Skip to main content

Formal Analysis of Information Flow in HOL

  • Conference paper
  • First Online:
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10606))

  • 494 Accesses

Abstract

Protecting information has become very important due to the safety-critical nature of many computer-based applications. Information flow analysis plays a very important role in quantifying information-related properties under external attacks. Traditionally, information flow analysis is performed using paper-and-pencil based proofs or computer simulations but due to their inherent nature, these methods are prone to errors and thus cannot guarantee accurate analysis. As an accurate alternative, we propose to conduct the information flow analysis within the sound core of a higher-order-logic theorem prover. For this purpose, some of the most commonly used information flow measures, including Shanon entropy, mutual information, min-entropy, belief min-entropy, have been formalized. In this paper, we use the Shannon entropy and mutual information formalizations to formally verify the Data Processing and Jensen’s inequalities. Moreover, we extend the security model for the case of the partial guess scenario to formalize the gain min-entropy. These formalizations allow us to reason about the information flow of a wide range of systems within a theorem prover. For illustration purposes, we perform a formal comparison between the min-entropy leakage and the gain leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. HOL4, hol.sourceforge.net (2017)

  2. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: IEEE Symposium on Computer Security Foundations, pp. 265–279 (2012)

    Google Scholar 

  3. Andrea, S.: Possibilistic information theory: a coding theoretic approach. Fuzzy Sets Syst. 132(1), 11–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beaudry, N.J., Renner, R.: An intuitive proof of the data processing inequality. Quantum Inform. Comput. 12(5–6), 432–441 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Chung, K.L.: Markov Chains with Stationary Transition Probabilities (1967)

    Google Scholar 

  6. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001). doi:10.1007/3-540-44702-4_4

    Chapter  Google Scholar 

  7. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system. In: IEEE Symposium on Security and Privacy, pp. 354–368. IEEE Computer Society (2008)

    Google Scholar 

  8. Coble, A.R.: Anonymity, Information, and Machine-Assisted Proof. Ph.D. thesis, King’s College, University of Cambridge, UK (2010)

    Google Scholar 

  9. Cover, T.M., Thomas, J.: Entropy, relative entropy and mutual information. In: Elements of Information Theory. Wiley-Interscience (1991)

    Google Scholar 

  10. Dubois, D., Nguyen, H.T., Prade, H.: Possibility theory, probability and fuzzy sets: misunderstandings, bridges and gaps. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, pp. 343–438. Kluwer, Boston (2000)

    Google Scholar 

  11. Halpern, J., O’Neill, K.: Anonymity and information hiding in multiagent systems. J. Comput. Secur. 13(3), 483–514 (2005)

    Article  Google Scholar 

  12. Hasan, O., Tahar, S.: Formal verification methods. In: Encyclopedia of Information Science and Technology, pp. 7162–7170. IGI Global Pub. (2015)

    Google Scholar 

  13. Helali, G., Dunchev, C., Hasan, O., Tahar, S.: Towards The Quantitative Analysis of Information Flow in HOL, HOL4 code (2017). http://hvg.ece.concordia.ca/projects/prob-it/gainMinEntropy.php

  14. Helali, G., Hasan, O., Tahar, S.: Formal analysis of information flow using min-entropy and belief min-entropy. In: Iyoda, J., de Moura, J. (eds.) SBMF 2013. LNCS, vol. 8195, pp. 131–146. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41071-0_10

    Chapter  Google Scholar 

  15. Hölzl, J.: Construction and Stochastic Applications of Measure Spaces in Higher-Order Logic. Ph.D. thesis, Institut für Informatik, Technische Universität München, Germany (2012)

    Google Scholar 

  16. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 135–151. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6_12

    Chapter  Google Scholar 

  17. Hua, J., Jing, Y.: On-line payment and security of e-commerce. In: International Conference on Computer Engineering and Applications, pp. 545–550. CEA, WSEAS (2007)

    Google Scholar 

  18. Jebara, T., Pentland, A.: On Reversing Jensen’s Inequality. In: Advances in Neural Information Processing Systems 13. MIT Press (2000)

    Google Scholar 

  19. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy channels. Inf. Comput. 206(2–4), 378–401 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, L.: Formalization of Discrete-time Markov Chains in HOL. Ph.D. thesis, Dept. of Electrical and Computer Engineering, Concordia University, Canada (2013)

    Google Scholar 

  21. Mhamdi, T.: Information-Theoretic Analysis using Theorem Proving. Ph.D. thesis, Dept. of Electrical and Computer Engineering, Concordia University, Canada (2012)

    Google Scholar 

  22. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measures in HOL. In: Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 233–248. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6_18

    Chapter  Google Scholar 

  23. Mhamdi, T., Hasan, O., Tahar, S.: Quantitative analysis of information flow using theorem proving. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 119–134. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34281-3_11

    Chapter  Google Scholar 

  24. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of measure theory and lebesgue integration for probabilistic analysis in HOL. ACM Trans. Embedded Comput. Syst. 12(1) (2013)

    Google Scholar 

  25. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans. Inform. Syst. Secur. 1(1), 66–92 (1998)

    Article  Google Scholar 

  26. Rényi, A.: On measures of entropy and information. In: Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1961)

    Google Scholar 

  27. Sassone, V., ElSalamouny, E., Hamadou, S.: Trust in crowds: probabilistic behaviour in anonymity protocols. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010. LNCS, vol. 6084, pp. 88–102. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15640-3_7

    Chapter  Google Scholar 

  28. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Bertino, E., Kurth, H., Martella, G., Montolivo, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg (1996). doi:10.1007/3-540-61770-1_38

    Chapter  Google Scholar 

  29. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00596-1_21

    Chapter  Google Scholar 

  30. Smith, G.: Quantifying information flow using min-entropy. In: IEEE International Conference on Quantitative Evaluation of Systems, pp. 159–167 (2011)

    Google Scholar 

  31. Syverson, P., Goldschlag, D., Reed, M.: Anonymous connections and onion routing. In: IEEE Symposium on Security and Privacy, Oackland, California, pp. 44–54 (1997)

    Google Scholar 

  32. Trevathan, J.: Privacy and Security in Online Auctions. Ph.D. thesis, School of Mathematics, Physics and Information Technology, James Cook University, Australia (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassen Helali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Helali, G., Tahar, S., Hasan, O., Dunchev, T. (2017). Formal Analysis of Information Flow in HOL. In: Larsen, K., Sokolsky, O., Wang, J. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2017. Lecture Notes in Computer Science(), vol 10606. Springer, Cham. https://doi.org/10.1007/978-3-319-69483-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69483-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69482-5

  • Online ISBN: 978-3-319-69483-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics