
ar
X

iv
:1

70
6.

06
24

6v
2

 [
cs

.L
O

]
 2

8
Ju

n
20

17

Compositional Hoare-style Reasoning about Hybrid CSP

in the Duration Calculus

Dimitar Guelev∗, Shuling Wang and Naijun Zhan†

November 17, 2018

Abstract

Deductive methods for the verification of hybrid systems vary on the format of statements in correct-
ness proofs. Building on the example of Hoare triple-based reasoning, we have investigated several such
methods for systems described in Hybrid CSP, each based on a different assertion language, notation
for time, and notation for proofs, and each having its pros and cons with respect to expressive power,
compositionality and practical convenience. In this paper we propose a new approach based on weakly
monotonic time as the semantics for interleaving, the Duration Calculus (DC) with infinite intervals and
general fixpoints as the logic language, and a new meaning for Hoare-like triples which unifies assertions
and temporal conditions. We include a proof system for reasoning about the properties of systems written
in the new form of triples that is complete relative to validity in DC.

1 Introduction

Hybrid systems exhibit combinations of discrete and continuous evolution, the typical example being a contin-
uous plant with discrete control. A number of abstract models and requirement specification languages have
been proposed for the verification of hybrid systems, the commonest model being hybrid automata [3, 24, 20].
Hybrid CSP (HCSP) [19, 39] is a process algebra which extends CSP by constructs for continuous evolution
described in terms of ordinary differential equations, with domain boundary- and communication-triggered
interruptions. The mechanism of synchronization is message passing. Because of its compositionality, HCSP
can be used to handle complex and open systems. Here follows an example of a simple generic HCSP
description of a continuously evolving plant with discrete control:

(while ⊤ do 〈F (ẋ, x, u) = 0〉☎ sensor !x→ actuator?u) ‖
(while ⊤ do (wait d; sensor?s; actuator !C(s)))

The plant evolves according to some continuous law F that depends on a control parameter u. The controller
samples the state of the plant and updates the control parameter once every d time units.

In this paper we propose a Hoare-style proof system for reasoning about hybrid systems which are
modelled in HCSP. The features of HCSP which are handled by the logic include communication, timing
constraints, interrupts and continuous evolution governed by differential equations. Our proof system is
based on the Duration Calculus (DC, [5, 4]), which is a first-order real-time temporal logic and therefore
enables the verification of HCSP systems for temporal properties. DC is an interval-based temporal logic.
The form of the satisfaction relation in DC is I, σ |= ϕ, where ϕ is a temporal formula, I is an interpretation
of the respective vocabulary over time, and σ is a reference interval of real time, unlike point-based TLs,
where a reference time point is used. The advantages of intervals stem from the possibility to accommodate
a complete execution of a process and have reference to termination time points of processes as well as the

∗Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, e-mail:gelevdp@math.bas.bg
†State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, e-

mail:{wangsl,znj}@ios.ac.cn.

1

http://arxiv.org/abs/1706.06246v2

starting points. Pioneering work on interval-based reasoning includes Allen’s interval algebra and Halpern
and Shoham’s logic [2, 15]. ITLs have been studied in depth with respect to the various models of time by a
number of authors, cf. e.g. [9]. Since an interval can be described as the pair of its endpoints, interval-based
logics are also viewed as two-dimensional modal logics [35, 36]. Interval Temporal Logic (ITL) was first
proposed and developed by Moszkowski [26, 27, 7] for discrete time, as a reasoning tool for digital circuits.
DC can be viewed as a theory in real time ITL. We use the infinite interval variant of DC which was proposed
in [6], which allows intervals whose right end is ∞ for modelling non-terminating behaviour. We include an
operator for Kleene star in order to model iterative behaviour, to facilitate the handling of liveness properties.
Axioms and proof rules about infinite time and Kleene star in DC can be found in [13, 11].

Hoare-style proof systems are about proving triples of the form {P} code{Q}, which stand for the partial
correctness property P (x)∧code(x, x′) → Q(x). The meaning of triples generalizes to the setting of reactive
systems in various ways, the common feature of them all being that P and/or Q are temporal properties. In
our system code is a HCSP term, P and Q are written in DC. The intended meaning is

Given an infinite run which satisfies P at some initial subinterval, code
causes it to satisfy also Q at the initial subinterval representing the
execution of code.

(1)

The initial subinterval which is supposed to satisfy P , can as well be a degenerate (0-length) one. Then P
boils down to an assertion on the initial state. This interval can also be to the entire infinite run in question.
In this case P can describe conditions provided by the environment throughout runs. Q is supposed to hold at
an interval which exactly matches that of the execution of code. In case code does not terminate, this would
be the whole infinite run too. Using our DC semantics [[.]] for HCSP terms, the validity of {P} code {Q} is
defined as the validity of

P⌢⊤ ⇒ ¬([[code]] ∧ ¬(Q⌢⊤))

at infinite intervals, which is equivalent to (1).
We exploit the form of triples to obtain a compositional proof system, with each rule corresponding to a

basic HCSP construct. This forces proofs to follow the structure of the given HCSP term. Triples in this
form facilitate assume-guarantee reasoning too. For instance,

{A} code 1{B} {B} code 2{C}

{A} code 1‖ code 2{((B⌢⊤) ∧ C) ∨ (B ∧ (C⌢⊤)}

where ‖ denotes parallel composition, is an admissible rule in our proof system, despite not being among the
basic rules. A detailed study of assume-guarantee reasoning about discrete-time reactive systems in terms
of triples of a similar form with point-based temporal logic conditions can be found in [1].

The main result about our proof system in the paper is its completeness relative to validity in DC.

Structure of the paper After brief preliminaries on HCSP, we propose a weakly-monotonic time seman-
tics for it in terms of DC formulas and prove its equivalence to an appropriate operational semantics. Next
we give our proof system and use the DC-based semantics to demonstrate its relative completeness. Finally
we summarize a generalization of the approach where arbitrary fixpoints can be used instead of HCSP’s tail
recursion and the use of ‖ and the respective rather involved proof rule can be eliminated. That turns out
to require both the general fixpoint operator of DC [31] and the right-neighbourhood modality (cf. [40]) to
handle the meaning of P s in the presence of properly recursive calls. We conclude by discussing related work
and make some remarks.

2 Preliminaries

2.1 Syntax and informal semantics of Hybrid CSP

Process terms have the syntax

2

P,Q ::= skip | do nothing;
x1, . . . , xn := e1, . . . , en | simultaneous assignment;
wait d | await b | fixed time delay; wait until b becomes true;
ch?x | ch!e | IO | input and output; communication-guarded

choice;
〈F (ẋ, x) = 0 ∧ b〉 | x evolves according to F as long as b holds;
〈F (ẋ, x) = 0 ∧ b〉☎ IO | evolve by F until ¬b or IO becomes ready;

terminate, if ¬b is reached first;
otherwise execute IO;

P ;Q | P ‖ Q | sequential composition; parallel
composition

if b then P else Q | P ⊔Q | conditional; internal non-deterministic
choice;

µX.G recursion.

In the above BNF, IO has the following form:

ch1?x1 → P1[] . . . []chk?xk → Pk[]chk+1!ek+1 → Pk+1[] . . . []chn!en → Pn (2)

for some arbitrary k, n, x1, . . . , xk, ek+1, . . . , en and some distinct ch1, . . . , chn. IO engages in one of the
indicated communications as soon as a partner process becomes ready, and then proceeds as the respective
Pi. In µX.G, G has the syntax

G ::= H | −→x := −→e ;P | 〈F (ẋ, x) = 0 ∧ b〉;P | if b then G else G
| G ⊔G | G;P | µY.G | H‖H

where H stands for arbitrary X-free terms, Y 6= X and P can be any process term. This restricts X of
µX.G to be guarded in G and rules out occurrences of X of µX.G in the scope of ‖ in G. The communication
primitives ch?x and ch!e are not mentioned in the syntax for G as they are treated as derived in this paper.
They can be assigned the role of guards which −→x := −→e has in (2.1). ObviouslyX is guarded in the P1, . . . , Pn

of IO as in (2) too. Below we focus on the commonest instance of µ

while b do P ⇋ µX.if b then (P ;X) else skip (3)

CSP’s Kleene star P ∗ ⇋ µX.(skip ⊔ (P ;X)), which stands for some unspecified number of successive
executions of P , is handled similarly. We explain how our setting ports to general fixpoints, and some
technical benefits from that, other than the obvious gain in expressive power, in a dedicated section.

2.2 The Duration Calculus

We use DC with infinite intervals as in [6, 13] and Kleene star. The reader is referred to [4] for a comprehensive
introduction. Here we summarize only the main notions for the sake of self-containedness. DC is a classical
first-order predicate modal logic with one normal binary modality called chop and written ⌢. The time
domain is R∞ = R∪ {∞}. Satisfaction has the form I, σ |= ϕ where I is an interpretation of the non-logical
symbols, σ ∈ I(R∞), I(R∞) = {[t1, t2]; t1 ∈ R, t2 ∈ R

∞, t1 ≤ t2}. Flexible non-logical symbols depend on the
reference intervals for their meaning. Chop is defined by the clause

I, σ |= (ϕ⌢ψ) iff either there exists a t ∈ σ \ {∞} such that I, [minσ, t] |= ϕ
and I, [t,maxσ] |= ψ, or max σ = ∞ and I, σ |= ϕ.

Along with the usual first-order non-logical symbols, DC features boolean valued state variables, which form
boolean combinations called state expressions. The value It(S) of a state expression S is supposed to change
between 0 and 1 only finitely many times in every bounded interval of time. Duration terms

∫

S take a state
expression S as the operand and evaluate according to the clause

Iσ(
∫

S) =
maxσ
∫

minσ

I(S)(t)dt.

3

ℓ is used for
∫

(0 ⇒ 0) and always evaluates to the length of the reference interval, and ⌈S⌉ stands for
ℓ 6= 0 ∧

∫

S = ℓ to denote that S holds almost everywhere and the interval is non-degenerate. ⌈S⌉0 denotes
just

∫

S = ℓ.
In Section 6 we use the converse neighbourhood modality ✸c

l and the least fixpoint operator µ. The
former appears in Neighbourhood Logic and the corresponding system of DC, and is defined by the clause

I, σ |= ✸
c
lϕ iff I, [min σ, t] |= ϕ for some t ∈ R ∪ {∞}, t ≥ minσ.

Formulas µX.ϕ, whereX is a dedicated type of variable, are well formed only if ϕ has no negative occurrences
of X . To define the meaning of µX.ϕ, ϕ is regarded as the defining formula of a operator of type P(I(R∞)) →
P(I(R∞)), A 7→ {σ ∈ I(R∞) : IAX , σ |= ϕ}, and I, σ |= µX.ϕ iff σ appears in the least fixpoint of this operator,
which happens to be monotonic by virtue of the syntactic condition on ϕ. Kleene star is defined in terms of
µ by the clause

|= ϕ∗
⇋ µX.(ℓ = 0 ∨ ϕ⌢X).

3 Operational semantics of HCSP

Ownership of variables We write Var(P) for the set of the program variables which occur in P . Expres-
sions of the form ẋ in continuous evolution process terms are, syntactically, just program variables, and are
restricted not to appear in arithmetical expressions e outside the F (ẋ, x) of continuous evolution terms, or
on the left hand side of :=. As it becomes clear below, the dependency between x and ẋ as functions of time
is spelled out as part of the semantics of continuous evolution. We write Var:=(P) for all the variables in
Var(P) which occur on the left hand side of :=, in ch? statements, and the x-es or ẋ-es in any of the forms
of continuous evolution within P . Parallel composition P‖Q is well-formed only if Var:=(P)∩Var:=(Q) = ∅.

Modelling input and output We treat ch?x and ch!e as derived constructs as they can be defined in
terms of dedicated shared variables ch?, ch! and ch after [28]: 1

ch!e ⇋ ch := e; ch! := ⊤; await ch?; await ¬ch?; ch! := ⊥
ch?x ⇋ ch? := ⊤; await ch!;x := ch; ch? := ⊥; await ¬ch!

We assume that ch!, ch ∈ Var:=(ch!e) and ch? ∈ Var:=(ch?x). Communication-guarded external choice IO
can be defined similarly. We omit the definition as it is lengthy and otherwise uninsightful. The other
derived constructs are defined as follows:

〈F (ẋ, x) = 0 ∧ b〉☎d Q ⇋ t := 0; 〈F (ẋ, x) = 0 ∧ ṫ = 1 ∧ b ∧ t ≤ d〉;

if ¬(¬b) then Q else skip

wait d ⇋ 〈0 = 0 ∧ ⊤〉☎d skip

〈F (ẋ, x) = 0 ∧ b〉☎ IO ⇋ 〈F (ẋ, x) = 0 ∧ b ∧
∧

i∈I

¬ch∗
i 〉; if

∧

i∈I

¬ch∗
i then skip else IO

Here ch∗i stands for chi?, resp. chi!, depending on whether the respective action in IO is input or output. To
account of the impossibility to mechanically (and computationally) tell apart x < c from x ≤ c about time-
dependent quantities x, in ¬(¬b) we use a for a condition that defines the topological closure of {x : a(x)}.
It is assumed that b admits a syntactical definition. E.g., x < c is x ≤ c for x being a continuous function of
time.

1Hoare style proof rules for a system with ch?x and ch!e appearing as primitive constructs were proposed by Zhou Chaochen
et al. in [12]. That work features a different type of triples and follows the convention that process variables are not observable
across threads thus ruling out a shared-variable emulation of communication.

4

Reduction of HCSP process terms Next we define a reduction relation P
A,V
−→ Q where V is a set of

process variables and

A : σ → (V ′ ∪ {r, n} → R
∞ ∪ {0, 1}), (4)

where V ′ is a set of process variables, r and n are boolean variables outside V ′ and σ ∈ I. In R
∞ ∪ {0, 1}

we emphasize the additional use of 0, 1 ∈ R as truth values. We consider P
A,V
−→ Q only for V such that

Var:=(P) ⊆ V ⊆ V ′. For HCSP terms P in the scope of a Q which on its turn is an operand of a ‖, with
no other ‖s between this one and P , the semantics of P must specify the behaviour of all the variables from
Var:=(Q), which are controlled by the enveloping thread Q of P . V ′ \ V is meant to include of the variables
which are not controlled by the enveloping thread of P but still may be accessed in it. In the sequel we write
domA for σ and Var(A) for V ′ from (4).

If V ⊆ Var(A), then A|V stands for the restriction of A to the variables from V . I.e., given A as in (4),

A|V : σ → (V ∪ {r, n} → R
∞ ∪ {0, 1}).

Given an arithmetic or boolean expression e such that V (e) ⊆ V (A), we write At(e) for the value of e under A
at time t ∈ domA. Given A and B such that max domA = min domB , Var(A) = Var(B) and AmaxdomA(x) =
Bmin domB (x) for all x ∈ Var(A) ∪ {r, n}, A;B is determined by the conditions domA;B = domA ∪ domB ,
(A;B)t(x) = At(x) for t ∈ domA and (A;B)t(x) = Bt(x) for t ∈ domB for all x ∈ Var(A) ∪ {r, n}. A

complete and possibly infinite behaviour of P can be defined as A1;A2; . . . where Pi−1
Ai,V
−→ Pi, and P0 = P .

The auxiliary variables r and n To handle the causal ordering of computation steps without having to
account of the negligibly small time delays they contribute, we allow stretches of time in which continuous
evolution is ’frozen’, and which are meant to just keep apart time points with different successive variable
values that have been obtained by computation. Intervals of negligible time are marked by the boolean
variable r. P (or any of its descendant processes) claims exclusive control over the process variables during
such intervals, thus achieving atomicity of assignment. Time used for computation steps by any process
which runs in parallel with P or P itself is marked by n. Hence At(r) ≤ At(n), t ∈ domA always holds in
the mappings (4). As it becomes clear below, each operand Pi of a P1‖P2 has its own r, and no two such
variables evaluate to 1 at the same time, which facilitates encoding the meaning of ‖ by conjunction. In
processes with loops and no other recursive calls, the rs can be enumerated globally. More involved form of
recursive calls require the rs to be quantified away.

This approach is known as the true synchrony hypothesis. It was introduced to the setting of DC in [29]
and was developed in [10, 11] where properties ϕ of the overall behaviour of a process in terms of the relevant
continuously evolving quantities are written (ϕ/¬N), the projection of ϕ onto state ¬N , which holds iff ϕ
holds at the interval obtained by gluing the ¬N -parts of the reference one. The approach is alternative to
the use of super-dense chop [16].

3.1 The reduction rules

To abbreviate conditions on A in the rules which generate the valid instances of P
A,V
−→ Q below, given an

X ⊆ Var(A) and a boolean or arithmetical expression e, we put:

const(X,A) ⇋
∧

x∈X

(∀t ∈ domA)(At(x) = Amin domA(x))

const◦(X,A) ⇋
∧

x∈X

(∀t ∈ domA \ {maxdomA})(At(x) = AmindomA(x))

const◦(e,A, a) ⇋ (∀t ∈ domA \ {maxdomA})(At(e) = a)

In these abbreviations ◦ indicates that no restriction is imposed at maxdomA.

5

Reduction of process terms of the primitive types The valid transitions which are specific to prim-
itive process terms are given by the following rules:

max domA = min domA

skip
A,V
−→ X

const(V \ {x1, . . . , xn},A)
const◦({x1, . . . , xn},A)
const◦(r ∧ n,A, 1)
AmaxdomA(xi) = AmindomA(ei), i = 1, . . . , n
maxdomA <∞

x1, . . . , xn := e1, . . . , en
A,V
−→ X

const◦(F (ẋ, x), A, 0)
const◦(At(ẋ)−

d
dt
At(x),A, 0)

const◦(¬r ∧ ¬n ∧ b,A, 1)
const(V \ {ẋ, x},A)

〈F (ẋ, x) = 0 ∧ b〉
A,V
−→ 〈F (ẋ, x) = 0 ∧ b〉

AmindomA(b) = 0
maxdomA = min domA

〈F (ẋ, x) = 0 ∧ b〉
A,V
−→ X

The rule about simultaneous assignment states that assignment takes an interval of negligible time, with its
enveloping thread claiming exclusive control over the process variables. All variables except the ones which
are assigned are kept constant throughout.

The first rule about 〈F (ẋ, x) = 0 ∧ b〉 describes ’ordinary’ (non-negligible) periods in which continuous
evolution takes place within the boundary condition b. The second rule describes states in which b has
become false and therefore evolution terminates immediately.

Reduction of compound terms

6

P
A,V
−→ P ′ P ′ 6= X

P ;Q
A,V
−→ P ′;Q

P
A,V
−→ X maxdomA <∞

P ;Q
A,V
−→ Q

P
A,V
−→ P ′ maxdomA = ∞

P ;Q
A,V
−→ P ′

P
A,V
−→ R AmindomA(b) = 1

if b then P else Q
A,V
−→ R

Q
A,V
−→ R AmindomA(b) = 0

if b then P else Q
A,V
−→ R

P
A,V
−→ P ′

P ⊔Q
A,V
−→ P ′

Q
A,V
−→ Q′

P ⊔Q
A,V
−→ Q′

[µX.P/X]P
A,V
−→ Q

µX.P
A,V
−→ Q

Var(A) ∪ Var(B) ⊆ Var(C)
C |Var(A)∪{r,n} = A
C |Var(B)∪{r,n} = B
const◦(¬r ∧ ¬n,C , 1)
V1 ∩ V2 = ∅

P
A,V1

−→ X Q
B ,V2

−→ X

P‖Q
C ,V1∪V2

−→ X

Var(A) ∪ Var(B) ⊆ Var(C)
C |Var(A)∪{r,n} = A
C |Var(B)∪{r,n} = B
const◦(¬r ∧ ¬n,C , 1)
V1 ∩ V2 = ∅

P
A,V1

−→ P ′ Q
B ,V2

−→ Q′

P ′ 6= X, Q′ 6= X

P‖Q
C ,V1∪V2

−→ P ′‖Q′

Var(A) ∪ Var(B) ⊆ Var(C)
C |Var(A)∪{r,n} = A
C |Var(B)∪{r,n} = B
const◦(¬r ∧ ¬n,C , 1)
V1 ∩ V2 = ∅

P
A,V1

−→ P ′ Q
B ,V2

−→ X

P ′ 6= X

P‖Q
C ,V1∪V2

−→ P ′

Var(A) ∪ Var(B) ⊆ Var(C)
C |Var(A)∪{r,n} = A
C |Var(B)∪{r,n} = B
const◦(¬r ∧ ¬n,C , 1)
V1 ∩ V2 = ∅

P
A,V1

−→ X Q
B ,V2

−→ Q′

Q′ 6= X

P‖Q
C ,V1∪V2

−→ Q′

V ⊆ V ′

const(V ′ \ V,B)
V ′ ∪Var(A) ⊆ Var(B)
B |Var(A)∪{r,n} = A
const◦(r ∧ n,A, 1)

P
A,V
−→ P ′ P ′ 6= X

P‖Q
B ,V ′

−→ P ′‖Q

V ⊆ V ′

const(V ′ \ V,B)
V ′ ∪ Var(A) ⊆ Var(B)
B |Var(A)∪{r,n} = A
const◦(r ∧ n,A, 1)

Q
A,V
−→ Q′ Q′ 6= X

P‖Q
B ,V ′

−→ P‖Q′

V ⊆ V ′

const(V ′ \ V,B)
V ′ ∪ Var(A) ⊆ Var(B)
B |Var(A)∪{r,n} = A
const◦(r ∧ n,A, 1)

P
A,V
−→ X

P‖Q
B ,V ′

−→ Q

V ⊆ V ′

const(V ′ \ V,B)
V ′ ∪Var(A) ⊆ Var(B)
B |Var(A)∪{r,n} = A
const◦(r ∧ n,A, 1)

Q
A,V
−→ X

P‖Q
B ,V ′

−→ P

4 A DC semantics of Hybrid Communicating Sequential Processes

Given a process P , [[P]], with some subscripts to be specified below, is a DC formula which defines the class
of DC interpretations that represent runs of P .

Process variables and their corresponding DC temporal variables Real-valued process variables
x are modelled by a pairs of DC temporal variables x and x′, which are meant to store the value of x at the

7

beginning and at the end of the reference interval, respectively. The axiom

✷∀z¬(x′ = z⌢x 6= z).

entails that the values of x and x′ are determined by the beginning and the end point of the reference interval,
respectively. It can be shown that

|=DC ✷∀z¬(x′ = z⌢x 6= z) ⇒
✷(x = c⇒ ¬(x 6= c⌢⊤)) ∧ ✷(x′ = c⇒ ¬(⊤⌢x′ 6= c))

This is known as the locality principle in ITL about x. About primed variables x′, the locality principle holds
wrt the endpoints of reference intervals. Boolean process variables are similarly modelled by propositional
temporal letters. For the sake of brevity we put

loc(X) ⇋
∧

x∈X

x is real

✷∀z¬(x′ = z⌢x 6= z) ∧
∧

x∈X

x is boolean

✷¬((x′⌢¬x) ∨ (¬x′⌢x))

In the sequel, given a DC term e or formula ϕ written using only unprimed variables, e′ and ϕ′ stand for
the result of replacing all these variables by their respective primed counterparts.

Time derivatives of process variables As mentioned above, terms of the form ẋ where x is a process
variable are treated as distinct process variables and are modelled by their respective temporal variables ẋ
and ẋ′. The requirement on ẋ to be interpreted as the time derivative of x is incorporated in the semantics
of continuous evolution statements.

Computation time and the parameters [[.]] As explained in Section 3, we allow stretches of time
that are dedicated to computation steps and are marked by the auxiliary boolean process variable r. Such
stretches of time are conveniently excluded when calculating the duration of process execution. To this end,
in DC formulas, we use a state variable R which indicates the time taken by computation steps by the
reference process. Similarly, a state variable N indicates time for computation steps by which any process
that runs in parallel with the reference one, including the reference one. R and N match the auxiliary
variables r and n from the operational semantics and, just like r and n, are supposed to satisfy the condition
R ⇒ N . We assume that all continuous evolution becomes temporarily suspended during intervals in
which computation is performed, with the relevant real quantities and their derivatives remaining frozen.
To guarantee the atomicity of assignment, computation intervals of different processes are not allowed to
overlap. As it becomes clear in the DC semantics of ‖ below, Pi of P1‖P2 are each given its own variable
Ri, i = 1, 2, to mark computation time, and R1 and R2 are required to satisfy the constraints ¬(R1 ∧ R2)
and R1 ∨R2 ⇔ R where R is the variable which marks computation times for the whole of P1‖P2.

The semantics [[P]]R,N,V of a HCSP term P is given in terms of the DC temporal variables which corre-
spond to the process variables occurring in P , the state variables R and N , and the set of variables V which
are controlled by P ’s immediately enveloping ‖-operand.

Assignment To express that the process variables from X ⊆ V may change at the end of the reference
interval only, and those from V \X remain unchanged, we write

const(V,X) ⇋
∧

x∈V \X
x is real

✷(x′ = x) ∧
∧

x∈V \X
x is boolean

✷(x ⇔ x′)∧

∧

x∈X

x is real

i✷
◦(x′ = x) ∧

∧

x∈X

x is boolean

i✷
◦(x′ ⇔ x).

The meaning of simultaneous assignment is as follows:

[[x1, . . . , xn := e1, . . . , en]]R,N,V ⇋ ⌈R⌉fin ∧ const(V, {x1, . . . , xn})∧
∧

i=1,...,n

xi is real

x′i = ei ∧
∧

i=1,...,n

xi is boolean

x′i ⇔ ei.

8

Parallel composition Consider processes P1 and P2 and V ⊇ Var:=(P1‖P2). Let 1 = 2, 2 = 1. Let

∃‖(R,R1, R2, V, P1, P2)ϕ⇋ ∃R1∃R2

(

⌈(R1 ∨ R2 ⇔ R) ∧ ¬(R1 ∧ R2)⌉
0∧

2
∧

i=1

✷(⌈Ri⌉ ⇒ const(V \ Var:=(Pi))) ∧ ϕ

)

.

∃‖(R,R1, R2, V1, V2) means that

• the R-subintervals for the computation steps of P1‖P2 can be divided into R1- and R2-subintervals to
mark the computation steps of some sub-processes P1 and P2 of P which run in parallel;

• the variables which are not controlled by Pi remain unchanged during Pi’s computation steps, i = 1, 2,
and, finally,

• some property ϕ, which can involve R1 and R2, holds.

The universal dual ∀‖ of ∃‖ is defined in the usual way. Let Vi abbreviate Var:=(Pi). Now we can define
[[P1‖P2]]R,N,V as

∃‖(R,R1, R2, V, P1, P2)
2
∨

i=1

(

[[Pi]]Ri,N,Vi
∧ (⌈N ∧ ¬Ri⌉

0
fin

⌢ [[Pi]]R
i
,N,V

i

⌢⌈¬Ri⌉
0)∨

(⌈N ∧ ¬Ri⌉
0
fin

⌢ [[Pi]]Ri,N,Vi
) ∧ ([[Pi]]R

i
,N,V

i

⌢⌈¬Ri⌉
0)

)

(5)

To understand the four disjunctive members of Φ above, note that P1‖P2 always starts with some action
on behalf of either P1, or P2, or both, in the case of continuous evolution. Hence (at most) one of Pi, i = 1, 2,
needs to allow negligible time for Pi’s first step. This is expressed by a ⌈N ∧¬Ri⌉0fin before [[Pi]]Ri,N,Vi

. The
amount of time allowed is finite and may be 0 in case both P1 and P2 start with continuous evolution
in parallel. This makes it necessary to consider two cases, depending on which process starts first. If Pi

terminates before Pi, then a ⌈N ∧ ¬Ri⌉0 interval follows [[Pi]]Ri,N,Vi

. This generates two more cases to

consider, depending on the value of i.
The definitions of [[x1, . . . , xn := e1, . . . , en]]R,N,V and [[P1‖P2]]R,N,V already appear in (4) and (5). Here

follow the definitions for the rest of the basic constructs:

[[await b]]
R,N,V

⇋ const(V) ∧ (⌈¬R⌉ ∨ ℓ = 0) ∧ i✷◦¬b′ ∧ (b′ ∨ ℓ = ∞)

[[〈F (ẋ, x) = 0 ∧ b〉]]
R,N,V

⇋













const(V \ {ẋ, x}) ∧ ⌈¬R⌉∧

✷









⌈N⌉ ⇒ const({ẋ, x})∧
∀ub✷(ẋ ≤ ub) ⇒ x′ ≤ x+ ub

∫

¬N∧
∀lb✷(ẋ ≥ lb) ⇒ x′ ≥ x+ lb

∫

¬N∧
F (ẋ, x) = 0









∧ s✷◦b













⌢(¬b ∧ ℓ = 0)

[[P ;Q]]
R,N,V

⇋ ([[P]]
R,N,V

⌢⌈N ∧ ¬R⌉0fin
⌢ [[Q]]

R,N,V
)

[[P ⊔Q]]
R,N,V

⇋ [[P]]
R,N,V

∨ [[Q]]
R,N,V

[[if b then P else Q]]
R,N,V

⇋ (b ∧ [[P]]
R,N,V

) ∨ (¬b ∧ [[Q]]
R,N,V

)

[[while b do P]]
R,N,V

⇋ (b ∧ [[P]]
R,N,V

⌢⌈¬R⌉0)∗⌢(¬b ∧ ℓ = 0)

To understand [[〈F (ẋ, x) = 0 ∧ b〉]]R,N,V , observe that, assuming I to be the DC interpretation in question
and λt.It(ẋ) to be continuous, the two inequalities in [[〈F (ẋ, x) = 0 ∧ b〉]]R,N,V express that

It2(x)− It1(x) =
t2
∫

t1

It(ẋ)(1− It(N))dt

at all finite subintervals [t1, t2] of the reference intervals. This means that both ẋ and x are constant in

N -subintervals, and It2(x)− It1(x) =
t2
∫

t1

It(ẋ)dt holds at ¬N -subintervals.

9

Completeness of [[.]] Given a process term P , every DC interpretation I for the vocabulary of [[P]]N , N, V
represents a valid behaviour of P with N being true in the subintervals which P uses for computation steps.
To realize this, consider HCSP terms P , Q of the syntax

P,Q ::= skip | A;R | []iAi;Ri | if b then P else Q | P ⊔Q
A ::= x := e | await b | 〈F (ẋ, x) = 0 ∧ b〉

(6)

where R and Ri stand for a process term with no restrictions on its syntax (e.g., occurrences of while-
terms are allowed). (6) is the guarded normal form (GNF) for HCSP terms, with the guards being the
primitive terms of the form A, and can be established by induction on the construction of terms, with
suitable equivalences for each combination of guarded operands that ‖ may happen to have. E.g.,

〈F1(ẋ, x) = 0 ∧ b1〉;P1‖〈F2(ẋ, x) = 0 ∧ b2〉;P2 (7)

is equivalent to

〈F1(ẋ, x) = 0 ∧ F2(ẋ, x) = 0 ∧ b1 ∧ b2〉;
if b1 then 〈F1(ẋ, x) = 0 ∧ b1〉;P1‖P2

else if b2 P1‖〈F2(ẋ, x) = 0 ∧ b2〉;P2

else P1‖P2

(8)

Note that []iAi;Ri is a modest generalization of IO as defined in (2). Some combinations of operands of ‖
require external choice to be extended this way, with the intended meaning being that if none of the Ais
which have the forms ch?x and ch!e is ready to execute, then some other option can be pursued immediately.
For example, driving ‖ inwards may require using that

(ch1?x→ P1[]ch2!e→ P2[]ch3?y → P3)‖ch1!f ;Q1‖ch2?z;Q2 ≡
((x := f ; (P1‖Q1)‖ch2?z;Q2) ⊔ (z := e; (P2‖Q2)‖ch1!f ;Q1))[]
ch3?y;P3‖ch1!f ;Q1‖ch2?z;Q2 .

On the RHS of ≡ above, one of the assignments and the respective subsequent process are bound to take
place immediately in case the environment is not ready to communicate over ch3.

The GNF renders the correspondence between the semantics of guards and the As which appear in the

rules for
A,V
−→ explicit, thus making obvious that any finite prefix of a valid behaviour satisfies some chop-

sequence of guards that can be generated by repeatedly applying the GNF a corresponding number of times
and then using the distributivity of chop over disjunction, starting with the given process term, and then
proceeding to transform the R-parts of guarded normal forms that appear in the process. The converse holds
too. This entails that the denotational semantics is equivalent to the operational one.

5 Reasoning about Hybrid Communicating Sequential Processes

with DC Hoare triples

We propose reasoning in terms of triples of the form

{A}P{G}V (9)

where A and G are DC formulas, P is a HCSP term, and V is a set of program variables. V is supposed
to denote the variables whose evolution needs to be specified in the semantics of P , e.g., an assignment
x := e in P is supposed to leave the values of the variables y 6= x unchanged. This enables deriving, e.g.,
{y = 0}x := 1{y = 0}{x,y}, which would be untrue for a y that belongs to a process that runs in parallel
with the considered one and is therefore not a member of V . Triple (9) is valid, if

|= loc(V) ∧ ⌈R ⇒ N⌉0 ∧ (A⌢⊤) ⇒ ¬([[P]]R,N,V ∧ ¬G⌢⊤) (10)

Since R and N typically occur in [[P]]R,N,V , triples (9) can have occurrences of R and N in A and G too,
with their intended meanings.

10

Next we propose axioms and rules for deriving triples about processes with each of the HCSP constructs
as the main one in them. For P of one of the forms skip, x1, . . . , xn := e1, . . . , en, and 〈F(ẋ, x) = 0∧ b〉, we
introduce the axioms

{⊤}P{[[P]]R,N,V }V .

where V can be any set of process variables such that V ⊇ Var:=(P). Here follow the rules for reasoning
about processes which are built using each of the remaining basic constructs:

(seq)

{A}P{G}V {B}Q{H}V
loc(V) ∧ ⌈R ⇒ N⌉0 ∧ (A⌢⊤) ⇒ ¬(G⌢¬(⌈N ∧ ¬R⌉0⌢B⌢⊤))

{A}P ;Q{(G⌢⌈N ∧ ¬R⌉0⌢H)}V

(⊔)
{A}P{G}V {B}Q{H}V
{A ∧B}P ⊔Q{G ∨H}V

(if)
{A ∧ b}P{G}V {A ∧ ¬b}Q{G}V

{A}if b then P else Q{G}V

(while)

{A}P{G}V
loc(V) ∧ ⌈R ⇒ N⌉0 ∧ (A⌢⊤) ⇒ ¬(G ∧ ℓ < ∞⌢¬✸c

l (⌈¬R⌉0⌢A))

{A}while b do P{((b ∧G⌢⌈¬R⌉0)∗⌢¬b ∧ ℓ = 0)}V

Parallel composition The established pattern suggests the following proof rule (‖):

{A1}P1{G1}Var:=(P1) {A2}P2{G2}Var:=(P2)
{

∀‖(R,R1, R2, V, P1, P2)

(

2
∨

i=1

¬(⌈N ∧ ¬Ri⌉
0
fin

⌢¬[Ri/R]Ai
⌢⊤) ∧ ([Ri/R]Ai

⌢⊤)

)}

P1‖P2






∃‖(R,R1, R2, V, P1, P2)





2
∨

i=1

Gi ∧ (⌈N ∧ ¬Ri⌉
0
fin

⌢Gi
⌢⌈¬Ri⌉

0)
∨
(⌈N ∧ ¬Ri⌉

0
fin

⌢Gi) ∧ (Gi
⌢⌈¬Ri⌉

0)











V

This rule can be shown to be complete as it straightforwardly encodes the semantics of ‖. However, it is
not convenient for proof search as it only derives triples with a special form of the condition on the righthand
side and actually induces the use of [[Pi]]Ri,N,Var:=(Pi)

as Gi, which typically give excess detail. We discuss
a way around this inconvenience below, together with the modifications of the setting which are needed in
order to handle general HCSP fixpoints µX.P .

General rules Along with the process-specific rules, we also need the rules

(N)
loc(V) ∧ ⌈R ⇒ N⌉0 ∧✸c

lA⇒ G

{A}P{G}V
Var:=(P) ⊂ V

(K)
{A}P{G⇒ H}V {B}P{G}V loc(V) ∧ ⌈R ⇒ N⌉0 ∧✸c

lA⇒ ✸c
lB

{A}P{H}V

These rules are analogous to the modal form N of Gödel’s generalization rule (also known as the necessitation
rule) and the modal axiom K.

Soundness and Completeness

The soundness of the proof rules is established by a straightforward induction on the construction of proofs
with the definition of [[.]]R,N,V . The system is also complete relative to validity in DC. This effectively means
that we allow all valid DC formulas as axioms in proofs, or, equivalently, given some sufficiently powerful
set of proof rules and axioms for the inference of valid DC formulas in DC with infinite intervals, our proof
rules about triples suffice for deriving all the valid triples. Such systems are beyond the scope of our work.

11

A Hilbert-style proof system for ITL with infinite intervals was proposed and shown to be complete with
respect to an abstractly defined class of time models (linearly ordered commutative groups) in [13], building
on similar work about finite intervals from [8].

The deductive completeness of our proof system boils down to the possibility to infer triples of the form
{⊤}P{G}V for any given term P and a certain strongest corresponding G, which turns out to be the DC
formula [[P]]R,N,V that we call the semantics of P . Then the validity of {⊤}P{[[P]]R,N,V }V is used to derive
any valid triple about P by a simple use of the proof rules K and N . The completeness now follows from
the fact that [[P]]R,N,V defines the class of all valid behaviours of P .

Proposition 1 The triple

{⊤}P{[[P]]R,N,V }V (11)

is derivable for all process terms P and all V such that Var:=(P) ⊇ V .

Proof: Induction on the construction of P . The triple (11) is an axiom for P being the forms skip,
x1, . . . , xn := e1, . . . , en, and 〈F(ẋ, x) = 0 ∧ b〉. For processes P of other forms, the induction step follows
by single applications of the corresponding rules to the instances of (11) which are assumed to hold for P ’s
subprocesses. ⊣

Corollary 2 (relative completeness of the Hoare-style proof system) Let A, G and P be such that
(10) is valid. Then (9) is derivable in the extension of the given proof system by all DC theorems.

Proof: By N we first derive

{A}P{[[P]]R,N,V ⇒ G}V .

Now, using (11) from Proposition 1, the validity of ✸c
lA⇒ ✸c

l⊤ in DC and K, we derive (9). ⊣

6 General fixpoints and bottom-up proof search in HCSP

To avoid the constraints on the form of the conclusion of rule (‖), we propose a set of rules which correspond
to the various possible forms of the operands of the designated ‖ in the considered HCSP term. These rules
enable bottom-up proof search much like when using the rules for (just) CSP constructs, which is key to
the applicability of classical Hoare-style proof. We propose separate rules for each combination of main
connectives in the operands of ‖, except ‖ itself and the fixpoint construct. For instance, the equivalence
between (7) and (8) suggests the following rule for this particular combination of ‖ with the other connectives:

{P}〈F1(ẋ, x) = 0 ∧ F2(ẋ, x) = 0 ∧ b1 ∧ b2〉{R}
{R ∧ b1 ∧ ¬b2}〈F1(ẋ, x) = 0 ∧ b1〉;P1‖P2{Q}
{R ∧ b2 ∧ ¬b1}P1‖〈F2(ẋ, x) = 0 ∧ b2〉;P2{Q}
{R ∧ ¬b1 ∧ ¬b2}P1‖P2{Q}

{P}〈F1(ẋ, x) = 0 ∧ b1〉;P1‖〈F2(ẋ, x) = 0 ∧ b2〉;P2{Q}

Rules like the above one use the possibility to drive ‖ inwards by equivalences like that between (7) and
(8), which can be derived for all combinations of the main connectives of ‖’s operands, except for loops, and
indeed can be used to eliminate ‖. For while-loops, the GNF contains a copy of the loop on the RHS of
chop:

while b do P ≡ if b then (P ;while b do P) else skip. (12)

Tail-recursive instances of µX.G come handy in completing the elimination of ‖ in such cases by standard
means, namely, by treating equivalences such as (12) as the equations leading to definitions such as (3).

To handle general recursion in our setting, we need to take care of the special way in which we treat
A from {A}P{G} in (10). In the rule for {A}while b do P{G} clipping of initial G-subintervals of an

12

A-interval are supposed to leave us with suffix subintervals which satisfy (A⌢⊤), to provide for successive
executions of P . With X allowed on the LHS of chop in the P of µX.P , special care needs to be taken for
this to be guaranteed. To this end, instead of (A⌢⊤), ✸c

lA is used to state that A holds at an interval that
starts at the same time point as the reference one, and is not necessarily its subinterval. This is needed for
reasoning from the viewpoint of intervals which accommodate nested recursive executions. The meaning of
triples (9) becomes

|= loc(V) ∧ ⌈R ⇒ N⌉0 ∧✸c
lA ∧ [[P]]R,N,V ⇒ G. (13)

In this setting, µX.P admits the proof rule, where X does not occur in A:

(µ)
loc(V) ∧ ⌈R⇒ N⌉0 ∧✸c

lA ∧G⇒ [✸c
lA ∧X/X]G {A}P{G}V

{A}µX.P{µX.G}V

This rule subsumes the one for while−do, but only as part of a suitably revised variant of the whole proof
system wrt (13). E.g., the rule for sequential composition becomes

{A}P{G}V
{B}Q{H}V
loc(V) ∧ ⌈R⇒ N⌉0 ∧✸c

lA⇒ ¬(G ∧ ℓ <∞⌢¬✸c
l (⌈N ∧ ¬R⌉0⌢B))

{A}P ;Q{(G⌢⌈N ∧ ¬R⌉0⌢H)}V

7 Related work

Our work was influenced by the studies on DC-based reasoning about process-algebraic specification lan-
guages in [14, 18, 38, 17]. In a previous paper we proposed a calculus for HCSP [22], which was based on
DC in a limited way and lacked compositionality. In [37] and [12] we gave other variants of compositional
and sound calculi for HCSP with different assertion and temporal condition formats. Completeness was not
considered. The approach in [12] and in this paper is largely drawn from [10] where computation time was
proposed to be treated as negligible in order to simplify delay calculation, and the operator of projection
was proposed to facilitate writing requirements with negligible time ignored. Hoare-style reasoning about
real-time systems was also studied in the literature with explicit time logical languages [21]. However, our
view is that using temporal logic languages is preferable. Dedicated temporal constructs both lead to more
readable specifications, and facilitate the identification of classes of requirements that can be subjected to
automated analysis. Another approach to the verification of hybrid systems is Platzer’s Differential Dynamic
Logic [32]. However, the hybrid programs considered there have limited functionality. Communication, par-
allelism and interrupts are not handled. For logic compositionality, assume-guarantee reasoning has been
studied for communication-based concurrency in CSP without timing in [25, 30].

Both in our work and in alternative approaches such as [25], the treatment of continuous evolution is
somewhat separated from the analysis of the other basic process-algebraic constructs. Indeed we make a
small step forward here by fully expressing the meaning of differential law-governed evolution in DC, which
is theoretically sufficient to carry out all the relevant reasoning in the logic. Of course, the feasibility of such
an approach is nowhere close to the state of art in the classical theory of ordinary differential equations.
Indeed it would typically lead to formalized accounts of classical reasoning. Techniques for reasoning about
the ODE-related requirements are the topic of separate studies, see, e.g., [33, 34, 23].

Concluding remarks

We have presented a weakly monotonic time-based semantics and a corresponding Hoare style proof system
for HCSP with both the semantics and the temporal conditions in triples being in first-order DC with infinite
intervals and extreme fixpoints. The proof system is compositional but the proof rule for parallel composition
introduces complications because of the special form of the triples that it derives. However, we have shown
that HCSP equivalences that can serve as elimination rules for ‖ can also be used to derive proof rules for

13

‖ which do not bring the above difficulty and indeed are perfectly compatible with standard bottom-up
proof search. Interestingly, the informal reading of the derived rules for ‖ together with the ones which are
inherited from CSP, does not require the mention of weakly monotonic time technicalities. This means that
the use of this special semantics can be restricted to establishing the soundness of practically relevant proof
systems and awareness of its intricacies is not essential for applying the system. The meaning of triples we
propose subsumes classical pre-/postcondition Hoare triples and triples linking (hybrid) temporal conditions
in a streamlined way. This is a corollary of the choice to use assumptions which hold at an arbitrary initial
subintervals, which is also compatible with reasoning about invariants A in terms of statements of the form
(A⌢⊤) ⇒ ¬([[P]] ∧ ¬(A⌢⊤)).

