Skip to main content

Detect Tracking Behavior Among Trajectory Data

  • Conference paper
  • First Online:
Book cover Advanced Data Mining and Applications (ADMA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10604))

Included in the following conference series:

Abstract

Due to the continuing improvements in location acquisition technology, a large population of GPS-equipped moving objects are tracked in a server. In emergency applications, users may want to detect whether a target is tracked by another object. We formulate the tracking behavior by continuous distance queries in trajectory databases. Index structures are developed to improve the query performance. Using real trajectories, we demonstrate answering continuous distance queries in a database system and animating moving objects fulfilling the distance condition in the user interface. The result benefits mining the interesting behavior among trajectory data and answering distance join queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://factory.datatang.com/en/ (2006)

  2. Arumugam, S., Jermaine, C.: Closest-point-of-approach join for moving object histories. In: ICDE, p. 86 (2006)

    Google Scholar 

  3. Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with SETI. In: CIDR (2003)

    Google Scholar 

  4. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502 (2005)

    Google Scholar 

  5. Gao, Y., Zheng, B.: Continuous obstructed nearest neighbor queries in spatial databases. In: ACM SIGMOD, pp. 577–590 (2009)

    Google Scholar 

  6. Gao, Y., Zheng, B., Chen, G., Li, Q.: Algorithms for constrained k-nearest neighbor queries over moving object trajectories. GeoInformatica 14(2), 241–276 (2010)

    Article  Google Scholar 

  7. Güting, R.H., Behr, T., Düntgen, C.: SECONDO: a platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull. 33(2), 56–63 (2010)

    Google Scholar 

  8. Güting, R.H., Behr, T., Xu, J.: Efficient k-nearest neighbor search on moving object trajectories. VLDB J. 19(5), 687–714 (2010)

    Article  Google Scholar 

  9. Hung, C.C., Peng, W.C., Lee, W.C.: Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J. 24(2), 169–192 (2015)

    Article  Google Scholar 

  10. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. PVLDB 1(1), 1068–1080 (2008)

    Google Scholar 

  11. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005). doi:10.1007/11535331_21

    Chapter  Google Scholar 

  12. Lange, R., Dürr, F., Rothermel, K.: Efficient real-time trajectory tracking. VLDB J. 20(5), 671–694 (2011)

    Article  Google Scholar 

  13. Li, Y., Li, J., Shu, L., Li, Q., Li, G., Yang, F.: Searching continuous nearest neighbors in road networks on the air. Inf. Syst. 42, 177–194 (2014)

    Article  Google Scholar 

  14. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. PVLDB 3(1), 723–734 (2010)

    Google Scholar 

  15. Pelekis, N., Tampakis, P., Vodas, M., Panagiotakis, C., Theodoridis, Y.: In-DBMS sampling-based sub-trajectory clustering. In: EDBT 2017, pp. 632–643 (2017)

    Google Scholar 

  16. Pfoser, D., Jensen, C.S.: Novel approaches in query processing for moving object trajectories. In: VLDB, pp. 395–406 (2000)

    Google Scholar 

  17. Su, H., Zheng, K., Wang, H., Huang, J., Zhou, X.: Calibrating trajectory data for similarity-based analysis. In: SIGMOD, pp. 833–844 (2013)

    Google Scholar 

  18. Zhou, P., Zhang, D., Salzberg, B., Cooperman, G., Kollios, G.: Close pair queries in moving object databases. In: ACM-GIS, pp. 2–11 (2005)

    Google Scholar 

Download references

Acknowledgment

This work is supported by NSFC under grant numbers 61300052 and the Fundamental Research Funds for the Central Universities NO. NZ2013306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, J., Zhou, J. (2017). Detect Tracking Behavior Among Trajectory Data. In: Cong, G., Peng, WC., Zhang, W., Li, C., Sun, A. (eds) Advanced Data Mining and Applications. ADMA 2017. Lecture Notes in Computer Science(), vol 10604. Springer, Cham. https://doi.org/10.1007/978-3-319-69179-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69179-4_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69178-7

  • Online ISBN: 978-3-319-69179-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics