions. In this section and
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without loss of generality, we assume a single sanction event s to keep the pre-
sentation simple. We also assume that the unique sanction event does not appear
in the behavior of the plant and that it is added to (imposed on) the plant by the
supervisor after any norm-violating event. Finally, for w € (X' U{s})* we use & to
denote w from which all occurrences of s are removed, e.g., if w = ejezsezseys,
we have 1 = ejesezey. As before we assume a norm specification n € X* and
interpret its elements as sequences of events that cause a violation. We also
assume the set of violating behaviors as extensions of norms, i.e., Viol,, = n.X*.
Given a norm specification, we first define what it means to add sanctions after
norm-violating event sequences in the norm specification.

Definition 6. Sanctioned Norm. Let n C X* be a norm, s be the sanction
event, and w € (X U {s})*. The set of the sanctioned event sequences from n,
denoted as San(n) and called sanctioned norm, is inductively defined as follows:

- €€ San(n); and
—if w € San(n),w’ € X* w.w' € n, and for oll w" T w' we have w.w” & n,
then w.w'.s € San(n).

This definition ensures that a single sanction event is added after each vio-
lation. For example, if e, ejes € n, then ers, ejseas € San(n). Note that
n={w|w e San(n)\ {e}}. Next, we define the concept of sanctioned behavior
which extends words in the sanctioned norm with events that do not cause any
further norm violations.

Definition 7. Sanctioned behavior. Let San(n) be a sanctioned norm. The
set of sanctioned behavior, denoted as San™(n), is any non-violating extension
of sanctioned norm. Formally San™(n) = {w.w’ | w € San(n),w’ € X* Vw" C
w' W En}.

Given a norm specification, the set of sanctioned behaviors is included in the
set of norm-compliant behaviors.

Definition 8. Norm Compliant Behaviors. Let n C X* be a norm and s
be a sanction event. The set of n-compliant behaviors in presence of s, denoted
as K5 = (X* \ Viol,) U San™(n), contains all non-violating and sanctioned
behaviors.

Note that omitting s from strings in San™(n) results in the set of n-violating
behaviors. Formally, Viol, = {# : w € Sant(n)}. Observe that K consists of
not only non-violating behaviors but also violating and sanctioned behaviors!.
Moreover, as one can observe, K is defined independently of any specific plant.

In order to relate sanction-based compliant behaviors with a plant in which the
sanction event does not occur, we first enrich the plant with the sanction event s

and an auxiliary event §, interpreted as no-sanction imposed. The introduction of

! 'We highlight that do not take sanctions to be permissible events, but consider an
already sanctioned behavior as a norm-compliant one.
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these two events enables us to prevent all violating behaviors (i.e., extensions of
the norm without sanctions) while allowing norm compliant behaviors (including
sanctioned behaviors). The natural question is how to enrich a plant with these
two events. For this we, define the notion of sanction policy and virtual plant. A
sanction policy determines when a sanction event may be added (i.e., after which
sequences of events). A sanction policy F is therefore represented as a set of words,
ie., F C (XU{s,s})*. Note that the words in F' may contain different occurrences
of s and $. Also, F'is defined independent of any norm or plant. Let @ be the same
as w except that all occurrences of s and § are removed. Note that w is used before
to remove all occurrences of s; we have to extend this operation here to remove
$ as well. We now define a virtual plant as a plant under specific sanction policy
F by introducing states in the original plant where s and s are the only available
events.

Definition 9. Virtual Plant. A plant G under the sanctioning policy F,
denoted by F(G) and called virtual plant, generates the following behaviors:

LIF@)={we LG | Vo' Cw : w ¢ F}U
{w.sw' ,wsw' | w,w € (XU{s, s}, ww € L(G),w e F}.

For our running example, one possible sanction policy is F' = {I,I;W,, }. The fol-
lowing graph represents the virtual plant F'(G) that extends the original plant G.
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The introduction of virtual plant enables us to reduce the notion of sanction-
ing into regimentation by assuming s and § as the only controllable events in
the plant under a given sanction policy. A supervisor can then control the plant
under a given sanction policy by enabling either s or §, but not both. As § is an
auxiliary event (interpreted as no-sanction is imposed), we can ignore this event
in the plant’s behaviors. The set of behaviors of a virtual plant F(G) from which
all occurrences of the auxiliary event $ are removed will be denoted as LY (G).
It is crucial to note that this set includes all behaviors of the original plant as
well as some new behaviors in which s occurs.

Given a plant G and a sanctioning policy F', not all norms are sanctionable.
This is mainly due to presence of uncontrollable events and their potential to
result in violating behaviors. The following definition circumscribes the class of
sanctionable norms under a specific sanctioning policy.

Definition 10. Sanctionability. A norm specified by n is sanctionable in G
under sanctioning policy F, if K,.2, N LF(G) C K.
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Note that we are considering a norm to be sanctionable under a sanction policy.
Hence, a norm may be sanctionable in a plant under a sanction policy F' but not
under F’ # F'. In other words, we dismiss the problem of finding/constructing
an appropriate sanction policy that guarantees the sanctionability of a norm in a
plant. The following proposition highlights that if the sanctioning policy F imposes
s or § after any event, any norm will be sanctionable.

Proposition 3. Dictatorial Sanctioning Policy. Any non-empty norm
(specified by) n is sanctionable in plant G under sanctioning policy F = X*.

Proof. Inthis case, F'includes all possible words w € X*.In other words, (under F')
sanction operation s is imposed after any arbitrary event. Therefore, the sanction-
ability condition in Definition 10 always holds. Hence, for any nonempty n C X*,
we have that K,.%, N LF(G) C K.

The next proposition states that no non-empty norm will be sanctionable if
the sanctioning policy never imposes the sanction event.

Proposition 4. Impotential Sanctioning Policy. Any norm specified by a
non-empty n is sanctionable in plant G under sanctioning policy F' = (.

Proof. In this case, F' includes no word w € X*. In other words, sanction oper-
ation s can be imposed after no event. Therefore, the sanctionability condi-
tion in Definition 10 never holds. L.e. for no non-empty n C X*, we have that
K, 2.NLE(G) C K,

We now define the notion of sanction-based supervisor as a means of sup-
pressing norm violating behaviors in a multi-agent system.

Definition 11. Sanction-Based Norm Supervisor. A sanction-based norm
supervisor for a multi-agent system G under a sanctioning policy F', is a function
of the form Vi : L(F(G)) — { X, {s}, {3} }, where Vi(w) denotes the set of
events that are enabled next.

Note that the set of events that a sanction-based norm supervisor enables
includes all plant events (interpreted as non-controllable events) with either the
controllable event s or the controllable event $. This type of supervisor allows
violating behaviors to take place but may impose the sanction event in order to
punish violations.

Definition 12. Sanction-Based Supervisor. Let G be a multi-agent system,
F' a sanctioning policy, and Vy a sanction-based norm supervisor for G under F.
The sanctioned language of G under V,. is defined as L(Vy/G) = {w.0 | w.o €
L(F(@)),w € L(V/G),0 € Vy(w)} U {e}.

We emphasize that while our formerly introduced regiment-based norm
supervisor uses the “real” behavior of the multi-agent system, the sanction-
based norm supervisor considers a specific multi-agent behavior that is “virtu-
ally” extended under a given sanctioning policy. This is mainly because after
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(virtually) extending the multi-agent system under a policy, potential behaviors
may include sanction events while they are not (really) events generated by the
plant.

Theorem 2. Let G be a multi-agent system, F' a sanctioning policy, andn C X*
be a norm such that K: # (). Then, there exists a sanction-based norm supervisor
Vs such that L(Vy/G) = K3 iff norm n is sanctionable in G under F.

Proof. The line of proof is analogous to the proof of Theorem 1 if we just replace
L(G) by the virtually extended behavior L(F(G)) under sanctioning policy F.

In this sanction-based interpretation of supervision, n is enforceable when n-
violating behavior can be sanctioned. Note that enforcing a norm via sanctions
allows “bad” behaviors (of the multi-agent system) to take place after which
sanction will incur. In our running example, any behavior that ends with W, is
a norm violating behavior. Using a sanctioning policy F = {X*.W,,}, this the-
orem shows the existence of a sanction-based supervisor that imposes sanctions
after any occurrence of W,,. It is observable that such a sanctioning mechanism
does not prevent any norm-compliant behavior, e.g., watching a tutorial is now
possible for the student (without paying any sanction). Given a plant, a norm
may be not sanctionable under a specific sanction policy. Here, we define the
concept of supremal sanctionability as the largest set of sanctionable behaviors
(under a given sanction policy) in a plant.

Definition 13. Supremal Sanctionability. Let G be a multi-agent system,
n C X* a norm such that K3 # (), and F a sanctioning policy. The supremally
sanctionable n-compliant behavior in G under F, denoted K*1, is defined as
KPs1= |J K, where R(K})={K CK::K.X,NnLI'(G) CK}.

KeR(K3)

That is, KI**I represents the largest sublanguage of K3 that satisfies the
sanctionability condition (Definition 10). Next, we point out that, at the techni-
cal level, we have basically transformed a norm enforcement via sanctions prob-
lem into a norm regimentation task, albeit in a modified multi-agent system
plant. Doing so allows us to directly import Proposition 2 to the sanction-based
framework.

Proposition 5. Let G be a multi-agent system, F a sanction policy for which
there exists a generator Gg such that L(Gr) = F, and n C X* a norm for which
there exists a generator G, such that L(G,) = n. Suppose further that K3 # ().
Then, a generator R such that L(R) = K1 can be computed in polynomial
time w.r.t. G, G and G,.

Proof. Because norm specification n is regular and implemented with G,,, sets
Viol; and K are regular as well. Since F' is regular and generated by Gp, we
can once again directly apply the results in [26] and the thesis follows.
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6 Reparation-Based Supervision

In this section, we consider some system events as “repairing” events, in the
sense that any violating behavior followed by such events is considered as non-
violating behavior. In our running example, one may consider watching a tutorial
as repairing the violation of watching a movie. In addition to our assumption that
the set of events consists of disjoint sets of controllable X, and uncontrollable
events Y, we introduce an orthogonal partitioning over the set of events which
makes distinction between reparation events X, and non-reparation events X,

e, XY = X, UX,,. For simplicity and without loss of generality, we assume
XY, = {p}. Also, we only consider immediate reparation; we do not allow dis-
tant reparation. Allowing multiple (non-reparation) events between a violating
behavior and its repair calls for a method that clarifies how to deal with multiple
violations and their reparation priorities. Moreover, the specification of norms
will be constrained to use only non-reparation events from X,,.

Definition 14. Norm Violating and Compliant behaviors. Letn C X7,
be a norm and p be a repair event. The set of n-violating behaviors in presence

of p is Violl = n.X,,. X%, and the set of n-compliant behavior in presence of p
is KP = X*\ ViolP.

Note that this view internalizes the reparation of norm violating behavior.
Hence, we do not need any external set of sanction operations (as it was the case
in Definition 8).

Definition 15. Repairability. A norm specified by n is repairable in G with
event p if Kbo.2, NL(G) C K.

In our running university example, norm n = X* Wm is not repairable. This
is because after some norm-compliant behaviors in K’ n» the occurrence of uncon-
trollable event W, results in norm-violating behaviors (that are obviously not in

) We later present a brief abstract example in which the norm is repairable.

We now define the notion of reparation-based supervisor as a mean of
enabling the multi-agent system to repair possible violating behaviors.

Definition 16. Reparation-Based Norm Supervisor. A reparation-based
supervisor for a multi-agent system G is a function of the form V, : L(G) —
{¥. | . € 2,5, C X.}, where V,(w) denotes the set of events that are
enabled (i.e., allowed) next.

This type of supervisor can now allow violating behaviors that are immedi-
ately followed by a repair event, while regimenting all other violating behaviors.

Definition 17. Reparation-Based Supervision. Let G be a multi-agent sys-
tem, p be the repair event, and V), a reparation-based norm supervisor for G.
The supervision of G by V, obtains a multi-agent system, denoted as V,/G,
that generates behaviors specified as L(V,/G) = {e} U {w.op € L(G) | w €
L(V,/G) , woen} U{woeL(G)|weL(V,/G), wo¢&n}.
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In reparation-based norm supervision, n is enforceable when violating behav-
iors that can not be immediately repaired are avoided. I.e., enforcing a norm via
this approach only sees a behavior n-violating if after the occurrence of the
norm, it is not immediately repaired. As shown in Sect.4, in order to avoid
violating behaviors, the regiment-based supervision of a plant may result in a
subset of norm-compliant behavior by disallowing all the events that may result
in violating behavior. In comparison, the reparation-based supervisor only dis-
allows the events after which there is no reparation event in the plant. For
instance, for X' = {a,b,¢,d,e,p}, Xy = {c}, X}, = {p}, and n = {abed}, apply-
ing the regiment-based vision after a sequence of events w = a results in loosing
n-compliant behavior abce in the following plant while the reparation-based app-
roach allows it to take place. Although allowing b may result in n-violating
behavior abed, reparation is available afterwards.

Theorem 3. Let G be a multi-agent system, p be the repair event, and n C X*
be a norm such that K} # (0. There exists a reparation-based norm supervisor
Vp such that L(V,/G) = K> iff norm n is repairable in G.

Proof. The line of proof is analogous to the proof of Theorem 1 if we just replace

L(G) by L(Vp/9).

In our running example, any behavior that ends with W, is a norm violating
behavior. As the reparation-based supervisor is designed to allow norm-violating
behaviors to take place, it does not prevent the event of watching a movie if
this event is immediately followed by the repair event, which is in this case
watching a tutorial W;. The above theorem suggests the existence of a repair-
based supervisor that ensures violations are either not take place or they are
immediately followed by a repair event. It is observable that a repair-based
supervisor is similar with a regimentation-based supervisor with a one-step look
ahead function.

In a specific plant, a norm may be not repairable if it does not pass the
repairability condition in Definition 15. Here, we define the concept of supremal
repairability as the largest set of repairable behaviors in a plant.

Definition 18. Supremal Repairability. Let G be a multi-agent system,
n C X* a norm such that K? # (), and p the repairing event. The supre-
mally repairable n-compliant behavior in G with p, denoted KE, is defined as
K= U K where R(KP)={K CKE:K.X,NL(G) CK}.

KeR(KZE)
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That is, KEI represents the largest sublanguage of KP that satisfies the
repairability condition (Definition 15). The following result mirrors that in
Propositions 2 and 5 for the case of repairability.

Proposition 6. Let G be a multi-agent system, p a repair event, and n C X* a
norm for which there exists a generator G, such that L(G,) = n. Suppose further
that KP #+ 0. Then, a generator R such that L(R) = KET can be computed in
polynomial time w.r.t. G and G,.

7 Related Work

Our proposal contributes to the literature on normative multi-agent systems by
re-purposing models and results from SCT to provide a formal, implementable
and tractable semantics for the key normative concepts, such as norms and norm
enforcement mechanisms. It also contributes to the literature of SCT as it pro-
vides a novel application domain, and the notions of sanctioning and repairing
that may be applicable to control processes. In the normative multi-agent sys-
tems literature, various approaches have been proposed to model norms and
norm enforcement mechanisms. Some approaches focus on logical characteriza-
tion of normative multi-agents systems while others aim at designing frameworks
to develop normative multi-agent systems. For example, [1] uses a linear-time
temporal logic to represent norms and system behaviors. In such work, the idea
of norm enforcement, which is enriched with lookahead possibilities, is char-
acterized as decision problems with respect to specific classes of norms. Simi-
lar to our regiment-based supervisor function, [1] uses a guard function, that
enables/disables options that (could) violate norms after a system history. How-
ever, the authors consider norm monitors to be imperfect while we assume that
our supervisors have perfect observability over the behavior of the MAS. They
also do not consider sanction- and repair-based norm enforcement mechanisms.

The idea of sanction-based enforcement mechanisms has been studied in
several works, e.g., [3,12,14]. There, multi-agent systems are semantically mod-
eled as transitions systems, where traces are interpretred as system behaviors.
The enforcement of norms by means of sanctions is realized by identifying and
sanctioning violating behaviors. This is done by modifying the valuation of states
that occur in the violating behaviors. Our sanction-based approach is closely
related except that in our approach sanctioning events are added to behaviors
which are defined as event sequences.

Other approaches concern the development of normative multi-agent sys-
tems. For example, [16,18] takes into account the organizational structure of
multi-agent systems in order to develop middle-wares for normative multi-agent
organizations/institutions while we dismiss agent hierarchies and see a MAS
as a plant that generates strings of discrete events. Moreover, [4] makes a dis-
tinction between regulative (deontic) and substantive (constitutive) norms while
we define norms to be any arbitrary sub-language of event strings. Finally, [2]
builds on the idea of norm enforcement and proposes a programming approach
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to develop norm-aware agents. These agents can deliberate on enforceable norms
to decide whether they follow or violate the norms.

Our work clearly draws from (and hence is closely related to) some approaches
in the DESs, e.g., [13], and SCT, e.g., [21,22]. We build on the controllability
condition in [13] to introduce our three types of norm enforcement, namely,
regimentation-, sanction-, and repair-based enforcement. However, we extend
the classic concept of supervisor in DESs as a wviolation precluding mechanism
by considering supervisors that allow violations to take place but are also able
to impose sanction operations. This approach, i.e., allowing violations to occur,
leads to a toolbox of norm enforcement mechanisms that are applicable in con-
texts that call for higher level of agent autonomy. Moreover, we introduce a
normative dimension into reasoning about behavior of DESs. One noticeable
contribution that considers decentralized control in multi-agent systems using
SCT is [6] which mainly focuses on reformulating the results of SCT in terms of
model checking problems in an epistemic temporal logic.

We would like to emphasize that our work differs from related but distinguish-
able approaches proposed in [7,28]. In our approach, we focus on coordination
of a multi-agent systems, using the concept of norm-supervisors, in order to
avoid/suppress some undesired but system-independent norm-violating behav-
iors. In contrast, [7,28] shows that some desired properties such as non-blocking
(in a class of resource allocation systems) can be achieved using a supervisor that
controls the plant’s behavior. Although this approach might be similar to our
regiment-based norm supervising mechanism, it should be emphasized that our
norms are plant-independent. Hence, they do not necessarily reflect properties
that are “good” in a plant, but represent “good” behaviors regardless of any
plant.

8 Conclusion and Future Work

This paper presents a formal framework rooted in Supervisory Control Theory
(SCT) and normative multi-agent systems. We show that three well-known types
of norm enforcement mechanisms, namely, regimentation-, sanction-, and repair-
based enforcement, can be modeled as special supervisor from SCT. Importing
the controllability theorem from SCT, we prove the existence of supervisors that
can either prevent, sanction or repair violating behaviors in a given multi-agent
system. In addition to providing a semantics for norm and norm enforcement in
formal languages, this work supports the direct use of available tools for SCT,
such as TCT/STCT [27] or SUPREMICA [20] to synthesize supervisors. We intend
to run experiments by developing norm-based supervisory systems using these
tools. The fact is that by restricting to generator-based “regular” systems and
properties, which are still fairly expressive, implementing SCT-based normative
systems becomes amenable for computation (e.g., can be realized via the existing
tools mentioned above) [9]. Hence, the possibility of automatically synthesizing
SCT-based norm enforcement mechanisms that can be used for on-line norm
monitoring/enforcement in multi-agent systems becomes a feasible.
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Regarding the practicality of our approach we emphasize that, since we base
our norm specification on given sequences of events, our presented norm enforce-
ment mechanisms are applicable in domains where traces of violating behaviors
are accessible (e.g., using data-oriented behavior models). We believe that such
a set can be collected in big data projects, for example, by using data mining to
extract and categorize instances of event sequences that are (un)desirable in a
specific multi-agent system.

As future research, one can relax the full observability assumption and study
the enforcement of norms under partial observability. In this line, dynamics
of supervisor’s belief-level can be incorporated by taking into account multi-
ple belief worlds that are linked using epistemic event. An alternative approach
would be to use a network of supervisors with local observability. Then hav-
ing a class of communication events can enable them to collectively supervise
the plant. Another possible extension is to relax the restriction on immediate
reparations in reparation-based supervising mechanisms.

In this work, we merely focused on individual agents and reasoned about
the normative behavior of a multi-agent plant in which supervisors can bring
about desired behaviors by means of regimentation, sanctioning, or reparation
mechanisms that controls individuals. The transition to collective actions, e.g.
using concurrent structures, is left for future work. Such an extension may result
in the introduction of mechanisms that take into account group potentials (e.g.,
for making collusion) and possible semantics of normative concepts in relation
to collective actions.

Another possible extension would be to formalize “hybrid” supervisors. For
instance, a supervisor that sanctions violating behaviors for a certain number of
times, e.g., just once, and then starts preventing any further violations. In this
case we are sensitive to sequence (and number) of imposed sanction operations.
Roughly speaking, when the plant generates violating behaviors for which we
already sanctioned it before, its behavior may trigger a meta-norm that allows
the supervisor to use regiment-based supervision. Such a mixed supervisor may
find application in some domains that can tolerate norm-violating behavior only
to a given threshold, e.g., in safety-critical computer/industrial systems [11,25].
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