
ar
X

iv
:1

70
8.

09
29

9v
1

 [
cs

.D
B

]
 3

0
A

ug
 2

01
7

Distributed Holistic Clustering on Linked Data

Markus Nentwig12, Anika Groß1,2, Maximilian Möller1,3, and Erhard Rahm1,2

1 Database Group, University of Leipzig
2 nentwig|gross|rahm@informatik.uni-leipzig.de

3
m.moeller@studserv.uni-leipzig.de

Abstract. Link discovery is an active field of research to support data integration

in the Web of Data. Due to the huge size and number of available data sources,

efficient and effective link discovery is a very challenging task. Common pairwise

link discovery approaches do not scale to many sources with very large entity

sets. We here propose a distributed holistic approach to link many data sources

based on a clustering of entities that represent the same real-world object. Our

clustering approach provides a compact and fused representation of entities, and

can identify errors in existing links as well as many new links. We support a

distributed execution of the clustering approach to achieve faster execution times

and scalability for large real-world data sets. We provide a novel gold standard for

multi-source clustering, and evaluate our methods with respect to effectiveness

and efficiency for large data sets from the geographic and music domains.

1 Introduction

Linking entities from various sources and domains is one of the crucial steps to sup-

port data integration in the Web of Data. A manual generation of links is very time-

consuming and nearly infeasible for the large number of existing entities and data

sources. As a consequence, there has been much research effort to develop link discov-

ery (LD) frameworks [16] for automatic link generation. Platforms like datahub.io

and sameas.org or repositories such as LinkLion [17] and BioPortal [21] collect and

provide large sets of links between numerous different knowledge sources. They are

valuable resources to improve the availability and re-usability of links in applications

and avoid an expensive re-determination of the links. However, existing inter-source

mappings can be incomplete and so far many sources are not interrelated at all.

Due to the huge number and size of available knowledge sources, link discovery

is still a very challenging task. It is particularly complex to ensure high link quality,

i.e., the generation of correct and complete link sets. Existing link repositories cover

only a small number of inter-source mappings and automatically generated links can

be erroneous in many cases [4,19]. Despite the huge number of sources to be linked,

most LD tools focus on a pairwise (binary) linking of sources. However, link discovery

approaches need to scale for n-ary linking tasks where more than two sources need to

be matched, as well as for an increasing number of entities and sources that are added

to the Web of Data over time [22].

To address these shortcomings we recently proposed an approach to cluster linked

data entities from multiple data sources into a holistic representation with unified prop-

erties [15]. The method combines entities that refer to the same real world object in one

http://arxiv.org/abs/1708.09299v1

cluster instead of maintaining a high number of binary links for k sources. The approach

is based on existing owl:sameAs links and can deal with entities of different semantic

types as they occur in many sources (e. g., geographical datasets contain various kinds

of entities such as countries, cities, lakes). It can further eliminate wrong links from ex-

isting link sets and identifies many new links, e. g., for previously unconnected sources.

The clustered representation of entities with their properties and a cluster representative

is more compact and comprehensive, allows central maintenance and access, and facil-

itates the integration of new data sources and entities. The clustering-based approach

complements existing link discovery approaches to provide a compact and fused rep-

resentation of entities. Initial clusters can further serve as a basis for an incremental

extension of clusters by newly added entities as outlined in [22].

Considering the huge size and number of sources to be linked, scalability becomes a

major issue. Workflows for linking and/or clustering of entities usually comprise several

complex phases such as similarity computation to find similar entities or clusters that

need to be merged. Therefore, a distributed realization of holistic clustering approaches

for k data sources would be valuable to improve its efficiency. In particular, complex

operations should be executed in parallel in a distributed environment in order to re-

duce execution time and to enable scalability for large real-world datasets. Big Data

frameworks like Apache Spark [25] or Apache Flink [2] provide fast execution engines

to process very large datasets in a distributed environment. These generic frameworks

allow to define complex data processing workflows using common operators like map
or join as well as user-defined functions. So far there has been only few related work

considering distributed clustering for linked data and data integration workflows. With

regard to the ever increasing amount of data that needs to be linked and integrated in

typical big data processing workflows, it is essential to develop scalable solutions for

link discovery and holistic entity clustering.

A further and long-standing problem is the poor availability of reference datasets

that can be used as gold standard for quality evaluations. Since LD tools usually fo-

cus on pairwise matching, the few existing benchmarks cover links between two data

sources. However, there is an increasing need to evaluate the effectiveness of multi-

source clustering, as holistic data integration scenarios like the construction of knowl-

edge graphs gains increasing research interest [3,20]. The creation of new reference

datasets for quality evaluation of n-ary linking and clustering approaches can be use-

ful for the community and support the development of improved holistic clustering

approaches.

In this work, we study distributed holistic clustering as well as its evaluation on

real-world data from different domains. We make the following major contributions:

– We present a distributed holistic clustering approach for linked data to enable an

effective and efficient clustering of large entity sets from many data sources. The

implementation is based on the distributed data processing system Apache Flink.

– We provide a novel reference dataset for multi-source clustering from the geo-

graphic domain. We evaluate the effectiveness of our approach with the new gold

standard and a further artificial dataset from the music domain.

– We further evaluate the efficiency and scalability of the distributed holistic cluster-

ing for very large datasets with millions of entities from the two domains.

The remainder of the paper is organized as follows. We first introduce preliminaries

w.r.t. link discovery and the holistic clustering approach (Section 2). In Section 3 we

present the implementation of the distributed holistic clustering. We present the cluster-

ing gold standard in Section 4.2 and show evaluation results in Section 4. Finally, we

discuss related work in Section 5 and conclude in Section 6.

2 Preliminaries

2.1 Link Discovery

Link discovery (LD) has been studied intensively and there is a large number of ap-

proaches and prototypes available [16]. LD tools usually identify owl:sameAs links

between entities that denote the same real-world object. However, link discovery might

also include the identification of links with other semantics such as the association

dbp:birthPlace between a person and a city. Entities are described by a unique

URI, e. g., http://dbpedia.org/page/Leipzig, and can have different se-

mantic types, e. g., dbo:Country or dbo:City for the geographic domain. Each en-

tity can be further described by specific properties from ontologies such as rdfs:label.

The matching process usually covers the computation of similarity values for pairs of

entities, and candidate links are subsequently filtered by selection strategies based on

the link similarity. The herein presented approach complements existing binary LD ap-

proaches for linking two data sources by allowing for a distributed holistic clustering of

entities from k different data sources S. Same-as links created via binary LD constitute

a mapping Mi,j = {(e1, e2, sim)|e1 ∈ Si, e2 ∈ Sj, sim[0, 1], i 6= j, 1 ≤ i, j ≤ k}. We

reuse existing mappings between different data sources M =
⋃k

i,j=1
Mi,j as input for

the holistic clustering.

2.2 Holistic Clustering Workflow

In our previous work [15] we presented the holistic clustering workflow shown in Fig-

ure 1. Here we present the realization of the holistic clustering in a distributed environ-

ment for improved performance and scalability of the approach. We therefore use the

distributed processing system Apache Flink as well as its graph-processing API Gelly.

Our implementation is based on the property graph model. The input of the workflow

is a graph G = (V , E) with a set of vertices (entities) V = {v} with each vertex hav-

ing an unique identifier and domain-specific properties, e. g., v = {id, label, source,

type, . . .}, as well as a set of edges (links) E = {e} where each edge has a source

and a target vertex id in V . Edges may also have additional properties like a similar-

ity value. The input graph G is a similarity graph constructed based on an existing

mapping of input links M, e. g., from an publicly available link repository. For our rep-

resentation of clusters we define a set of clusters C = {C} where each C ∈ C has a

cluster id cid, a set of contained vertex ids from V and a cluster representative r con-

taining unified properties like a label, a semantic type and the original data sources,

e. g., r = {label, {v1, v2, . . . }, {Si, Sj, . . . }, {t1, t2, . . . }, . . . }. Although input links

Fig. 1: Holistic Clustering Workflow

might be associated with similarity values, we compute new similarities between ver-

tices within clusters (intra-cluster edges EC) to enable the use of sophisticated measures

and to ensure comparability of link similarities within our workflow.

The basic holistic entity clustering [15] employs a four-phase approach (see Fig-

ure 1). During Preprocessing we normalize properties for vertices and harmonize their

semantic types. The harmonization is necessary since semantic type information can

differ substantially between different sources, and might also be missing. We therefore

use background knowledge about type equivalences and comparability to harmonize

original types to more general ones, e. g., city, town and suburb refer to the more general

type settlement. For duplicate-free data sources there should be at most one equivalent

entity in another data source. For entities with several links to entities from the same

source (1:n links), we therefore only keep the best link for the considered entity in or-

der to ensure the one-to-one cardinality. As an Initial Clustering we compute connected

components for the input graph G. Within each initial cluster C ∈ C we then compare

all covered vertices based on different similarity measures to obtain a set of intra-cluster

edges EC and similarity values for the subsequent steps. In the Cluster Decomposition

phase we refine the clusters by splitting them according to semantic type information

and edge similarities within the cluster. Each cluster should only contain vertices of

the same semantic type, and edges within a cluster have to exceed a certain similarity

threshold. Vertices that do not fulfill these criteria constitute a new cluster. For each

cluster we create a cluster representative by combining property and data source infor-

mation from the covered vertices. The final Cluster Merge phase aims at combining

smaller but similar clusters. Therefore, we first compute similarities between different

clusters, and then iteratively merge the best matching cluster combinations, respectively,

checking constraints like the maximal possible cluster size k and already covered data

sources within a cluster. In the here presented implementation we further employ a new

blocking step prior to the matching of the cluster representatives in order to reduce the

search space and avoid unnecessary comparisons.

In contrast to [15], this paper outlines a distributed implementation of the holistic

clustering approach as well as a comprehensive evaluation of its quality and efficiency.

3 Implementation of Distributed Holistic Clustering

In this section we outline the workflow and implementation for our distributed holistic

clustering approach based on the big data stream and batch processing system Apache

Flink [2]. We first introduce the used transformation operations from Apache Flink as

well as graph datasets provided by Flink’s graph processing engine Gelly (Section 3.1).

We then present the transformation and adaptation of the holistic clustering approach

towards a distributed processing workflow using Apache Flink/Gelly (Section 3.2).

3.1 Apache Flink and Gelly API

For our approach we make use of the batch processing part of Apache Flink. It pro-

vides the DataSet API and well-known dataset transformations like filter, join, union,

group-by or aggregations (relational databases) and map, flat-map and reduce (MapRe-

duce paradigm). Special in-memory, distributed data structures called DataSets store

data within Flink programs. DataSets can be manipulated based on so called trans-

formations that return a new DataSet. Some transformation operations make use of

user-defined functions (UDFs) and allow for customized definitions how DataSet val-

ues need to be changed. Flink optimizes the execution of succeeding transformations,

employs lazy evaluation and avoids intermediate materialization of results. A set of li-

braries provides additional functionality for Flink such as complex event processing,

graph processing or machine learning. We will make use of the graph processing en-

gine (Gelly) in our holistic clustering workflow. In particular, we employ Gelly graphs

containing a DataSet of vertices and edges

class Graph<K, VV, EV> graph

DataSet<Vertex<K, VV>> vertices;

DataSet<Edge<K, EV>> edges;

}

The complex data types Vertex and Edge are inherited from the Flink Tuple

classes Tuple2<K,VV> (type K as vertex id, VV as vertex value), Tuple3<K,K,EV>

(source vertex id, target vertex id (each type K) and EV as edge value), respectively.

Operators like join, filter or group-by rely on tuple positions (starting from 0), e. g.,

vertices.join(edges)

.where(0).equalTo(1)

.with((vertex, edge) -> new Tuple1<>(edge.getSimilarity))

.filter(tuple -> tuple.f0 >= 0.9);

will join all edges with the vertices where the vertex id (position 0 in vertices)

equals the target id of the edge (position 1 in edges) and returns the similarity value

if the accompanied filter function is evaluated and returns true. Please see Table 1 for

more detailed explanations on transformations that we use within our approach. De-

pending on the physical data distribution, data needs to be shuffled across cluster nodes

to execute transformations such as join or group-reduce requiring a reorganisation of

data w.r.t. the used (grouping) key. Strategies like repartition/map-side join or group-

reduce/combine can be applied to reduce the necessary network traffic.

Besides the used graph data model we benefit from Flink’s and Gelly’s abstract

graph processing operators like graph neighborhood aggregations or abstracted models

for iterative computations. In particular, we will make use of the Flink delta iteration in

different variations, e. g., vertex-centric iteration (Pregel [12]), gather-sum-apply com-

putation (PowerGraph [5]) or custom implementations for delta iterations as discussed

in the following sections.

Operator Description

(Flat)Map

Map- and FlatMap transformations apply a UDF on each element of the

DataSet. Map functions emit exactly one resulting element per input while

FlatMap functions may emit arbitrary result elements (including none).

input.map(udf: IN -> OUT)

Filter Return all DataSet elements for which the UDF returns true.

input.filter(udf: IN -> Boolean)

(Flat)Join

A Join transformation combines elements of two DataSets with equal values on

(tuple) key(s) and creates exactly one result element for Join and arbitrary result

elements for the FlatJoin based on a UDF .

leftInput.join(rightInput).where(leftKeys)

.equalTo(rightKeys).with(udf: (left,right) -> OUT)

ReduceGroup
Elements in a DataSet can be grouped on keys of the DataSet fields. Each group

executes a user-defined group-reduce function.

input.groupBy(keys).reduceGroup(udf: IN -> OUT)

Aggregate Aggregations like sum, min, max or UDFs can be applied to grouped DataSets

input.aggregate(SUM, key);

Table 1: Apache Flink DataSet transformations used for holistic clustering approach.

3.2 Holistic Clustering

In this section, we will discuss the transformation and adaptation of the holistic clus-

tering workflow towards a distributed processing workflow in Apache Flink. From a

high-level perspective, we read input vertices and edges into a Gelly graph and apply a

set of transformation operators to generate entity clusters. Intermediate results are rep-

resented as Gelly vertices, edges and graphs and can be written to disk, e. g., as JSON.

Within complex transformations we remove unneeded properties using Flink TupleX

representation instead of Vertex or Edge to reduce the amount of network traffic and

memory consumption. We illustrate the workflow steps using the running example in

Fig. 2. There are six input edges E and seven input vertices V further described by a

label (l1, l2, . . .), the originating data source from S and colored dependent on their

semantic type (t1, t2 or no type).

Preprocessing During preprocessing we apply several user-defined functions on the

input graph, e. g., to harmonize semantic type information, remove inconsistent edges

and vertices and normalize the label property value. First, we compute similarities only

for given input edges based on vertex property values. For each vertex, we carry out

a consistency validation using grouping on adjacent vertices and associated edges, and

further remove neighbors with equal data sources (for details see [15]). For vertices with

multiple semantic type values we ensure that grouping on the type supports overlapping

type information for later processing. For clarity reasons, we do not use multiple types

in our running example. We also omit the preprocessing step in the example (Fig. 2)

and directly start with the preprocessed input graph G = (V , E).

Fig. 2: Example clustering workflow.

Initial Clustering To determine initial clusters, we use a gather-sum-apply operator

to determine the connected components (CC) within G and assign a cluster id to each

vertex. In the example, vertices 1-4 obtain obtain cluster ids cid1 and vertices 5-7 cid5.

With these cluster ids, we generate all missing links within each cluster. We therefore

use a CoGroup function on cluster ids of all vertices, combine vertices within clus-

ters to get intra-cluster edges EC and compute similarities for these edges. We apply a

combination of similarity measures on different properties such as a linguistic similar-

ity on labels and other properties and possibly further domain-specific measures like a

normalized geographical distance.

Type-based Grouping Type-based grouping is the first part of the decomposition

phase to split clusters into sub-components dependent on the compatibility of semantic

types. Fig. 3 a shows the sequence of applied transformations and short descriptions.

First the initially clustered vertices are grouped on their cluster ids. Each cluster group

executes a ReduceGroup function to assign new cluster ids based on different semantic

type, e. g., in the example vertex 3 and 4 are separated from vertex 2. All vertices with-

out type (like vertex 1) require a special handling. We apply GroupReduceOnNeighbors

(a Gelly CoGroup function to handle neighboring vertices and edges for each vertex)

to produce Tuple4 objects for vertices with missing semantic type. In our example,

vertex 1 creates a Tuple4<>(id,sim,type,cid) for each of its outgoing edges

((1, 2), (1, 3), (1, 4)), namely Tuple4<>(1, 1.0, t 1,cid1) for edge (1, 2) and

Tuple4<>(1, 0.8, t 2, cid2) for edge (1, 3) and (1, 4). Now, grouping on

the vertex id executes an aggregation function for each group to return the tuple with

the highest similarity per vertex, which is Tuple4<>(1, 1.0, t 1, cid1) for

vertex 1 in our running example. Finally, the vertices from the initial group-by (see

Fig. 3 a are joined with the remaining Tuple4 objects to update vertices without se-

mantic type with their new cluster id, e. g., vertex 1 is assigned to cluster cid1. The

result of the type-based grouping is a set of clusters with intra-cluster edges.

Similarity-based Refinement We further decompose clusters by removing non-similar

entities that do not match with other entities in their cluster. This part is realized us-

ing the Gelly vertex-centric iteration. Basically, the implemented vertex-centric itera-

Fig. 3: Sub-workflows with operators for type-based grouping (a) and similarity-based

refinement (b).

tion switches between a custom MessagingFunction and a VertexUpdateFunction (see

Fig. 3 b for details), an iteration round is called superstep. In the first round, all vertices

are active and therefore send messages to all their neighbors. Messages are Tuple3

objects containing the originating id, the edge similarity and an average edge similarity

asim over all incoming messages (which is 0 in the first iteration). Starting with the sec-

ond iteration, we illustrate the sent messages for vertex 7 in cluster cid5 in our example:

vertex 5 sends Tuple3<>(5, 0.4, 0.65) to 7, vertex 6 sends Tuple3<>(6,

0.3, 0.6) to 7 and vertex 7 sends messages to 5 and 6, resulting in the average simi-

larity asim = (0.4+0.3)/2 = 0.35 for vertex 7. Now in each cluster the vertex with the

lowest asim will be deactivated (and is therefore excluded from the cluster) given that

this asim is below a certain similarity threshold. In our example in Fig. 2, vertex 7 with

asim = 0.35 will be deactivated and isolated into cluster cid7. The vertex-centric iter-

ation terminates based on these criteria: First, vertices only send messages when their

own vertex value was updated in the current round. Second, all deactivated vertices will

never send messages again. Lastly, a maximum number of iteration rounds can be set.

Cluster Representative As final step in the decomposition phase, we create a repre-

sentative for each cluster. Therefore, a GroupReduce function based on the cluster id

is used to combine property values to a unified representation. To determine the cluster

representative, we aggregate cluster information about the covered data sources, seman-

tic types and contained vertices and select the best values for certain properties such as

label or geographic coordinates using the GroupReduce on clusters. Detailed examples

for representants are shown in Fig. 2 (rcid1, rcid3, rcid5 and rcid7).

Cluster Merge For the final merge phase in our distributed holistic clustering work-

flow we use the Flink DeltaIterate operator together with user-defined functions. The

main operators are sketched in Fig. 4. During merge, we iteratively aggregate highly

similar (likely small) clusters into larger ones. With the creation of representatives for

each cluster, we already reduced the amount of entities to handle in the merge step.

Due to the fact that we potentially compare every cluster with every other cluster, the

quadratic complexity can become a problem for very large cluster sets. Thus we em-

ploy blocking strategies and avoid unnecessary comparisons. Currently we implement

standard blocking on specified property values such as using the first letters of the label

Fig. 4: Sequence of transformations for the cluster merge using Flink DeltaIteration

as blocking key. We avoid further unnecessary comparisons since we do not compare

representatives with incompatible types based on semantic type and check for already

covered data sources since we assume duplicate-free data sources. In our example in

Fig. 2 three blocks are shown for the blocking: rcid1 and rcid5 need to be compared,

such that a triplet (rcid1, 0.9, rcid5) is created as a merge candidate. For rcid3, no merge

candidate is created because there is no other representative with type t2, whereas rcid7
is in a separate block due to its dissimilar label compared to other representatives.

The delta iteration is started with an initial solution set containing the previously

determined clusters and an initial workset (merge candidates) as seen in Fig. 4. Within

each iteration of DeltaIterate, a custom step function works on the current workset to

update the workset and to generate changes on the current solution set. The next work-

set and the updates to the solution set are then passed to the next iteration step. In

detail, the workset is grouped by the blocking key and for each block the triplet with

the highest similarity exceeding the minimum similarity is selected using a custom Re-

duce function. For our running example, (rcid1, 0.9, rcid5) is the best merge candidate

and therefore merged with a custom FlatMap function. The new cluster rcid1 contains

combined values for properties like sources S = {A,B,C,D}, the list of contained

vertices ({1, 2, 5, 6}) and unified properties like the label l1. This will directly affect

the cluster representatives in the solution set, and the already merged cluster rcid5 will

be deactivated in the solution set. Now the merge candidates within the workset are

adapted based on changed clusters within the iteration step (see Fig. 4 solution set).

Deactivated cluster representatives are replaced by the appropriate new cluster (here

rcid1), and merged triplets ((rcid1, 0.9, rcid5)) as well as generated duplicate triplets are

removed from the workset. Again, triplets are discarded if the data sources for the par-

ticipating clusters overlap or exceed the maximum possible number of covered sources.

The delta iteration ends either when the workset is empty (default, and true for our run-

ning example after the first iteration) or a maximum number of iterations took place.

Note, that for larger datasets, parts of the dataset will converge faster to a solution, when

clusters can not be merged anymore. These parts will not be recomputed in following

iterations, such that only smaller parts of the data will be handled.

4 Evaluation

In the following we evaluate our distributed holistic clustering approach w.r.t. effec-

tiveness and efficiency for datasets from the geographic and music domains. We first

describe details of the used datasets (Section 4.1). We then present a novel reference

dataset for multi-source clustering and describe its creation process (Section 4.2). Based

on this real-world and a further artificial reference dataset, we evaluate the effectiveness

of our approach (Section 4.3). Based on large datasets from the geographic and music

domains we also analyze the efficiency and scalability of the distributed holistic clus-

tering approach.

4.1 Datasets

To evaluate the distributed holistic clustering, we use five datasets of different sizes

from the music and geographic domains. Table 3 shows the available property values

for entities, the number of covered entities and sources, as well as the number of cor-

rect links and clusters in the used reference mappings. Datasets DS1 and DS3 are used

to evaluate the quality of entity clusters generated by the distributed holistic clustering

while DS2, DS4 and DS5 are used to analyze the efficiency and scalability of our ap-

proach (see Section 4.3). In the following, we briefly describe the datasets for the two

domains before we describe the novel reference dataset for multi-source clustering in

Section 4.2.

Geographic Domain We use two datasets (DS1, DS2) from the geographic domain,

covering entities from the data sources DBpedia, GeoNames, NY Times, Freebase for

DS1 and additionally LinkedGeoData for DS2. Entities for both datasets have been en-

riched with properties like entity label, semantic type, and geographic coordinates by

using provided SPARQL endpoints or REST APIs. DS1 is based on a subset of existing

links provided by the OAEI 2011 Instance Matching Benchmark4 that is also a subset

of DS2. Figure 5 shows the number of input entities and resulting numbers of links

and clusters for the holistic clustering. The 3,054 entities in DS1 create a novel rev-

erence dataset for multi-source clustering (see Section 4.2). Dataset DS2 covers about

4
http://oaei.ontologymatching.org/2011/instance/

domain entity properties dataset #entities #sources #correct links #clusters

geography
label, semantic type, DS1 3,054 4 4,391 820

longitude, latitude DS2 1,537,243 5 - -

music

artist, title, album, DS3 19,375 5 16,250 10,000

year, length, DS4 1,937,500 5 1,624,503 1,000,000

language, number DS5 19,375,000 5 16,242,849 10,000,000

Table 3: Overview of evaluation datasets. Number of resulting clusters and deduced

correct links are given for reference datasets.

http://oaei.ontologymatching.org/2011/instance/

Fig. 5: Dataset structures for DS1 (a), DS2 (b) and DS3 (c) with number of entities and

links.

1.5 million entities from five sources (see Fig. 5 b) and originates from the link reposi-

tory LinkLion [17]. We reuse about 1 Mio existing owl:sameAs links from LinkLion

as input for the holistic clustering. However, there is no reference dataset available to

evaluate the quality of created clusters for dataset DS2. We use DS2 to evaluate the

scalability of our approach for very large entity sets.

Music Domain The publicly available Musicbrainz dataset covers artificially adapted

entities to represent entities from five different data sources [8]5. Every entry in the input

dataset represents an audio recording and has properties like title, artist, album, year,

language and length. The property values have been partially modified and omitted to

generate a certain degree of unclean data and duplicate entities that need to be identified.

This includes format changes for properties like year (e. g., ′06, 06 or 2006) and song

length (2m 4sec, 02:04, 124000 or 2.0667).

The artificially generated datasets cover between 19,375 and 19,375,000 tuples (see

Table 3, DS3 to DS5). Each of the datasets contains a fixed proportion for each cluster

size: cluster size 1 (50%), size 2 (25%), size 3 (12.5%), size 4 and 5 (6.25%, resp.).

This means, that for instance 12.5% of all entities are in clusters of size 3. Beside a

set of artificially created duplicates, each dataset covers cluster ids from which links

between entities, that refer to the same object, can be easily derived. Resulting clus-

ters cover between about 16,000 and 16,000,000 links and up to 10 million clusters.

DS3 will be used for quality evaluation, while DS4 and DS5 are used to analyze the

scalability of the distributed holistic clustering.

4.2 Reference Dataset for Multi-source Clustering

We created a new manually curated reference dataset for multi-source clustering to

support the evaluation of holistic clustering approaches w.r.t. the quality of generated

clusters. Available benchmarks usually only contain links between two data sources.

We here provide a gold standard based on real-world data from the geographic do-

main and make it available for other researchers. The reference dataset covers the

input dataset and the perfect cluster result as JSON files and can be downloaded at

https://dbs.uni-leipzig.de/research/projects/linkdiscovery.

The reference dataset is a selection of entities with the semantic type “settlement”

from the location subset of the OAEI 2011 Instance Matching Benchmark. We made a

5 Musicbrainz test data https://vsis-www.informatik.uni-hamburg.de/oldServer/teaching//projects/QloUD/DaPo/testdata/

https://dbs.uni-leipzig.de/research/projects/linkdiscovery
https://vsis-www.informatik.uni-hamburg.de/oldServer/teaching//projects/QloUD/DaPo/testdata/

Fig. 6: Visualization of an incorrect cluster for two different settlements named

“Brezinka” and “Birkenau” connected by an incorrect same-as link. Cluster representa-

tives are illustrated by rectangles (on the left), while vertices are shown as circular pins

(on the right).

manual selection decision for vertices using available properties and edges. We further

checked the correctness of semantic types. For instance, the vertex for “Canary Island”

was removed since its correct type in the geographic dataset should be “island” instead

of “settlement”. Removing a vertex resulted in the deletion of all its associated edges.

For manual curation we visualized the data using an open-source geographic map tool
6(see Fig. 6). To determine the perfect clusters and check for the correctness of the

input data, we used two views on the data. First, the original links are represented as

(thick) yellow links. The second view shows the resulting clusters created by the holistic

clustering approach. Colored circular pins represent actual vertices with their properties,

while rectangular pins illustrate the newly determined cluster representatives with label,

type, and vertices within the cluster. The pin color distinguishes different clusters.

In particular, correct clusters were defined based on the results of the holistic clus-

tering. In case of doubt, Wikipedia was used as additional knowledge source about

certain geographical entities. For each cluster, we decided whether it was correct or

needs to be deleted, split into several clusters or merged with another cluster. During

the manual curation, all clusters of maximum size (w.r.t. the number of data sources)

were correct. Modifications to obtain the perfect result included the addition of further

vertices to a cluster or removing vertices from clusters. For example in Fig. 6, the orig-

inal Birkenau/Brzezinka cluster needs to be split into two clusters due to a wrong link

between two distinct geographic places. In the original data the cluster covered all four

entities. The holistic clustering determined two clusters. The green pin labeled Birke-

nau (Poland) by NYTimes, as well as the purple pin next to it (labeled Brzezinka by

GeoNames) should actually form one cluster. The two vertices of the south-east cluster

are another settlement in Poland which has the same name, Brzezinka. The example

represents a difficult case for automatic clustering and linking due to very differing ver-

tex labels. The resulting reference dataset covers 820 cluster representatives containing

information on covered cluster vertices. Based on the cluster ids one can easily derive

all intra-cluster links to obtain the set of all correct links.

6 uMap https://umap.openstreetmap.fr/en/, import data as GeoJSON

https://umap.openstreetmap.fr/en/

config 1 config 2 config 3

P R F1 P R F1 P R F1

input links 0.933 0.806 0.865 0.964 0.938 0.951 0.981 0.799 0.881

best (star1, star2) 0.863 0.844 0.853 0.963 0.941 0.952 0.951 0.838 0.891

holistic 0.903 0.824 0.862 0.913 0.919 0.916 0.968 0.836 0.897

Table 4: Evaluation of cluster quality for geography dataset DS1 w.r.t. precision (P),

recall (R) and F-measure (F1).

4.3 Experimental Results

We now present evaluation results w.r.t. the quality of the determined clusters as well

as the scalability of the distributed holistic clustering for the five datasets DS1-DS5.

Setup and Configurations The experiments are carried out on a cluster with 16 work-

ers, each of them equipped with a Intel Xeon E5-2430 6x 2.5GHz, 48GB RAM, 2x

4GB SATA disks and 1GBit ethernet connection. The machines operate on Open-

SUSE 13.2 using Hadoop 2.6.0 and Flink 1.1.2. All experiments are carried out three

times to determine the average execution time.

In order to obtain input link datasets to apply holistic clustering on the geographic

dataset DS1, we applied LD methods on the input entities using three different con-

figurations (config 1, config 2, config 3). All configurations compute similarities based

on JaroWinkler on the entity label; configurations 2 and 3 additionally compute a nor-

malized geographic distance similarity below a maximum distance of 1358 km. Config

1 applies a minimal similarity threshold of 0.9 for labels while configs 2 and 3 apply

threshold 0.85 and 0.9 for the average label and geographic similarity, respectively.

Links for DS2 were extracted from the LinkLion [17] repository, and have been com-

puted by different LD tools from the community.

For the music dataset DS3 we created input links using a soft TF/IDF implementa-

tion weighted on title (0.6), artist (0.3) and album (0.1) with a threshold of 0.35. DS4

and DS5 are used to show scalability, therefore, we simply create edges based on the

cluster id from the perfect result by linking the first entity of each cluster with all its

neighbors.

Quality We now analyze the achieved cluster quality for the geographic dataset DS1

based on precision, recall and F-measure. We first use existing input links from the

considered subset in the original OAEI dataset (see Fig. 5 a). This manually curated

benchmark achieves a precision of 100%. However, many links between certain data

sources are missing leading to a reduced recall of only 50%, and a F-measure of 66.7%.

With the holistic clustering approach, we achieve very good results w.r.t. recall (97.1%)

while preserving a good precision (99.8%) resulting in the F-measure of 98.5%. This

shows that our approach produces high-quality clusters based on existing input links

thereby finding many new links.

However, as input mappings are not perfect in real-world situations, we used auto-

matically generated input links for three linking configurations (config 1-3) as described

P R F1

input links 0.835 0.783 0.808

holistic 0.890 0.861 0.876

Table 5: Evaluation of cluster quality for music dataset DS3 w.r.t. precision (P), recall

(R) and F-measure (F1).

#workers pre dec merge total

1 312 668 351 1331

2 164 367 268 799

4 79 231 207 518

8 45 130 186 361

16 23 42 162 227

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Linear
pre (preprocessing)
dec (decomposition)
merge
total

Fig. 7: Execution times (left) in seconds and speedup (right) for geographic dataset DS2

for the single workflow phases and total workflow.

above. To evaluate the cluster quality, we further compare our results with recently pub-

lished results from [23]. The work implemented several existing clustering algorithms.

Here, we only select the respectively best results achieved with two versions of Star

clustering [1] (star1, star2). It is important to note that in contrast to our holistic clus-

tering approach, star clustering creates overlapping clusters, thus clusters may contain

duplicates. Besides, star clustering does not create a compact cluster representation. Ta-

ble 4 shows results w.r.t. the cluster quality for the computed input links, the best result

of (star1, star2) and our distributed holistic clustering approach. The holistic clustering

(F-measure 86.2%) nearly retains the input link quality (86.5%) for config 1, while

best(star1, star2) achieves slightly worst results. For config 2, the star2 implementation

achieves a slightly better F-measure (95.2%) compared to the input mapping (95.1%).

For config 3 the holistic clustering improves the quality of the input mapping by 1.6%
w.r.t. F-measure (89.7%).

For the music domain, we evaluate the cluster quality for DS3 using a set of com-

puted input links (see setup in Section 4.3). Overall, the quality of the input links is

lower than for DS1. Due to strongly corrupted entities and more properties, DS3 is more

difficult to handle. Applying the holistic clustering, we identify a quality improvement

for both precision and recall, resulting in a significant increase of F-measure by approx.

7% to 87.6% (see in Table 5) showing that our holistic clustering approach is able to

handle such unclean data.

Overall, the holistic approach achieves competitive results although the DS1 dataset

facilitates achieving relatively good input mappings making it difficult for any cluster-

ing approach to find additional or incorrect links.

#workers pre dec merge total

1 423 419 608 1450

2 224 236 417 876

4 121 123 301 545

8 62 73 238 372

16 40 35 237 312

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Linear
preprocessing
decomposition
merge
total

Fig. 8: Execution times (left) in seconds and speedup (right) for music dataset DS4 for

the single workflow phases and total workflow.

Scalability To evaluate the distributed holistic clustering w.r.t. efficiency and scala-

bility, we determine the absolute execution times as well as the speedup for the very

large geographic (DS2) and music datasets (DS4, DS5). In Flink, several options allow

the fine-tuning of parameters for a distributed cluster environment. In most cases the

reasonable way to improve execution times for very large datasets is the increase of

deployed workers. Another important parameter is the parallelism to specify the maxi-

mum number of parallel instances of operators or data sinks/sources that are available to

process data within a Flink workflow. We here used the parallelism equal to the number

of workers, for which we achieved the best execution times.

Fig. 7 and Fig. 8 show the achieved execution times for DS2 and DS4, respectively,

for different phases of the clustering workflow as well as the overall workflow execu-

tion time. For each phase, an increased number of workers leads to improved execution

times. For both domains, the best improvement can be achieved for the preprocessing

(pre) and decomposition (dec) phases. The merge phase is by far more complex. While

preprocessing and decomposition operate within connected components and clusters,

the merge phase attempts to combine similar clusters based on the assignment in the

blocking step and therefore can suffer from data skew problems for some blocks. These

effects become also clear in Fig. 7 and Fig. 8 showing the speedup results compared

to the linear optimum. Preprocessing and decomposition achieve nearly linear speedup,

while the merge phase shows decreased speedup values. In total, we achieve a good

speedup of 5.86 for the large geographic dataset DS2 and 4.65 for the large music

dataset DS4. For the largest dataset DS5 with ≈ 20 million entities, we could deter-

mine results for two configurations: 8 workers could finish the complex task in 43,589
seconds, and 16 workers finished after 24,722 seconds (reduced by factor ≈1.8).

Overall, the distributed holistic clustering achieves good execution times and mod-

erate scalability results for very large entity sets. The approach is scalable for different

data sources and employs a multi-source clustering instead of basic binary linking of

two sources. The distributed implementation further allows to scale for a growing num-

ber of entities and data sources and is very useful for complex data integration scenarios

in big data processing workflows.

5 Related Work

Link discovery (LD) has been widely investigated and there are many approaches and

prototypes available as surveyed in [16]. Typical LD approaches apply binary linking

methods for matching two data sources but lack efficient and effective methods for inte-

grating entities from k different data sources to provide a holistic view for linked data.

Some approaches enable distributed link discovery or for matching two data sources.

For instance, Silk MapReduce [10] and Limes [9] realized LD approaches based on

MapReduce before distributed data processing frameworks like Spark or Flink became

state of the art. Similarly, the entity resolution framework Dedoop [11] allows to exe-

cute complex matching workflows on MapReduce. These tools suffer from limitations

of MapReduce like repeated data materialization within and between single jobs and the

lack of iterations. They further focus on pairwise matching and do not support holistic

clustering for multiple data sources or the reuse of existing links sets.

While LD is driven by pairwise linking of data sources, support for multiple data

sources can be found in related research areas. In [6] ontology concepts from multiple

data sources are clustered based on topic forests for extracted keywords from concepts

and their descriptions to determine matching concepts within groups of similar topics.

In [13] a maximum-weighted graph matching and structural similarity computations

are applied to concepts of multiple ontologies to find high quality alignments. However,

these holistic ontology matching approaches do not focus on clustering of concepts or

entities and have limitations w.r.t. scalability for LD and many large entity data sources.

There are few LD approaches that apply clustering or linking for linked data on

multiple sources. Thalhammer et al. [24] present a pipeline for web data fusion us-

ing multiple data sources applying hierarchical clustering, cluster refinement and se-

lection of representatives to achieve a similarity-based clustering with unified entities.

The unsupervised LD approach Colibri [18] considers error detection and correction

for link discovery in multiple knowledge bases based on the transitivity of interlinked

entities, while clustering of entities is not the main focus. These approaches do not real-

ize distributed clustering or linking and have not been evaluated w.r.t. scalability. There

has been some research for distributed clustering methods such as community detec-

tion within social networks, e. g., using MapReduce [14] or MapReduce and Spark [7].

However these approaches do not focus on complex link discovery and data integration

workflows, and partially suffer from MapReduce limitations. The work in [23] con-

siders the implementation of existing clustering algorithms on top of Apache Flink for

entity resolution and de-duplication of several data sources. The approach does not han-

dle incorrect links and does no use semantic type information. It further does not create

representatives for a compact cluster representation as useful for further applications.

In own previous work [15], we proposed a holistic clustering approach for mul-

tiple Linked Data sources with few initial evaluation results. Here we present an ex-

tended workflow implementation, in particular the realization of holistic clustering in

a distributed environment, and show comprehensive evaluation results w.r.t. to cluster

quality based on a novel gold standard, as well as scalability for datasets covering very

large entity sets from multiple different data sources and domains. The created compact

cluster representation is particularly useful for reuse and incremental cluster extension.

6 Conclusion

We presented a distributed holistic clustering workflow for linked data using the dis-

tributed data processing framework Apache Flink. Our approach is based on the reuse

of existing links and is able to handle entities from various different data sources. We

showed the realization of a complex holistic clustering workflow with dataset trans-

formations and user-defined functions. Albeit based on Apache Flink, the approach

could be also implemented on other frameworks for distributed data processing such

as Apache Spark. We further provide a novel gold standard for multi-source clustering

from the geographic domain to support the development and evaluation of novel holis-

tic clustering methods. evaluation results for datasets from two different domains with

up to 20 million entities. Our results showed that the proposed approach can achieve a

very high cluster quality. In particular, we were able to find many new correct links and

could remove wrong links within our clustering workflow. We further presented results

for a distributed execution of the holistic clustering in a parallel cluster environment

with very good execution times for the considered dataset sizes as well as good overall

scalability results.

