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Abstract. We present a generic, yet simple and efficient transformation to obtain
a forward secure authenticated key exchange protocol from a two-move passively
secure unauthenticated key agreement scheme (such as standard Diffie–Hellman
or Frodo or NewHope). Our construction requires only an IND-CCA public key
encryption scheme (such as RSA-OAEP or a method based on ring-LWE), and
a message authentication code. Particularly relevant in the context of the state-
of-the-art of postquantum secure primitives, we avoid the use of digital signature
schemes: practical candidate post-quantum signature schemes are less accepted
(and require more bandwidth) than candidate post-quantum public key encryption
schemes. An additional feature of our proposal is that it helps avoid the bad prac-
tice of using long term keys certified for encryption to produce digital signatures.
We prove the security of our transformation in the random oracle model.

1 Introduction

Forward secrecy and authentication are the standard security requirements for authen-
ticated key agreement protocols (AKA). They require that parties authenticate one an-
other, and that the key derived remains secret to anyone but to the two parties involved
at the time of the execution. Modern realizations rely on the Diffie–Hellman protocol
which is unauthenticated and guarantees key secrecy only against passive adversaries.
The stronger property is obtained via additional mechanisms which authenticate the
two parties and ensure integrity of the conversation between them, even against active
adversaries.

Numerous generic transformations in the literature show how to achieve full AKA
active security from protocols with weaker guarantees [3,9,22,28,18,24] using simple
mechanisms such as signatures, encryption, and MACs.

Such generic techniques are particularly appealing; on the one hand they enable
a modular approach where the base protocol and the details of the transformation are
designed and analyzed independently – in particular, if needed, the underlying protocol
can be easily swaped out and replaced with a different mechanism. On the other it
provide conceptual clarity for choices that are made, e.g. which part of the the protocol
provides say, key-secrecy, and which deals with integrity/entity authentication.

In this paper we contribute to this research direction. We provide a simple generic
transformation which, when applied to a certain class of passively secure key-exchange
protocols, yields the most round-efficient authenticated key-agreement protocols against
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active adversaries to date. Besides optimal round complexity, our proposal has two in-
teresting implications which serve as further motivation for this work. The first concerns
the practicalities of existing RSA certified public keys; the second concerns security of
key-agreement protocols in the post-quantum world.

Consider the instantiation of the “signed Diffie-Hellman” construction which ap-
pears, for example, in the popular TLS 1.0-1.2 ciphersuite

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

using RSA signatures and elliptic curve based Diffie–Hellman. This usage is a bit of a
kludge: RSA certificates in existence were issued for dual-use of RSA in both signature
and encryption mode (which was needed for the earlier TLS mechanism of RSA key-
transport which is still prevalent). Deploying protocols where the same keys are used
for both signature and encryption would encourage a usage which is not supported by
rigorous mathematical guarantees. Short of issuing new RSA keys, this type of misuse
could be avoided by ensuring that existing keys are only used for encryption. We note
that this is not just a theoretical concern. Attacks against deployed cryptography that
reuse keys in unintended ways have been previously reported [27,19,20].

We now discuss the design of key-exchange protocols secure in the post-quantum
setting. Here, a natural strategy is to consider existing designs and replace the different
components with post-quantum secure versions. The underlying Diffie-Hellman con-
structions can be replaced by (Ring-)LWE-based variant such as NewHope [7] or Frodo
[1]. For other primitives, the situation seems to be more delicate. Both for historical and
technical reasons, there seems to be less confidence in proposals for post-quantum sig-
natures th an for post-quantum encryption. Whilst lattice based encryption schemes
have a strong track record, see NTRU [16] for a h istoric scheme or Ring-LWE [26,25]
for more modern ones, the use of lattice based signature s chemes is less stable. Many
early schemes, such as GGH [13] and NTRUSign [17,15], were eventually broken due
to issues with the distribution of the signatures [12,29]; however recently more promis-
ing lattice based candidates have been proposed such as [10]. Post-quantum signature
schemes based on Merkle hash trees have also had issues related to the need to main-
tain a large state; again recently this issue has been overcome with the introduction of
state-less hash tree based [5].

Questionable dual use of RSA keys, and the relatively slow progress of post-quantum
secure signature schemes, raises the question of whether one can design a passively (for-
ward) secure unauthenticated protocol together with authentication mechanisms that
rely solely on post-quantum public key encryption schemes.

Our results. We answer this question in the positive. We propose a generic transforma-
tion which bootstraps a forward secure AKA protocol out of a two-pass passively secure
unauthenticated key agreement (KA) scheme which satisfies some mild additional con-
ditions. The transformation uses an arbitrary IND-CCA public key encryption scheme
and a strongly unforgeable MAC. Below we provide a sketch of our transformation,
motivate its design and discuss the additional requirements on the underlying protocol.

Consider an arbitrary such protocol Π , whose execution between parties U and V
is described in Figure 1 using the general syntax introduced by Bellare and Rogaway
[4]. For example, Diffie–Hellman is an instantiation where U ’s ephemeral key is eA
and m1 is geA , V ’s ephemeral key is eB (which can be deleted as soon as it is used to
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U V

(eA,m1, ∗)← Π(init,−,−; $1)

m1

(−,m2, kB)← Π(resp,m1,−; $2)

m2

(−,a, kA)← Π(init,m1‖m2, eA, $3)

return kA return kB

Fig. 1: An Arbitrary Two-Round Unauthenticated Key Agreement Protocol Π .

derive m2 = geB and kB = meB
1 ), finally the computation of kA is done by U using

the equation kA = meA
2 . To obtain forward secrecy, the ephemeral key data is assumed

to be deleted as soon as the session keys are locally computed.
We bootstrap this two round KA protocol into a fully authenticated one (which in-

herits the forward secrecy property). Our construction, presented in Figure 2, requires
a public key encryption scheme secure under chosen ciphertext attacks, a strongly un-
forgeable message authentication code, and two key derivation functions H1 and H2

which we model as random oracles.
The protocol works by wrapping the message flows, m1 and m2, of the KA proto-

col in encryptions under the long term keys of the two parties. Interestingly, the main
role played by encryption here is to authenticate the parties and ensure integrity of the
messages they exchange. Indeed, one can think of the first two messages of the protocol
as a challenge-response exchange where U attempts to authenticate V by sending an
encryption of m1 under the public key of V and expecting to receive the same m1 in
the next flow. Similarly, the second and third flow can be interpreted as a challenge-
response where V sends m2 to U and expects to receive a message that depends on
m2. In addition, the MAC send as the last message also ties the identities of the parties
involved with this particular execution of the protocol run. The final application key is
derived from the same key from Π , but in a way that decouples it from the MAC key
and also incorporates the identities of the participants.

The last message flow and key derivation methodology also thwart an analogue of
the (in)famous attack against the Needham-Schroeder protocol. A malicious V could
reencrypt the first message for a third party W who would reply with its own encrypted
m2 for U ; V could simply forward this message so U . Parties U and W would thus
derive the same key for the underlying passively secure protocol. However, W will no
longer accept the MAC as it will be on the wrong message (U‖V as opposed to U‖W ),
thus thwarting the attack. In addition, since it depends on the participants’ identities,
the derived session key will also be different for U and W .

The essence of our transformation is that it attempts to ensure that an active ad-
versary cannot interfere with the execution of the underlying protocol, i.e. that when a
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U (pkU , skU ) V (pkV , skV )

(eU ,m1, ∗)← Π(init,−,−; $1)

m1 ← EncpkV (U‖m1) m1 U‖m1 = DecskV (m1)

(−,m2, κV )← Π(resp,m1,−; $2)

m′
1‖m2 = DecskU (m2) m2 m2 ← EncpkU (m1‖m2)

if m′
1 6= m1 then

reject
(−,`, κU )← Π(init,m1‖m2, eU ; $3)

kU,1 ← H1(κU )

m3 ← MackU,1(U‖V ) m3 kV,1 ← H1(κV )

if VrfykV,1
(U‖V,m3) = 0 then

reject
kU,2 ← H2(κU‖U‖V ) kV,2 ← H2(κV ‖U‖V )

return kU,2 return kV,2

Fig. 2: The New AKA Protocol Construction.

party accepts, it must have engaged in an execution with another honest party. Put other-
wise, even an active adversary cannot force a session to accept other than by forwarding
honest messages.

Using non-malleable encryption to protect the integrity of messages goes some-
way towards implementing this intuition. Ensuring that parties authenticate each other
successfully is however not obvious, and in fact require additional properties on the
underlying protocol Π . As explained above, one should think of the first two messages
as a challenge-response protocol to authenticate V . Notice that for security of authen-
tication, this requires that message m1 of the Π has sufficient entropy; otherwise, an
adversary who guessesm1 can reply with an appropriately message which encryptsm1

and some m2 and get U to accept.
Similarly, one should think of the second and third messages as a challenge-response

protocol that authenticates U : the last message should only be computable by some
party which received m2 and derived the MAC key from it. This intuition is valid only
ifm2 actually helps determine the MAC key, which is not necessarily the case. Consider
a two message protocol where, if the first message of U for V is some fixed message
bad, then V sets the local key to, say, 0n. Such a protocol may still be secure against
a passive adversary as an honest execution U would never send bad. Yet, the protocol
obtained by applying our transformation is not actively secure since the adversary can
send the encryption of bad to V . More generally, a close look shows that the problem
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is that the adversary can send an appropriately crafted message m1 which coerces the
key into one which can be easily guessed (even if V behaves honestly).

The above discussion shows that we need two additional properties for our trans-
formation to work: i) that the first message of Π is unpredictable and ii) that even if the
first message is an arbitrary message sent by the adversary then the key derived by V is
still unpredictable.

Naturally, one can ask if further subtle attacks are possible. We show that this is
not the case and provide rigorous guarantees for the above intuition. We show that if
the starting protocol is an arbitrary passively secure two-message protocol and satisfies
the two additional security properties informally described above, then the transforma-
tion that we propose yields a full fledged forward secure key exchange protocol with
mutual authentication (in the random oracle model), under standard assumptions on the
encryption and MAC scheme used in the transformation.

Related work. The first generic compilers for authenticated key exchange were by Bel-
lare, Canetti, and Krawczyk [3] later refined by Canetti and Krawczyk [9]. These works
consider adversaries of different strength, but share an interesting idea of protocol de-
sign. First construct a protocol secure in a model where links between parties are au-
thenticated (i.e. secure against passive adversaries), and then compile it into a stronger
version, secure in a world with unauthenticated links, by using special-purpose authen-
ticators which authenticate the sender of each message and ensure their integrity. In
particular, BCK present an authenticator that uses IND-CCA2 secure encryption and
MAC schemes. However, the use of authenticator replaces every message flow of the
base protocols with three flows, so starting from a two-message flow protocols one ob-
tains a stronger protocol that requires five rounds. Unfortunately the general setting of
MT-authenticators of BCK works does not immediately allows for further optimisation
which reduces the number of rounds.

Katz and Young[22] consider the problem of boosting passive security to active
security for group key exchange by first exchanging nonces between parties and then
authenticating each message through signatures that involve these nonces. For the case
of two parties this result in a protocol with four message flows. For this type of pro-
tocols, a less efficient compiler is the one studied by Morrissey, Smart and Warinschi
[28]. They show that TLScan be regarded as TLS as the successive applications of two
generic transformations which bootstrap passive security to active security.

A second line of work which is related to ours is based on the observation that key
encapsulation mechanisms naturally give rise to passively secure key-exchange proto-
cols (where one party sends the parameters of a KEM scheme, and the second party
sends a KEM). There are by now several constructions of key-exchange protocols (in
settings which are sometimes different from ours) which start from KEMs. For exam-
ple, Boyd et al. [8] construct authenticated key exchange from KEMs, meeting the eCK
stronger security requirement, and Gunther et al [14] show how to add forward security
to KEMs to obtain forward security when these are used as a full-key exchange protocol
that enables forward secure 0-RTT. Both transformations work in the ID-based setting,
use pairings and therefore are not generic.

Perhaps the closest work with ours is that of Li et al. [24] who present two transfor-
mations that bootstrap AKA protocols out of passively secure ones, one based on sig-
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natures and another based on encryption. Both transformations first execute a passively
secure KA protocol and then use three additional flows to perform entity authentication
(and ensure the integrity of the conversation between the two parties). Just like our pro-
posal, the encryption-based construction of [24] can serve to avoid the two issues which
we have outlined above but at an increased round-complexity cost. In essence, we avoid
additional communication rounds by showing how to piggy-back entity authentication
on top of the passively secure protocol.

One observations which is warranted at this point is that our transformation does not
achieve key-confirmation [11] (while derived keys are secret and parties authenticate
each other, one party may accept without the other party actually having derived the
key), whereas some other transformations do. This was not an explicit goal, afterall the
notion has only recently been formalized [11].

2 Preliminaries

We first recall some standard definitions of primitives and their security notions. A
comprehensive overview of this material can be found in [21], with slight modifications
to suit our notation in later sections. We then recall basic notions of security for passive
key agreement protocols and introduce two new formal definitions. Throughout this
paper, we denote the security parameter by λ, represented in unary notation as 1λ, and
the empty string by −.

2.1 Standard Definitions

We recall briefly the informal descriptions of actively secure public-key encryption
schemes (with the addition of multi-user security), strongly unforgeable message au-
thentication codes as well as key derivation functions and the random oracle model.
Public-key encryption schemes. In this paper, we denote a public-key encryption
scheme by a tuple E = (Setup,KGen,Enc,Dec) of poly(λ)-time algorithms. We as-
sume that such schemes correctly decrypt honestly encrypted ciphertexts with over-
whelming probability.

The standard (single-user) active security notion for such schemes is that of indistin-
guishability under chosen ciphertext attack, denoted IND-CCA. The experiment, also
called game, for this setting gives an arbitrary adversary a randomly sampled public-
key and, upon query of a left-right oracle, denoted L-R, with two messages of identical
lengths, returns the encryption of one of the two. Given access to a decryption oracle,
the adversary’s goal is to guess which of the two messages the oracle encrypts. The
adversary may query either oracle several times, with the only restriction that it may
not query the decryption oracle on any ciphertext output by the left-right oracle.

In the proof of security of our protocol, we make use of the multi-user security
notion described in [2]. For n participants, the n-IND-CCA security experiment is very
similar to the single-user setting. The difference is that the adversary is provided with
n different public keys and may query the left-right oracle on any one of these keys.
Whether it is the right or left message which is encrypted is still selected at random, but
this choice remains consistent between all queries of the L-R oracle.



Generic Forward-Secure Key Agreement Without Signatures 7

More formally we have

Definition 1 (Public-key Encryption Scheme). A public-key encryption scheme is a
tuple of probabilistic poly(λ)-time algorithmsE = (Setup,KGen,Enc,Dec) such that:

1. The setup algorithm Setup takes as input the security parameter 1λ and outputs a
tuple of public parameters params required by the encryption scheme.
We assume for convenience that λ is implicit in params.

2. The key-generation algorithm KGen takes as input the public parameters params
and outputs a public/private key pair (pk, sk).
We assume for convenience that params is implicit in either pk or sk.

3. The encryption algorithm Enc takes as input a public key pk and a messagem from
some message space M (specified by params). It outputs a ciphertext c, and we
write this as c← Encpk(m).

4. The deterministic decryption algorithm Dec takes as input a private key sk and a
ciphertext c, and outputs a message m or a special symbol ⊥ denoting failure. We
write this as m := Decsk(c).

It is required that, except possibly with negligible probability over (pk, sk) output by
KGen(params), we have Decsk(Encpk(m)) = m for any valid message m.

For an arbitrary public-key encryption scheme E = (Setup,KGen,Enc,Dec) and
poly(λ)-time adversaryA, we assume that the challenger simulates a set U of n partic-
ipants to the adversary. For a bit b ∈ {0, 1} we then define the n-IND-CCA-b experiment
in Figure 3. We denote A’s advantage in the n-IND-CCA game as

Advn-IND-CCA
A,E (λ) =

∣∣∣Pr [Expn-IND-CCA-0
A,E (λ) = 1

]
− Pr

[
Expn-IND-CCA-1

A,E (λ) = 1
]∣∣∣

1. Setup(1λ) is run to obtain params.
2. For each U ∈ U , KGen(params) is run to obtain keys (pkU , skU ).
3. The adversary A is given {pkU}U∈U and access to several oracles: L-RpkU (·, ·) and

DecskU (·) for each U ∈ U . The L-R oracles take as input two valid messages m0 and
m1 and returns the encryption of mb under the public key pkU .

4. A may query the decryption oracles whenever it wishes, but may never submit a ciphertext
output by L-RpkU to the corresponding decryption oracle DecskU .

5. Finally, A outputs a guess bit b′. We define the output of the experiment to be that guess b′.

Fig. 3: The n-IND-CCA-b Security Experiment Expn-IND-CCA-b
A,E (λ).

Definition 2 (n-CCA-Security). A public-key encryption scheme given byE = (Setup,
KGen,Enc,Dec) is said to have polynomially-secure indistinguishible encryptions un-
der a chosen-ciphertext attack (or is n-CCA-secure) if for all probabilistic poly(λ)-time
adversaries A there exists a negligible function negl(λ) such that

Advn-IND-CCA
A,E (λ) ≤ negl(λ) .
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We note that security in the multi-user setting and the single user setting are related by
the following theorem of [2].

Theorem 1. Let E = (Setup,KGen,Enc,Dec) be a public-key encryption scheme and
nP be an integer polynomial in the security parameter. Then

Advn-IND-CCA
A,E (λ) ≤ n · Adv1-IND-CCA

A,E (λ).

Unforgeable message authentication codes. Message authentication codes (MACs)
are symmetric key primitives that allow parties sharing a secret key k to authenticate
and verify messages, thus detecting eventual modification of their content. A MAC is a
triple of poly(λ)-time algorithms M = (KGen,Mac,Vrfy) such that, given a message
and a key, Mac produces a tag, and such that, given a message, a tag and a key, Vrfy
verifies that the tag corresponds to the message.

The security experiment for strong unforgeability, denoted MAC-sFORGE, gener-
ates a random key and gives the adversary access to a Mac oracle whilst recording pairs
of queried messages and the tag that was returned for each. The goal of the adversary is
to output a message and a tag such that the verify algorithms accepts this tag and such
that this tag was never produced by the Mac oracle for this message.

More formally we have

Definition 3 (Message Authentication Code). A message authentication code (MAC)
is a triple of probabilistic poly(λ)-time algorithms (KGen,Mac,Vrfy) such that:

1. The key-generation algorithm KGen takes as input the security parameter 1λ and
outputs a key k.

2. The tag-generation algorithm Mac takes as input a key k and a message m ∈
{0, 1}∗ and outputs a tag t. We write this as t← Mack(m).

3. The deterministic verification algorithm Vrfy takes as input a key k, a message m
and a tag t. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.
We write this as b := Vrfyk(m, t).

It is required that, for every key k output by KGen(1λ) and every m ∈ {0, 1}∗, it holds
that Vrfyk(m,Mack(m)) = 1.

1. A key k is generated by running KGen(1λ).
2. The adversary A is given input 1λ and oracle access to Mack(·). The adversary eventually

outputs (m, t). LetQ denote the set of pairs of messages queried to the Mac oracle together
with their responses.

3. A succeeds if and only if (1) Vrfyk(m, t) = 1 and (2) (m, t) 6∈ Q. In that case the output
of the experiment is defined to be 1.

Fig. 4: The MAC-sFORGE Security Experiment ExpMAC-sFORGE
A,M (λ).

The standard security requirement for MACs is that a poly(λ)-time adversary must
not be able to create new valid tags on messages which have not been honestly authen-
ticated previously. A stronger notion asks that the adversary must not be able to forge



Generic Forward-Secure Key Agreement Without Signatures 9

a new tag on messages even if such messages have been authenticated before. This no-
tion is captured in the experiment described in Figure 4 for a MAC M and arbitrary
poly (λ)-time adversary A. We denote A’s advantage in the MAC-sFORGE security
game as

AdvMAC-sFORGE
A,M (λ) = Pr

[
ExpMAC-sFORGE

A,M (λ) = 1
]

Definition 4 (Strong Unforgeability). A message authentication codeM = (KGen,Mac,Vrfy)
is strongly unforgeably under an adaptive chosen-message attack, or strongly secure,
if for all probabilistic poly(λ)-time adversaries A, there exists a negligible function
negl(λ) such that

AdvMAC-sFORGE
A,M (λ) ≤ negl(λ) .

Key derivation functions and the random oracle model. In cryptographic schemes
such as key agreement protocols, the secret information that is exchanged often cannot
be used “out of the box” to achieve other goals such as encryption or authentication.
Instead, we must use a method to transfer the high entropy of the key agreement session
key into a format that is more suitable. This is acheived by making use of key derivation
functions (KDFs) which are functions with high min-entropy, i.e. an adversary has a
negligible chance of correctly guessing the output computed from a given input. While
in practice great care must be given to the instanciation of such a KDF, we will make
use here of the random oracle model and assume that the KDFs we use sample their
output uniformly at random from a given space. We will use two independent random
oracles which we will denote by H1 and H2.

2.2 Passively Secure Unauthenticated Key Agreement Protocol

First, we formalise what we mean by a (simple) unauthenticated key agreement protocol
and what it means for such a protocol to be passively secure. Informally we consider a
protocol passively secure if an adversary cannot determine the session key from seeing
a transcript. We make no usage of long term keys at this stage, as we are focusing on
unauthenticated protocols. In a later section we will discuss the model for fully actively
secure, and authenticated, key agreement.

Informally, a key agreement protocol is a set of instructions, executed by two par-
ties involved in a conversation, which leads to both of them computing identical session
keys. These keys are then usually used to authenticate or encrypt further communi-
cation. The most basic security notion expected of such a protocol is that an adversary
who has access to the transcript of a conversation is incapable of obtaining any informa-
tion regarding the final session key. Our formalisation below is inspired by the original
definition of such protocols by Bellare and Rogaway [4].

