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Abstract. Today, smart meters are being used worldwide. As a matter of fact
smart meters produce large volumes of data. Thus, it is important for smart me-
ter data management and analytics systems to process petabytes of data. Bench-
marking and testing of these systems require scalable data, however, it can be
challenging to get large data sets due to privacy and/or data protection regula-
tions. This paper presents a scalable smart meter data generator using Spark that
can generate realistic data sets. The proposed data generator is based on a super-
vised machine learning method that can generate data of any size by using small
data sets as seed. Moreover, the generator can preserve the characteristics of data
with respect to consumption patterns and user groups. This paper evaluates the
proposed data generator in a cluster based environment in order to validate its
effectiveness and scalability.

Keywords: Smart meter, scalable, synthetic data generator, time-series

1 Introduction

Today, with the popularity of Internet of Things (IoT) and cloud computing, the size of
data grows exponentially, posing new challenges to data analysis and management sys-
tems, such as the ability to handle petabytes of data. Traditionally, simple benchmarks
have been largely used for evaluating the systems in order to prevent unnecessary com-
plexity. On the other hand, we believe that benchmarking should meet a certain diversity
and workload requirement for obtaining meaningful results. In addition, it is preferable
to use realistic data, however, it is quite challenging to obtain a considerable size of
domain dependent data for benchmarking and experimentation purposes. For example,
limited public data sets are available in the energy(sector. Often, it is difficult to obtain
a truthful data source, primarily due to.data privacy.daws or high data storage cost. Stor-
ing petabytes of data is still fairly expensive, although it is‘'much cheaper than before.
For example, one TB standard hard drive costs about $80, approximately $0.08 per
GB. Similarly, the price for one PB of disk space approximately costs about $80, 000.
Hence, it is meaningless to store petabyte data only for testing purpose. In addition to
data storage, it is also costly to transport large amounts of data over the network, which
may consume bandwidth and time. For that reason, scalable data should be produced
and used as needed.



In the energy sector, smart meter data management and analysis have received con-
siderable effort in recent years, due to the widespread deployment of smart meters. A
smart meter reads energy consumption at a regular time interval, typically every 15
minutes and sends readings back to an energy data management system for monitoring
and billing purposes [1]. Thus, it is essential to evaluate the performance, robustness
of energy data management systems and to investigate suitable technologies and algo-
rithms for smart meter data analytics [2—4]. In order to test these systems, it is feasible
to generate scalable data sets that should reflect the characteristics of real-world energy
consumption patterns. For example, residential energy consumption usually follows a
regular pattern based on the consumption habits of a household. Figure 1, illustrates a
typical weekly electricity consumption time series from Irish open data [5]. It can be
observed that this household have roughly a fixed consumption pattern. The time series
has a morning peak roughly at 7-8 o’clock during the workdays. Further, the morning
peak delays to around 10 o’clock during the weekend. In the evening, there is a consid-
erable evening peak between 18:00 and 23:00, when all the family members are home
and the electric appliances might be turned on, such as dish washer, cooking range,
washing machine, television and so on.
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Fig. 1. Weekly consumption pattern of a typical private household

In this paper, we present a scalable data generator that can generate huge volume
of realistic synthetic data. The data generator takes as input a real-world energy con-
sumption time series as seed and generates synthetic time series based on historical
consumption patterns. In doing so, the generator first creates an adjusted time series
using a moving average time/series model. /Theumoving average reduces the periodic
variations from the actual [time*Series by smoothing ‘the peak periods. Then, it uses au-
toregressive time series modet-to-predict meterreadings. In the end, the periodic vari-
ations are added back to the newly predicted meter readings to reflect the pattern and
variance of the real-world energy consumption. The data generator is implemented by
using the memory-based distributed computing framework, Spark, which can generate
scalable data sets on a cluster based environment.



This paper is a significant extension of the previous work [6]. In the previous work,
the concept of prediction-based smart meter data generation was introduced, however,
it remains to prove that the single machine based data processing platform introduced in
[6] also works for cluster-based platform. A scalable data generator is the next step. In
t his paper, the single machine based technique is extended by introducing the cluster-
based technique.

Our main contributions in this paper are as follows:

— We propose a scalable smart meter data generator using Spark.

— We propose a novel method of generating realistic data sets that can preserve the
characteristics of real-world energy consumption time series, including patterns and
user-groups.

— We evaluate the data generator in terms of effectiveness and scalability of generat-
ing scalable data sets, with relatively small data as seed.

The paper is structured as follows. Section 2 describes the methodology used by the
proposed data generator. Section 3 describes the implementation on Spark. Section 4
evaluates the generator. Section 5 presents the related work. Section 6 concludes the
paper and points out the future research directions.

2 Methodology

2.1 Overview

We now describe the rationale of the proposed data generation solution. The solution
uses a quantitative model, expressed in mathematical notation. The quantitative model
is further divided into a causal model and a time-series model, where the latter is cho-
sen for modeling the consumption time series. The time series model produces predic-
tions according to historical consumption patterns. The time series of residential energy
consumption normally comprises the following patterns: frend, cyclic and seasonal/pe-
riodic. The periodic pattern is uspallypresalted feom the periodical factors such as the
days, which have a fixed and known«period/[7].e:g..,.24-hour. Therefore, it is possible
to generate consumption time series with these pattern characteristics.

Figure 2, gives the overview of the data generation process. The data generation is
seeded by a small real-world data set. First, the seed data is deseasonalized in order to
flatten the periodic variations. Next, a regression model is trained using the flattened
time series. This model is then used to predict new consumption values. In the end,
the generated time series is reseasonalized, in other words, the periodic variations are
added back. The rationale of using the adjusted periodic variations is that the data that
does not have or has reduced periodic variations can lead to more accurate predictions
than with variations [8]. The time series with reduced periodic variations also allows us
to determine the best regression model for the prediction.

2.2 Algorithm Description

We now describe the data generation process and the algorithms used. The data gen-
eration process comprises of two methods: training process and generation process.
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Fig. 2. Data generation overview [6]

The training process includes flattening of time series fluctuations, deseasonalization
and generation of data models, while generation process includes generating data using
the model and reseasonalization. Both of the processes are described in the following
subsections.

Training process. For the proposed data generator, we consider generating data based
on daily consumption profiles. During the training process (see Algorithm 1), each time
series from the seed data sef will be transformed into a key3value pair, of which meterID
is the key, and the list of meter readings'i§ the\value. The readings in the list are sorted
in an ascending order according#o'the timestamps.

Algorithm 1 Training process
1. Transform a time series into a key-value pair.
2. Process the key-value pair:
(i) Flatten fluctuations by centered moving averaging method.
(i) Deseasonalize time series by periodic indexing method.
(iii) Train autoregressive model for predictions using the deseasonalized time series.
(iv) Write the models and output: meterIDs, periodic-indices, AR-coefficients and flatten-
time-series.




Next, the key-value pair is processed through the following four steps (Algorithm 1)

that include flattening of periodic fluctuations, deseasonalization, autoregression and
writing the output:
(i) Flatten periodic fluctuations: We use the centered moving averaging (CMA) method
to reduce the impact of periodic fluctuations [9]. CMA replaces the original time series
with a new flatten time series where each point is centered at the middle of the data
values being averaged. For the daily profile (24-hour), the CMA of an even period is
defined as:
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where y; is the i-th observation in a time series of the seed data set.
(ii) Deseasonalization: To deseasonalize a time series, we first need to compute the
raw-index or Ratio-to-Moving-Average, which is computed as bellow:

. Yi
We then compute the periodic indices by using the resulting raw index values (see
Equation 3). For each hour of the day, a corresponding periodic index is computed,
which is the mean value of all the raw index values at that particular hour. For example,
P(0) represents the mean of all R values at 0 o’clock in all days for a given time series.
Therefore, the total number of resulting periodic indices will be 24.

1 n—1 ’

P(h) = ; R(h + 24) 3)
where, n represents the total number of days for each meter in the time series, and h is
the hour of the day, i.e,0—23.

Since there are some chaficésytofencolinteér’data precision problems, e.g, due to the
floating point, we need to adjust the computed 7 value [10]. Equation 4 normalizes the
periodic indices, which.ensures that the sum of the adjusted P’ values is 1.0.
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In the end, we use this adjusted periodic indice to deseasonalize a time series, which
simply divides each data point of the time series (see Equation 5).

y = 2
tP(h)

&)

where h = i mod 24 and P’ is the normalized periodic indices.
(iii) Training autogressive model and (iv) writing output. In the end, we use the flatten
(deseasonlized) time series to train an autoregressive (AR) model and this model will



Algorithm 2 Data generation

1. Read the data from the two input files, and create Spark RDD tables: PZ=(meterID, peridoc-
indices) and AR =(meterID, AR-coefficients, flatten-time-series).

2. Do the Theta join on table PZ and AR where PZ.meterID # AR.meterID.

3. For-each query results:

(i) Predict a new reading by using the AR model and the flatten time series values.

(i) Reseasonalize the new reading.
(iii) Add base load and white noise to the reseasonalised reading in order to simulate reality.

be used to generate new values by prediction. The resulting coefficients of AR model,
the periodic indices and the flatten-time-series, {y;|i = 0,...,n — 1}, will be written
to the Hadoop distributed file system (HDFS). The results are stored into two separate
files, with the formats of (meterID, periodic-indices) and (meterID, (AR-coefficients,
flatten-time-series)). In the data generation process, these two files will be served as
Input.

Generation process. Algorithm 2, describes the data generation process. The data
generator uses the files (generated from the preprocessing process) as input. The data
from the two files are read-as two RDD tables;PZ and AR, in Spark, and the theta
join [11] will apply on the twp tables,on the condition that the meterIDs are not equal.
For each record of the join results; we apply the following three steps to generate a new
time series:

(i) Generate new reading: We use the AR model and the values from flatten time se-
ries (with the order of p) to generate a new value, which is expressed in the following
equation:

p
v =c+ > iyl 6)
A=1

where c is the intercept with the y — axis (a constant), « is the AR coefficient and y,
are the last values from the flatten time series of (with p consecutive values before 7).
(ii) Reseasonalization and (iii) add base load and white noise: The final resulting time
series is

yi" =y « P'(h) + baseLoad + ¢; ™

where h = i mod 24 and i = 0, ..., n.

The reseasonalization is simply multiplying the adjusted periodic index. In the gen-
erated time series, we add a base load, which is a constant value greater or equal to zero.
A base load typically represents the energy consumed by the appliance that is always
on, e.g., refrigerator. And, we add a Gaussian white noise, ¢ ~ N(0,1.0), to simulate
slight variations.

2.3 Optimization

We now optimize our data generator in order to better simulate the real-world data.
As mentioned in Section 1, energy consumption data follows a certain pattern, due to



the daily routine of a household, e.g., having a daily pattern with morning and evening
peaks. Moreover, the time series of different households may have similar patterns,
which can be identified by grouping/clustering. This technique is often used by utili-
ties to segment the customers in order to offer personalized energy-efficiency services.
In order not to lose this information, we optimize data generation by adding the pre-
processing process (see Figure 3). The pre-processing will first cluster the seed, then
uses the clustered data for training the models. Recall that in the data generation pro-
cess, we use the theta join on the resulting models to create data generators. If the
models were not generated by the clustered seed, the resulting synthetic data may lose
the clustering information.

Pre-processin
processing

m Model_1 J\f\

P Training P Generating [
The seed .
»(Clustering izghem
S Model_n ] S
p| Training | Generating >

Fig. 3. Optimize data generation with the pre-processing of the seed

Moreover, clustering the seed time series according to daily patterns is a two step
process: First, we find the typical daily load pattern for each time series, which is done
by averaging the consumption of each hour for all days. This results the following
averaging load of daily profile for the ¢-th time series:

TS = {T’i,oﬂ"i,l, --,Ti,23} (®

where 7 represents the averageconsumption-of-ameter-at each hour of the day, h.

Second, we cluster the daily foadypatternsjofall time series using k-means clustering
algorithm [12]. In general, ksmeans clustering algorithm|uses Euclidean distance, e.g.,
[13, 14], which is defined as follow. Suppose there are two daily load profiles of T'S;
and 7S}, the distance is

23
euclDist (TS;, TS;) = Z (rin — Tj,h)2 )]

h=0

However, using the Euclidean distance may still not the best to reflect similarity of
two load patterns. For example, Figure 4 (a) and (b) both have the Euclidean distance
of /3, however, the patterns in Figure 4 (b) are totally different.

To further optimize, we adopt the Pearson correlation distance [15], which measures
the distance based on the correlation of between two patterns. The correlation is defined
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as follow:
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corr (TS, TS;) = otz (Tih — 1) (T3 — 1) (10)
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where p represents the daily average consumption for each meter.
The correlation distance is defined as:

corrDist (TS;, TS;) =1 — corr (TSi, TS;) (11)

The distance of zero represents perfectly correlated (correlation = 1) time series.
The distance of less than approximately 0.5 indicates that there is a good similarity
between two patterns, while the distance of 2 (correlation = -1) indicates having an
opposite pattern.

3 Implementation on Spark

The proposed data generator is dmplemented intotwemodules, training module and
data generation module, which are hoth imiplemented Using Spark for generating scal-
able data. The implementations are described as tollows.

train (inputPath , outputPath, frequency){
seed = getReadingsForEachMeterID (inputPath).cache ()
output = seed.mapValues(readings => {
PI getPeriodicIndices (readings , frequency)
DS getDeseasonalizedSeed (readings , PI)
coefficients = ARIMA. fitModel (3, 0, 0, DS, true).
coefficients
lagged = Vectors.dense (DS. takeRight(3))
(PI, coefficients , lagged)})
.filter (! coefficients (0).isNaN)
output.map(tuple => (meterID, PI)).save(outputPath+”/PI")
output.map(tuple => (meterID, (coefficients , lagged))).save(
outputPath+”/AR”)}

Listing 1.1. The code snippet of training



Step A
Input

1460, 201704041900, 0.454
1460, 201704041930, 0.432
1460, 201704042000, 0.433
1460, 201704042030, 0.442
1460, 201704042100, 0.261
1460, 201704042130, 0.226
1460, 201704042200, 0.226

1470, 201704041900, 0.343
1470, 201704041930, 0.310
1470, 201704042000, 0.318
1470, 201704042030, 0.324
1470, 201704042100, 0.172
1470, 201704042130, 0.174
1470, 201704042200, 0.175

Step B

Periodic indices (Pl), AR-coefficients (AR)
and last three lagged readings (LAG)

Step C
Output

PI=1[1.619, 1.353, 1.208, 0.982,...]
AR =[0.224, 0.584, -0.111, 0.095]
LAG =1[0.180, 0.184, 0.195]

meterlD 1460
PI=[1.619, 1.353, 1.208, 0.982,...]

:

meterlD 1460
AR =[0.224, 0.584, -0.111, 0.095]
LAG =1[0.180, 0.184, 0.195]

Pl =[1.316, 1.553, 1.106, 0.983,...]

—® AR =[0.284, 0.585, -0.216, 0.099]

LAG =1[0.185, 0.181, 0.190]

meterlD 1470
PI=[1.316, 1.553, 1.106, 0.983,...]

<

meterlD 1470
AR =[0.284, 0.585, -0.216, 0.099]
LAG =[0.185, 0.181, 0.190]

Fig. 5. Training module

The seed data have been processed by grouping/clustering. The training process
will take a clustered seed data as the input to create the models. Listing 1.1 shows the
code snippet of training process, which takes the parameters of inputPath, outputPath
and frequency (line 1). The input path locates a clustered seed data that comprise a
set of time series with similar daily consumption patterns. The output path denotes the
location of saving the resulting models in HDFS and the frequency indicates the number
of occurrences of a meter reading per unit time. For example, frequency=48 represents
the reading frequency per day, since the meter is read every 30 minutes. The input files
are the CSV files with the format of (meterID, timestamp, reading), where meterID is
taken as the key and (timestamp, reading) is taken as the value. The function on line
2 will sort and groups the readings based on meter id and time and cache the data in
memory cache iterative processing. Second, the periodic indices are computed for each
time series, so does the deseason@lization (lifies/d- )" Phitd, the AR model is trained (by
using the spark-timeseries libragy)using the deseasonalized time series (line 6). Fourth,
three deseasonalized lagged\(past period) readings are extrdcted (with order=3), which
will be used for forecasting the new value in the data generation process (line 7). Fifth,
the results are mapped as periodic indices, coefficients and lagged readings (line 8).
Sixth, the results with undefined coefficients are filtered out (line 9). Last, the results
are stored to HDFS directly (lines 10-11). The training process is run only once for
each clustered data set from the seed. The two resulting files have the following format:
<meter identifier, periodic indices> and <meter identifier, AR-coefficients, flatten-time-
series>. An example of the rows are <1460, 1.619, 1.353, 1.208, 0.982, .., 1.776> and
<1460, 0.224, 0.584, -0.111, 0.095, 0.180, 0.184, 0.195>. The first row represents that
a meter (with meterID = 1460) has 48 periodic indices (as the number of occurrences
of a meter reading is per half-hour). The second row represents that the meter (with
meterID=1406) has an intercept, three AR coefficients (with order=3), and last three
lagged readings of the deseasonalized seed data set.



Moreover, Figure 5 depicts an example of the training module. Step A shows the
input CSV files that contain clustered seed data. Step B shows the computed periodic
indices, AR-coefficients and the extracted last three deseasonalized lagged reading for
each time series. Finally (Step C), collects the results as two separate files for each time
series. The reason to save the results for the same meterID into two separate files is to
make the data generation model flexible enough to generate synthetic time series with
different variances. In this case, the periodic indices could be from a separate time series
within the same cluster.

generate (inputPath , outputPath , frequency, nTimeSeries, nDays,
baseLoad){
PI = readPI(inputPath+”/PI”)
AR = readAR (inputPath+”/AR")

results = thetaJoin(PI, AR).get(nTimeSeries)
.map (( meterld, (coefficients , lagged, PI)) = {
newValues = new ARIMAModel(3, 0, 0, coefficients , true)
.forecast(lagged, frequency * nDays)
.map(x => {
reading = x * PI(hour) + baseLoad + Random.nextGaussian ()
reading })
(meterld , newValues) })
results .save(outputPath)

}

Listing 1.2. The code snippet of data generation

The implementation of data generation is shown in Listing 1.2, which takes the
resulting models as the input (indicated by inputPath) as well as other parameters in-
cluding the outputPath, the frequency, the number of time series to generate, the number
of days and base load. The program first reads the period indices (PI) and Autogressive
models (AR) from the input files into the memory (line 2-3). Then, it does the theta join
and returns the desired number of rows (equal to the number of generated time series)
(line 5). Third, it does the forecasting using-the AR model (line 7-8) and the result-
ing predicted value is teseasonlized. In addition, the base load and the white noise is
also added in the predicted value to simulateteality (line 10). Last, the generated data
is written to HDFS (line [3). The Synthetic data has the format of <meter identifier,
timestamp, reading> and an example of the rows is <100, 201706041900,0.389>, rep-
resenting that a meter (with meterID = 100) has used 0.3 kWh electricity in the previous
half an hour.

Furthermore, Figure 6 depicts an example of the data generation module. Step A
shows the two input files for each meter. Step B shows the shuffling process (from the
same cluster) where meterIDs are not equal. The reason to perform this shuffling is to
generate numerous time series with several variations using a small seed. Step C shows
the forecasted meter readings. Finally (Step D), collects the results as the generated
time series.



Step A Step B Step C StepD
Input Random pairs Forecast Output
(from the same cluster)

meterlD 1460 meterlD 1460
PI'=[1.619, 1.353, 1.208, 0.982,...] —® Pl =[1.619, 1.353, 1.208, 0.982,...] 100, 201706041900, 0.389
\ meteriD 100 100, 201706041930, 0.380
Forecast = [0.389, 0.380, 0.382,...] P 100, 201706042000, 0.382
meterlD 1460 meterlD 1470 / ..
AR =[0.224, 0.584, -0.111, 0.095] AR =[0.284, 0.585, -0.216, 0.099]
LAG =10.180, 0.184, 0.195] LAG =10.185, 0.181, 0.190]
meterlD 1470 meterlD 1470
PI'=[1.316, 1.553, 1.106, 0.983,...] Pl=[1.316, 1.553, 1.106, 0.983,..]
101, 201706041900, 0.377
peter‘Dt1_mO 377 0363, 03611 101, 201708041930, 0.363
meterlD 1470 meterlD 1460 orecast = [0.377, 0.363, 0.361...] 101, 201706042000, 0.361
AR ={0.284, 0.585, -0.216, 0.099] AR =[0.224, 0.584, -0.111, 0.095]
LAG =0.185, 0.181, 0.190] LAG =(0.180, 0.184, 0.195]

Fig. 6. Data generation module

In general, there are two ways of representing energy consumption. First, a smart en-
ergy meter measures a cumulative consumption, i.e., the consumption always increases.
Second, a smart meter measures consumption in a given (fixed) interval. i.e, an aggre-
gated value in a time window, e.g., 30 minutes. The generator proposed in this paper is
based on the second approach.

4 Evaluation

In this section, we evaluate the data generator in terms of effectiveness and scalability.
The effectiveness will be evaluated by comparing the patterns between the real-world
and synthetic data. The scalability will be evaluated by measuring the execution per-
formance. The Irish electricity consumption will be used as the seed for training the
models.

The experiments are conductedyon a4-node cluster all the nodes act as slave, and
one of them also acts as master. All the machines have the same settings: Intel(R)
Xeon(R) CPU E5-2650\(3.40GHz, 4 Cores, hyper-threading is enabled, two hyper-
threads per core), 8 GB RAM, and a Seagate Hard driver (1TB, 6 GB/s, 32 MB Cache
and 7200 RPM), running 64bit-Ubuntu 12.04 LTS with Linux 3.19.0 kernel.

4.1 Effectiveness

We now evaluate the effectiveness of the proposed smart meter data generator. As men-
tioned in Section 2.3, the data generator first, uses clustered data as the seed to generate
the models, then it generates time series. We use the correlation distance metric for the
clustering in the pre-processing of the seed. Before validating the generated time series,
we would like to further explain by demonstrating a real example.
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Fig. 7. Daily activity load profile time series

Figure 7, demonstrates four daily load profiles from different households. 7S rep-
resents a medium energy use household; 7S5 represents a low energy use household,
whereas, T'S3 represents a high energy use household. Visually, we could observe that
TS, TS; and T'S3 have a similar pattern, e.g., with morning and evening peaks al-
most at the same range of the time, although they are within different consumption
categories. In contrast, 7'S, is showing a quite different pattern, without morning peak.
Hence, according to the consumption patterns, 7Sy, T'Sy and 7'S3 should be assigned
to the same group regardless of their consumption amount, while 7'Sy should belong to
a different group.

In order to assign the time series to the desired cluster based on the similarity, we
compute the distance function. Fu¢lideanfunction is commonly used as a distance func-
tion when performing the clustering! In'Section 2.3, we have mentioned that Euclidean
function may not give-aceurate-results-and-we-have recommended to use correlation
based distance function instead.

Table 1. Comparison of the two distance metrics

(T'S1,TS2) (TS1,TSs) (TS1,TSs) (152, TSs) (1'S2,TSs) (1'Ss,TSs)
eucIDist  6.13 9.12 9.64 115 473 12.4
corrDist  0.12 0.13 1.06 0.12 0.76 1.10

Table 1, shows the comparison between the two distance functions. If we observe
the distances, the correlation distances between (1'S1, T'S5 ) and (TS, T'S3) are smaller
than the distance between (1'S1, T'Sy). The reason that 'S, T'S, and TS5 have smaller
correlation distances is due to the fact that they have similar patterns, whereas, TSy has
a larger distance for the reason that it has a different pattern with respect to 1°Sy, 1'S2
and T'Ss (note that the distance of zero means perfectly correlated). In contrast, the
Euclidean distance between (T'Ss , T'Sy) is the smallest, which may result in wrongly
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Fig. 8. Comparison of the pattern preservation with and without reprocessing of the seed

assigning 7Sy to the same group as 7'S,. Thus, it is more preferable to choose the
correlation distance.

We now demonstrate the importance of preprocessing the seed in order to preserve
the information of customer segmentation. We compare the clustering information of
the resulting synthetic data sets when we use the seed with and without being prepro-
cessed. We cluster the daily patterns into 20 clusters for the two data sets using the
adaptive clustering method [16] and compare the top three clusters shown in Figure 8
(a) and (b). According(to the top three clusters, we could observe that the patterns are
more visible in Figure 8 (a) (wheretheseed is preprocessed) as compared to Figure 8 (b)
(where seed is not preprocessed)<Based‘on these/observation, we can conclude that the
data generator trained with-preprocessed-seed-can-achieve better pattern preservation.