References

[1] M. Abadi and L. Lamport. Composing specifications. ACM Trans. Program. Lang. Syst., 15(1):73–132,
1993.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–843,
November 1983.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An algorithmic approach
to the specification and verification of hybrid systems. In Hybrid Systems, LNCS 736, pages 209–229,
1992.

[4] C. Zhou and M. R. Hansen. Duration Calculus. A Formal Approach to Real-Time Systems. Springer,
2004.

[5] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A Calculus of Durations. Information Processing Letters,
40(5):269–276, 1991.

[6] C. Zhou, V. H. Dang, and X. Li. A Duration Calculus with Infinite Intervals. In Fundamentals of
Computation Theory, LNCS 965, pages 16–41. Springer, 1995.

[7] A. Cau, B. Moszkowski, and H. Zedan. ITL web pages. URL: http://www.antonio-cau.co.uk/ITL/.

[8] B. Dutertre. On First-order Interval Temporal Logic. Report CSD-TR-94-3, Department of Computer
Science, Royal Holloway, University of London, 1995.

[9] V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal logics and duration
calculi. Journal of Applied Non-Classical Logics, 14(1-2):9–54, 2004.

[10] D. P. Guelev and Dang Van Hung. Prefix and Projection onto State in Duration Calculus. In Proceedings
of TPTS’02, ENTCS 65(6). Elsevier Science, 2002.

[11] D. P. Guelev and Dang Van Hung. A Relatively Complete Axiomatisation of Projection onto State
in the Duration Calculus. Journal of Applied Non-classical Logics, Special Issue on Interval Temporal
Logics and Duration Calculi, 14(1-2):151–182, 2004.

[12] D. P. Guelev, S. Wang, N. Zhan, and C. Zhou. Super-dense computation in verification of hybrid CSP
processes. In FACS 2013, LNCS 8348, pages 13–22. Springer, 2013.

[13] H. Wang and Q. Xu. Completeness of Temporal Logics over Infinite Intervals. Discrete Applied Math-
ematics, 136(1):87–103, 2004.

[14] H. Zhu and J. He. A DC-based Semantics for Verilog. Technical Report 183, UNU/IIST, P.O. Box
3058, Macau, 2000.

14

[15] J. Y. Halpern and Y. Shoham. A Propositional Logic of Time Intervals. In Proceedings of LICS’86,
pages 279–292. IEEE Computer Society Press, 1986.

[16] M. R. Hansen and C. Zhou. Chopping a Point. In BCS-FACS 7th refinement workshop, Electronic
Workshops in Computing. Springer, 1996.

[17] A. E. Haxthausen and X. Yong. Linking DC toghether with TRSL. In IFM’00, LNCS 1945, pages
25–44, 2000.

[18] J. He and Q. Xu. Advanced features of duration calculus and their applications in sequential hybrid
programs. Formal Asp. Comput., 15(1):84–99, 2003.

[19] Jifeng He. From csp to hybrid systems. In A. W. Roscoe, editor, A Classical Mind, pages 171–189.
Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1994.

[20] T. A. Henzinger. The theory of hybrid automata. In Proceedings of LICS’96, pages 278–292. IEEE
Computer Society Press, 1996.

[21] J. Hooman. Extending hoare logic to real-time. Formal Asp. Comput., 6(6A):801–826, 1994.

[22] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for hybrid CSP. In
Proceedings of APLAS’10, pages 1–15. Springer-Verlag, 2010.

[23] J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial dynamical systems.
In Proceedings of EMSOFT’11, pages 97–106. ACM, 2011.

[24] Z. Manna and A. Pnueli. Verifying hybrid systems. In Hybrid Systems, LNCS 736, pages 4–35. Springer,
1992.

[25] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Software Eng., 7(4):417–426,
1981.

[26] B. Moszkowski. Temporal Logic For Multilevel Reasoning About Hardware. IEEE Computer, 18(2):10–
19, 1985.

[27] B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, 1986. URL:
http://www.cse.dmu.ac.uk/ cau/papers/tempura-book.pdf.

[28] Ernst-Rüdiger Olderog and C. A. R. Hoare. Specification-oriented semantics for communicating pro-
cesses. In ICALP 1983, Proceedings, volume 154 of LNCS, pages 561–572. Springer, 1983.

[29] P. K. Pandya and Dang Van Hung. Duration Calculus of Weakly Monotonic Time. In FTRTFT’98,
LNCS 1486, pages 55–64. Springer, 1998.

[30] P. K. Pandya and M. Joseph. P - A logic - A compositional proof system for distributed programs.
Distributed Computing, 5:37–54, 1991.

[31] Paritosh K. Pandya. Some extensions to propositional mean-value caculus: Expressiveness and de-
cidability. In Hans Kleine Büning, editor, Computer Science Logic, 9th International Workshop, CSL
’95, Annual Conference of the EACSL, Paderborn, Germany, September 22-29, 1995, Selected Papers,
volume 1092 of Lecture Notes in Computer Science, pages 434–451. Springer, 1995.

[32] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reasoning, 41(2):143–189, 2008.

[33] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier certificates. In HSCC’04,
LNCS 2993, pages 477–492. Springer, 2004.

[34] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants for hybrid systems. In HSCC’04,
LNCS 2993, pages 539–554. Springer, 2004.

15

[35] Y. Venema. A Modal Logic for Chopping Intervals. Journal of Logic and Computation, 1(4):453–476,
1991.

[36] Y. Venema. Many-Dimensional Modal Logics. Ph.D. thesis, University of Amsterdam, 1991.

[37] S. Wang, N. Zhan, and D. Guelev. An assume/guarantee based compositional calculus for hybrid CSP.
In TAMC 2012, LNCS 7287, pages 72–83. Springer, 2012.

[38] X. Yong and C. George. An operational semantics for timed RAISE. In FM’99, LNCS 1709, pages
1008–1027. Springer, 1999.

[39] C. Zhou, J. Wang, and A. P. Ravn. A formal description of hybrid systems. In Hybrid Systems III,
LNCS 1066, pages 511–530. Springer, 1995.

[40] Chaochen Zhou and Michael R. Hansen. Duration Calculus - A Formal Approach to Real-Time Systems.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2004.

16

	1 Introduction
	2 Preliminaries
	2.1 Syntax and informal semantics of Hybrid CSP
	2.2 The Duration Calculus

	3 Operational semantics of HCSP
	3.1 The reduction rules

	4 A DC semantics of Hybrid Communicating Sequential Processes
	5 Reasoning about Hybrid Communicating Sequential Processes with DC Hoare triples
	6 General fixpoints and bottom-up proof search in HCSP
	7 Related work