Definition 5 (Unauthenticated Key Agreement Protocol). An unauthenticated key
agreement protocol is a pair of probabilisitc poly(λ)-time algorithms (Setup, Π) such
that:
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1. The setup algorithm Setup takes as input the security parameter 1λ and outputs
a tuple of public parameters, params, required by the key agreement protocol.
Amongst other information params specifies a message spaceM and a key space
K. We assume for convenience that λ is implicit in params.

2. The protocol function Π is a function that dictates which messages the participat-
ing entities should compute and send to one another. Its input and output are of the
form (ε′,m, δ, κ)← Π(params, ρ, τ, ε; $) where the inputs are defined by:

– params are the system parameters.
– ρ ∈ {init, resp} is the role of the entity running the function.
– τ ∈ {0, 1}∗ is a transcript of the conversation so far.
– ε ∈ {0, 1}∗ ∪ {⊥} is ephemeral state information which needs to be passed

from one party’s invocation of Π to the next.
– $ is some randomness.

And the outputs of Π are given by
– ε′ ∈ {0, 1}∗ ∪ {⊥} is updated state ephemeral information, if any.
– m ∈ M ∪ {⊥,a} is the next message to be sent in the conversation, where a

signifies that no further message needs to be sent.
– δ ∈ {accept, reject, ∗} indicates U ’s decision in the current conversation. The

symbol ∗ signifies a decision has not yet been made. If δ = reject is returned
then ε′ and m are set to ⊥ and κ must be equal to ∗.

– κ ∈ K∪{∗} is the secret session key computed, where ∗ denotes that it has not
been computed yet.

We often abuse notation and use the symbol Π to denote both the protocol function and
the entire protocol (Setup, Π) and we assume that params is made implicit in the use
of Π . See Figure 1 for a two round example; which will be the focus of this paper.

An unauthenciated key agreement protocol is said to be correct if when the mes-
sages are relayed faithfully, i.e. unmodified and in the correct order, between two partic-
ipants, then they both accept and compute identical session keys, except with negligible
probability over the randomness used in the algorithms.

In practice one defines a specific key agreement protocol by defining how each new
input message is responded to, given the current player state ε. We implicitly assume
that if the input state is ⊥, then the output state and message are also ⊥ and δ will be
reject.

For such unauthenticated key agreement protocol the best security guarantee we
can obtain is that of passive security. Such a protocol is said to be passively secure if
a single session of the protocol does not leak any information regarding the computed
session key to an arbitrary poly(λ)-time adversary A that only eavesdrops on the con-
versation. For an unauthenticated key agreement protocolΠ and an adversaryA, this is
formalised in the EAV-KA experiment described in Figure 5. We denote A’s advantage
in the EAV-KA game as AdvEAV-KA

A,Π (λ) =
∣∣∣ 12 − Pr

[
ExpEAV-KA

A,Π (λ) = 1
]∣∣∣.

Definition 6 (Passive KA Security). A key agreement protocol Π is passively secure
in the presence of an eavesdropper if for all probabilistic poly(λ)-time adversaries A,
the following conditions hold.
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1. Two parties holding 1λ execute protocolΠ with one another. This results in a transcript tran
of the entire conversation, and a key κ output by each of the parties.

2. A uniform bit b ∈ {0, 1} is chosen. If b = 0, set κ̂ := κ, and if b = 1 then sample κ̂←$K
uniformly at random.

3. A is given tran and κ̂, and outputs a guess bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Fig. 5: The EAV-KA Security Experiment ExpEAV-KA
A,Π (λ).

1. If messages are relayed faithfully by a benign adversary between two participant
oracles, then both oracles accept holding identical session keys, and each partici-
pant’s key is distributed uniformly at random over K.

2. There exists a negligible function negl(λ) such that AdvEAV-KA
A,Π (λ) ≤ negl(λ).

It is an easy exercise to see that our syntax captures the syntax of Diffie–Hellman,
Frodo and NewHope. In addition it is another easy exercise to show that the standard
unauthenticated Diffie–Hellman protocol meets our Passive KA Security defnition, as-
suming the Decision Diffie–Hellman problem is hard. In addition it is relatively easy to
check that the proofs of security of the Frodo and NewHope key agreement schemes,
given in [7,1], also imply security for our Passive KA definition.

Minor Active Security Properties We also introduce two simple active security no-
tions relevant to KA protocols. Most well designed passive KA schemes are implicitly
understood to satisfy these two notions, but we choose to make them explicit (with the
definition of two new security experiments) as we shall require them later on.

The first of these formalises the notion of the first protocol message being suffi-
ciently “unpredictable”; i.e. the adversary is not able to guess what the first message
m1 of the transcript tran is going to be. We define the M1-GUESS experiment in Fig-
ure 6 and denote an arbitrary adversary A’s advantage in that game as

AdvM1-GUESS
A,Π (λ) = Pr

[
ExpM1-GUESS

A,Π (λ) = 1
]
.

1. One party holding 1λ computes (ε′,m1, ∗, ∗)← Π(params, init, ∅,⊥; $).
2. A is given 1λ and params and outputs a guess message m′

1.
3. The output of the experiment is defined to be 1 if m′

1 = m1, and 0 otherwise.

Fig. 6: The M1-GUESS Security Experiment ExpM1-GUESS
A,Π (λ).

The second security notion models the property that an adversary should not be
able to obtain information about the final key κ even if it may choose the first protocol
message. This definition applies only to two-messages KA protocols. To this intent, we
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define the experiment KEY-FORCE in Figure 7 and denote an arbitrary adversary A’s
advantage as

AdvKEY-FORCE
A,Π (λ) = Pr

[
ExpKEY-FORCE

A,Π (λ) = 1
]

1. The challenger sets 1λ and runs Setup to obain params.
2. A is given 1λ and params and ouputs a first message m1.
3. Ifm1 6∈ M the experiment outputs 0. Otherwise, the challenger computes (⊥,m2, δ, κ0)←
Π(params, resp, {m1},⊥; $), together with sampling κ1 ←$K, from the KE key space.

4. A bit b←$ {0, 1} is chosen uniformly at random.
5. A is given κb and returns a guess b̃.
6. The experiment outputs 1 if and only if b̃ = b, and 0 otherwise.

Fig. 7: The KEY-FORCE Security Experiment ExpKEY-FORCE
A,Π (λ).

3 Forward-secure Authenticated Key Agreement Protocols and
Security Model

In this section we recall the active security model and definitions used to caracterise
secure Authenticated Key Agreement (AKA) protocols. The material we present here is
a slight reformulation of Kudla’s BJM and mBJM models [23] which were themselves
an elaboration of Bellare and Rogaways’s original model [4] and of Blake-Wilson et
al.’s formulation for the public-key setting [6]. In particular, we add the appropriate
elements so that forward secrecy is captured by our model.

An AKA protcol is no different in its formal structure from a simpler KA protocol in
that an AKA protocol Π or Σ consists of a tuple (Setup,KGen, Π(or Σ)) of poly(λ)-
time algorithms which are used by each party to obtain long-term keying information
and execute sessions of the protocol to establish shared session keys. The only formal
difference lies in the security conditions that an AKA protocol satisfies.

Most significanlty AKA security is an active notion, and therefore the execution
environment for the security experiment is much more complex. We first recall the
components of this environment before describing the security notions of secure mutual
authentication, session key secrecy and forward secrecy.

3.1 Execution environment

In security experiments, the role of the challenger is to simulate an honest real-world
participant to an arbitrary adversary. For the BJM model, and distributed protocols such
as AKA ones, this implies that the challenger needs to simulate nP = poly(λ) partic-
ipants, grouped in a set U of identities. Furthermore, as we are dealing with an active
adversary, the challenger needs to enable it to engage with the simulated participants.

This is achieved via the mean of oracles which represent individual sessions (or
“runs”) of the protocol. By Πs

U,V , we denote the oracle representing the s-th run of
party U believing it is interacting with party V according to protocol Π , where s ∈
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{1, . . . , nS} for nS = poly(λ). In order to maintain a coherent execution environment
between all of the oracles, the challenger simulates their access to their own keying
information as well as the public keying information of other parties. Furthermore, each
oracle maintains a record of messages it has received and sent, of any decision it might
have come to, and of any session key it might have computed.

As mentionned above, the adversary has access to the oracles that the challenger
maintains. More specifically, the adversary can use the Send query to send an oracle a
message of its choice, the Reveal query to ask for the session key of an oracle if it has
been derived, and the Corrupt query to obtain the long-term public and private keying
information of an oracle and eventually replace it with different keying information.

3.2 Secure Mutual Authentication

As is made explicit in its naming, an AKA protocol aims to provide authentication of the
parties involved. Here we work with the notion of mutual authentication from [4] where
both parties expect to have authenticated one another upon terminating the protocol.

To achieve this, Bellare and Rogaway present the concept of matching conversation
that give us a criterion to decide whether two oracles have engaged in a protocol session
together. This criterion first checks that either oracle believes it is engaging with the
identity represented by the other and then verifies that the incoming messages of one
match the outgoing messages of the other and vice versa.

For an AKA protocol Π and an arbitrary adversary A, we define the AKA-AUTH
experiment as follows. The challenger runs Setup(λ) to obtain params and then uses
KGen to obtain the keying information for nP parties.A is given params, all the plublic
keys and access to the oracles via the queries described in Section 3.1. The challenger
responds to A’s queries according to the protocol until A outputs a session Πs

U,V . The
ouput of the experiment is defined to be 1 if that session has accepted, neither U nor
V is corrupted and there does not exists another session with which Πs

U,V has had a
matching conversation, and 0 otherwise. The advantage of A against the AKA-AUTH-
security of Π is defined to be the probability that the above experiment outputs 1.

The definition of AKA-AUTH-security is therefore that for any arbitrary poly(λ)-
time adversary A, there exists a negligible function negl(λ) such that

AdvAKA-AUTH
A,Π (λ) ≤ negl(λ) .

The definition also requires correctness; i.e. that if any two oracles engage in a matching
conversation, then they both terminate having accepted the session.

3.3 Session Key Secrecy and Forward Secrecy

The next experiment we describe, AKA-SEC, is used to capture the secrecy notion ex-
pected of AKA protocols, namely that the agreed key should only be known by the
parties who have engaged in the session together. It is a natural combination of the
active AKA-AUTH experiment together with the passive notion of EAV-KA security.

The challenger generates and simulates the execution environment to the adversary
via oracles, similarly to the AKA-AUTH experiment, until the adversary returns a ses-
sion Πs

U,V on which it wishes to be tested. At this moment, the challenger samples a
uniformly random session key and, using a coin flip, gives to the adversary either the
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true session key derived by Πs
U,V or the random one. The challenger then continues to

simulate the environment and answer the adversary’s queries until the latter outputs its
guess as to which key it was given. The AKA-SEC experiment outputs 1 if the adversary
guesses correctly, and 0 otherwise.

In order to prevent the adversary from winning the experiment trivially, the chal-
lenger requires that the session Πs

U,V is fresh. This requires that this session’s key has
not been revealed to the adversary, that neither U nor V has been corrupted, and that
there does not exist another session which has had a matching conversation with Πs

U,V

and had its session key revealed. Note that this does not require the test session to have
a matching partner, it is still considered fresh even if the adversary has made it accept
without a matching conversation.