Further, we evaluate the effectiveness by comparing the patterns of the real-world
and synthetic data. Figure 9 (a) and (b), show the daily and weekly patterns generated
from a typical household, respectively. We compare the patterns of the actual and syn-
thetic data. The synthetic data is generated by the data generators trained by clustered
seed using corrDist and euclDist. The actual pattern in Figure 9 (a) shows that there
is a morning peak (6-9) and a evening peak (16-21) in the pattern. The pattern of syn-
thetic (corrDist) indicates a good matching to the actual pattern, with very slight drift.
In contrast, the matching of synthetic (euclDist) does not show a perfect fit, for exam-
ple, having a peak at 1-2 o’clock but there is no peak for the actual pattern. Figure 9
(b) shows the weekly patterns, where synthetic (corrDist) also shows better than the
synthetic (euclDist) to fit the actual data pattern.
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4.2 Scalability

In this section, we evaluate the scalability of the proposed data generator. Note that this
study will not measure the time of the preprocessing and the training process because
they are done only once and the results can be reused many times for data generation.
Figure 10, shows the execution time of generating the data scaled from 50 to 300 GB
using all nodes (a total of 16 cores). The results show that the execution time increases
almost linearly with the size of the data generated.

Figure 11, shows the speedup of generating a fixed size of data set, 100G B, but
varying the number of cores used in Spark. The speedup is calculated as follow: speedup
= t4/t,, where t, is the execution time with 4 parallel cores, and ¢,, is the execution
time with n parallel cores (n with the values of 4, 8, 12 and 16). According to the results,

the data generator can achieve a good speedup, when the number of cores increased to
16.

To summarize, the proposed data generator has the ability to generate realistic time
series data with a good performance and the generated data has comparable character-
istics with the actual data, in terms of patterns and groups/clusters.



5 Related Work

Synthetic data generation has been studied extensively across several disciplines. DB-
GEN is a well-known data generation tool that can generates up to 10 TB of data for
the TPC-H/R database schema [17]. Similarly, synthetic weather data generation has
also been extensively studied by [18], [19], [20], [21] and [22]. The weather generators
typically use stochastic models to simulate synthetic weather data. Furthermore, a vehi-
cle crash data generator uses actual vehicle crash data as seed to produce new realistic
data using Fourier transformation [23]. The generated data contains different acceler-
ation peaks to test and verify crash management components in a car without running
actual crash tests. Time series forecasting has also attracted much research attention
in recent years. A hybrid time series forecasting model based on autoregressive inte-
grated moving average (ARIMA) and neural networks is proposed by [24]. Likewise,
a periodic autoregressive moving average model (PARMA) for time series forecast-
ing is also suggested by [25]. PARMA model can explicitly describe seasonal/periodic
fluctuations in terms of mean, standard deviation and autocorrelation. Based on that,
PARMA derives more realistic time series forecasting models and simulations. In ad-
dition, a template-based time sesies generation teel (loom) that utilizes ARIMA as the
underlying forecasting model-is-presented by [26].-Additionally, a survey is conducted
on the forecasting models by [27]. It has reported that ARIMA and neural networks are
heavily used in time series forecasting. Based on all these works, it can be concluded
that models such as stochastic, ARIMA, PARMA, neural networks play a crucial role
in time series forecasting.

In resemblance with these works, the foundation of the proposed data generator is
based on autoregressive centered moving average (ARCMA) model.

Smart metering, as an emerging technology has gained widespread attention re-
cently. A lot of work has been reported in the area of smart meter data analytics, how-
ever, to the best of our knowledge, the smart meter synthetic data generation still needs
to be extensively studied. Some literature has been found with respect to smart meter
synthetic data generation by [28] , [2] and [4]. The work by [28], uses Markov chain
model, while [2] and [4] use periodic auto-regression (PAR) to generate synthetic time
series in order to benchmark Internet of Things (IoT) and smart meter analytics systems.

In contrast to all these works, the focus of the current work is to generate time series
based on energy consumption patterns, in a distributed data processing environment.

6 Conclusions and Future Work

Smart meter data management and analytics systems require a large amount of data for
benchmarking and testing purposes. In this paper, we have presented a scalable smart
meter data generator using the Spark framework. We have used the supervised machine
learning method to create the models for generating synthetic data. In addition, we
have introduced an optimization method that preserves user-groups/clusters informa-
tion, i.e., using clustered seeds. We have comprehensively evaluated the data generator
by comparing its effectiveness and scalability. The results have demonstrated that the
data generator can generate scalable smart meter data that can simulates well to the
reality.



For the future work, we could consider to add more features to the data generation
models, for example, seasonality that is winter, spring, summer and autumn patterns. In
addition, the current generator could be extended or modified to generate other types of
meter data, such as water, gas and heating.
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