For future work, we plan to further improve the scalability of our approach, e. g.,

by realizing sophisticated blocking and load balancing methods for the complex clus-

ter merge phase. We further plan the development and combination with an incremental

clustering to support the addition of new entities and data sources and to particularly ad-

dress the ongoing growth of the Web of Data and the accompanied need for incremental

holistic clustering methods for LinkedData.

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) grant

number RA 497/19-2.

References

1. Aslam, J.A., Pelekhov, E., Rus, D.: The Star Clustering Algorithm for Static and Dynamic

Information Organization. J. Graph Algorithms Appl. 8, 95–129 (2004)

2. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache

FlinkTM: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38(4) (2015)

3. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S.,

Zhang, W.: Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion. In:

SIGKDD Int. Conference on Knowledge Discovery and Data Mining. pp. 601–610 (2014)

4. Faria, D., Jiménez-Ruiz, E., Pesquita, C., Santos, E., Couto, F.M.: Towards Annotating Po-

tential Incoherences in BioPortal Mappings. In: ISWC. pp. 17–32 (2014)

5. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: Distributed Graph-

Parallel Computation on Natural Graphs. In: Thekkath, C., Vahdat, A. (eds.) OSDI, Holly-

wood, CA, USA. pp. 17–30. USENIX Association (2012)

6. Grütze, T., Böhm, C., Naumann, F.: Holistic and Scalable Ontology Alignment for Linked

Open Data. In: WWW2012 Workshop on Linked Data on the Web (2012)

7. Guo, K., Guo, W., Chen, Y., Qiu, Q., Zhang, Q.: Community discovery by propagating local

and global information based on the MapReduce model. Information Sciences 323 (2015)

8. Hildebrandt, K., Panse, F., Wilcke, N., Ritter, N.: Large-Scale Data Pollution with Apache

Spark. IEEE Transactions on Big Data PP(99), 1–1 (2017)

9. Hillner, S., Ngonga Ngomo, A.C.: Parallelizing LIMES for large-scale link discovery. In:

I-Semantics ’11. pp. 9–16. ACM, New York, NY, USA (2011)

10. Isele, R., Jentzsch, A., Bizer, C.: Silk Server - Adding missing Links while consuming Linked

Data. In: Proc. of the First Int. Workshop on Consuming Linked Data. CEUR Workshop

Proc., vol. 665. CEUR-WS.org (2010)

11. Kolb, L., Thor, A., Rahm, E.: Dedoop: Efficient Deduplication with Hadoop. Proc. of the

VLDB Endowment 5(12), 1878–1881 (2012)

12. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:

Pregel: A System for Large-scale Graph Processing. In: Proc. of the 2010 ACM SIGMOD

Int. Conference on Management of Data. pp. 135–146. ACM (2010)

13. Megdiche, I., Teste, O., dos Santos, C.T.: An Extensible Linear Approach for Holistic On-

tology Matching. In: The Semantic Web - ISWC 2016 - 15th Int. Semantic Web Conference.

LNCS, vol. 9981, pp. 393–410 (2016)

14. Moon, S., Lee, J.G., Kang, M., Choy, M., woo Lee, J.: Parallel community detection on large

graphs with MapReduce and GraphChi. Data & Knowledge Engineering 104, 17 – 31 (2016)

15. Nentwig, M., Groß, A., Rahm, E.: Holistic Entity Clustering for Linked Data. In: Proc. ICDM

Workshops. pp. 194–201. IEEE (2016)

16. Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current Link Discovery

frameworks. Semantic Web 8(3), 419–436 (2017)

17. Nentwig, M., Soru, T., Ngomo, A.C.N., Rahm, E.: LinkLion: A Link Repository for the Web

of Data. In: The Semantic Web: ESWC 2014 Satellite Events - ESWC 2014 Satellite Events.

LNCS, vol. 8798, pp. 439–443. Springer (2014)

18. Ngomo, A.N., Sherif, M.A., Lyko, K.: Unsupervised Link Discovery through Knowledge

Base Repair. In: The Semantic Web: Trends and Challenges - 11th Int. Conference, ESWC

2014, Anissaras, Crete, Greece, May 25-29, 2014. Proc., pp. 380–394 (2014)

19. Ngonga Ngomo, A.C., Auer, S.: LIMES - A Time-Efficient Approach for Large-Scale Link

Discovery on the Web of Data. In: Proc. of the 21. Int. Joint Conference on Artificial Intelli-

gence. pp. 2312–2317. IJCAI’11, AAAI Press (2011)

20. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A Review of Relational Machine Learn-

ing for Knowledge Graphs. Proc. of the IEEE 104(1), 11–33 (2016)

21. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin,

D.L., Storey, M.D., Chute, C.G., Musen, M.A.: BioPortal: ontologies and integrated data

resources at the click of a mouse. Nucleic Acids Research 37 (2009)

22. Rahm, E.: The Case for Holistic Data Integration. In: Advances in Databases and Information

Systems - 20th East European Conference, ADBIS 2016, Prague, Czech Republic, August

28-31, 2016, Proceedings. pp. 11–27 (2016)

23. Saeedi, A., Peukert, E., Rahm, E.: Comparative Evaluation of Distributed Clustering

Schemes for Multi-source Entity Resolution. In: Advances in Databases and Information

Systems - 21th East European Conference, ADBIS 2017. LNCS (2017)

24. Thalhammer, A., Thoma, S., Harth, A., Studer, R.: Entity-centric Data Fusion on the Web.

In: Proc. of the 28th ACM Conference on Hypertext and Social Media. ACM (2017)

25. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J.,

Shenker, S., Stoica, I.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing. In: NSDI, San Jose, CA, USA. pp. 15–28 (2012)