Furthermore, we do not require that the chosen session remains fresh after the ad-
versary has been given its challenge key. It still may not trivially reveal the true session
key, but it may corrupt either, or both, of the parties involved. This ability of the adver-
sary enables the AKA-SEC notion of security to capture forward secrecy.

We denote an arbitrary adversary A’s advantage in the AKA-SEC security game by

AdvAKA-SEC
A,Π (λ) =

∣∣∣∣12 − Pr
[
ExpAKA-SEC

A,Π (λ) = 1
]∣∣∣∣ .

The complete definition of AKA-security is as follows. The protocol Π is correct:
if messages are relayed faithfully, both parties terminate by accepting identical session
keys that are correctly distributed. Protocol Π is a secure mutual authentication proto-
col. For all poly(λ)-time adversariesA, there exists a negligible function negl(λ) such
that

AdvAKA-SEC
A,Π (λ) ≤ negl(λ) .

As mentioned briefly above, the most notable characteristic of our security defin-
tion for AKA protocols is that it captures the property known as forward secrecy. This
property requires that the compromise of long-term secret keying information of enti-
ties does not allow an adversary to obtain any information regarding past session keys
that these entities might have established.

This is captured in our model since the adversary is allowed, before it makes its final
guess, to submit a Corrupt query on the entities that took part in the test session. With
that possibility in mind, we still require that its advantage in the AKA-SEC experiment
remains negligible. Thus, proving that an AKA protocol satisfies our deifnition of secu-
rity also proves that it possesses forward secrecy, in which case we say it is a forward
secure AKA protocol. Additionally, our definition also captures the usual security prop-
erties of AKA protocol such as session-key reveal secrecy and third-party compromise
security.

4 A New AKA Protocol Construction

We now present in more detail our new construction of a secure AKA protocol. We also
state the theorems that establish secrecy for keys and the level of authentication that our
protocol offers.
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The construction: Let E = (SetupE ,KGenE ,Enc,Dec) be a public-key encryption
scheme. Let M = (KGenM ,Mac,Vrfy) be a message authentication code such that its
key space is KM = {0, 1}l(λ) for some polynomial function l, and its KGenM algo-
rithm simply selects a key from KM uniformly at random. Let Π = (SetupΠ , Π) be a
two-round key agreement protocol and finally, let H1 : {0, 1}∗ → {0, 1}l(λ) and H2 :
{0, 1}∗ → {0, 1}h(λ), where h is a polynomial function, be two key derivation func-
tions. Using these elements, we construct the AKA protocolΣ = (SetupΣ ,KGenΣ , Σ)
where:

1. SetupΣ takes as input the security paramter 1λ and outputs public parameters
paramsΣ which contain the parameters of the encryption scheme E output by
SetupE(1

λ) and the parameters of the KA protocol Π output by SetupΠ(1λ).
2. KGenΣ takes as input paramsΣ and an indentifierU . It then outputs a public/private

key pair forU by setting (pkU , skU )← KGenE(paramsE), i.e. a normal public-key
encryption scheme key pair.

3. Σ functions as specified by the protcol run described in Figure 2. The protocol
works by first wrapping the message flows, m1 and m2, of the unauthenticated
key agreement in encryptions to each party and then sending a MAC tag on the
identities under a key derived from the key agreement session key using the KDF
H1. The final AKA session key is derived from the underlying agreed key and the
party identities, using a different KDF H2.

Security of our scheme: Authentication of Bob to Alice is obtained by Bob prefixing
the plaintext m1 to his response m2 in the second message flow m2. In this way Alice
can verify that the message m′1 that she receives is identical to the one she sent out,
i.e. m1, and therefore Bob must have decrypted it; since only Bob has Bob’s decryp-
tion key. Authentication of Alice to Bob is obtained by Alice sending a valid MAC on
the identities under a key derived from the underlying unauthenticated key agreement
scheme. Since only Alice can decrypt Bob’s message m2, only Alice could compute
the underlying key agreement session key and therefore the associated MAC key. No-
tice that the these forms of authentication also imply liveness of the parties. The above
intuition is formalized by the following theorem.

Theorem 2. If Π is M1-GUESS-secure and KEY-FORCE-secure, E is 2-IND-CCA-
secure and M is MAC-sFORGE-secure, then Σ is a secure mutual authentication pro-
tocol.

Proof. We prove correctness first and AKA-AUTH-security second.

[Matching Conversation⇒ Acceptance].
Suppose two oracles Σs

U,V and Σs′

U ′,V ′ have matching conversations. This first implies
U ′ = V and V ′ = U . Furthermore, the three protocol messages m1,m2 and m3 are
relayed faithfully.

Since V receives the same m1 that U sent out, by the correctness of the encryption
scheme E, V decrypts m1 correctly and prefixes m2 with the correct message. Hence,
since U receives the same m2 that V sent out, the correctness of E implies again that
indeed m′1 = m1 and therefore that U does not reject this session when it receives m2.
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As U does not receive another response from V before it terminates, we see that U
accepts this session.

As U has received the same m2 that V has sent out, it receives the same m2

and therefore the correctness of Π implies that κU = κV . By equality of the in-
puts to the KDF H1, we have that kU,1 = kV,1. Also, since V receives the same
m3 that U has sent out, the correctness M and the equality of the keys imply that
VrfykV,1

(U‖V,MackU,1
(U‖V )) = 1 and hence V does not reject the session when it

receives m3. As V does not receive another response from U before it terminates, we
see that V accepts this session as well. This completes the proof of correctness.
[Acceptance⇒ Matching Conversation].
We now prove that an arbitrary poly(λ)-time adversary A has a negligible chance of
winning the AKA-AUTH security experiment. We first observe that the following holds:

AdvAKA-AUTH
A,Σ (λ) ≤ Pr [A makes init accept] + Pr [A makes resp accept] .

Bounding success against initiator. We proceed via a series of Games.
Game 0 is the initial AKA-AUTH security experiment with the difference that the adver-
sary loses by default if it returns a responder session.
Game 1. The challenger first selects a random sessionΣs

U,V and then runs Game 0 with
the adversary. The adversary loses by default if it outputs a session different fromΣs

U,V .
Game 2. The challenger runs Game 1 with the adversary but replaces the message m1,
honestly generated by Σs

U,V , by a random KA message m′1 in the rest of the protocol
(including in the computation of m2). However, Σs

U,V still only accepts if it receives
the honest m1 in the second message flow.
We denote by Gi the event that Game i outputs 1, for which we sometimes say that an
arbitrary adversary A “wins” Game i. Our aim is to obtain an upperbound for Pr[G0].
Game 0 to Game 1. First, we see thatA wins Game 1 exactly when it wins Game 0 and
the challenger has guessed the output session correctly out of n2P · nS possibilities. We
therefore have

Pr[G1] =
1

n2P · nS
· Pr[G0]. (1)

Game 1 to Game 2. Next, we build a reduction B1 that uses an adversary that is able
to distinguish between Game 1 and Game 2 to attack the 2-IND-CCA security of the
encryption scheme E.

The reduction uses the L-R oracle given by the 2-IND-CCA challenger to encrypt
eitherm1 orm′1 in the protocol flows. Whenever the output of the L-R oracle is submited
to a session, the reduction uses bothm1 andm′1 to compute two responses and encrypts
either m1||m2 or m′1||m′2 using the L-R oracle. If the secret bit b = 0, then it is the
honest m1 that is used throughout the protocol thus simulating Game 1 perfectly. If the
secret bit is 1, m′1 is used and Game 2 is simulated. If A still manages to make Σs

U,V

accept without a matching conversation, by submitting a message m̃2 containing the
honest m1, then the reduction returns b′ = 1 to the 2-IND-CCA challenger.

Therefore we see that we have

Adv2-IND-CCA
B1,E (λ) =

∣∣∣Pr [Exp2-IND-CCA-0
B1,E

(λ) = 1
]
− Pr

[
Exp2-IND-CCA-1

B1,E
(λ) = 1

]∣∣∣
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= |Pr[G1]− Pr[G2]|

Bounding Game 2. Finally we see that an adversary can only win Game 2 by guessing
the honest m1 that Σs

U,V will accept since no information regarding m1 is contained
within the message flows. Given an adversary A capable of winning Game 2, we can
easily build a reduction B2 that plays the M1-GUESS experiment against the KA pro-
tocol Π . This reduction simulates Game 2 to A and simply returns whichever m1 is
contained within m2. As the reduction is given no information regarding the message it
has to guess, the adversary is equally likely to guess the correct message. We thus have

AdvM1-GUESS
B2,Π (λ) = Pr[G2]

Advantage terms. As E is 2-IND-CCA-secure and Π is M1-GUESS-secure, there exist
negligible functions such that

|Pr[G1]− Pr[G2]| = Adv2-IND-CCA
B1,E (λ) ≤ negl(λ)

and |Pr[G2]| = AdvM1-GUESS
B2,Π (λ) ≤ negl(λ) .

This, combined with (1), yields

Pr[G0] = Pr [A makes init accept] ≤ negl(λ) . (2)

Bounding success against initiator. We also proceed via a series of Games.

Game 0 is the initial AKA-AUTH security experiment with the difference that the adver-
sary loses by default if it returns an initiator session.

Game 1. The challenger first selects a random sessionΣs
U,V and then runs Game 0 with

the adversary. The adversary loses by default if it outputs a session different fromΣs
U,V .

Game 2. In all of the message flows sent by initiator sessions of V intended for U
and responder sessions of U intended for V (including Σs

U,V ), the challenger replaces
the honest KA protocol messages m1 and m2 by independently randomly sampled
messages m′1 and m′2. Internally, the oracles still compute and verify with the honest
messages and keys. The victory conditions for A are the same as for Game 1.

Game 3. The challenger runs Game 2 with the adversary but replaces the KA key κV for
the chosen session Σs

U,V derived from the honestly computed messages by a uniformly
sampled key κ′←$K (independent from the random message m′2). The session Σs

U,V

only accepts a MAC tag validly computed under κ′.

Game 4. The challenger runs Game 3 with the adversary but replaces the MAC key
kV,1 derived from the uniformly sampled κ′ by a uniformly sampled MAC key k′. The
session Σs

U,V only accepts a MAC tag validly computed under k′.

Game 0 to Game 1. First, we see thatA wins Game 1 exactly when it wins Game 0 and
the challenger has guessed the output session correctly out of n2P · nS possibilities. We
therefore have

Pr[G1] =
1

n2P · nS
· Pr[G0]. (3)
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Game 1 to Game 2. In order to bound the difference between Game 1 and Game 2, we
build the reduction B3 to attack the 2-IND-CCA security of the encryption schemeE. As
for the previous cases, our aim is to build a reduction that simulates Game 1 or Game 2
perfectly when the L-R oracle’s bit is 0 or 1. To this effect, B3 proceeds as follows.

Whenever an oracle simulating an initiator session of V with U is activated, the
reduction queries the L-R oracle to send either an honestly computed m1 or a randomly
sampled m′1. It also records both messages and the resulting ciphertext in a list L1.

Whenever an oracle simulating a responder session of U with V receives a cipher-
text that appears on L1, it is able to compute an honest response, thus deriving a session
key, sample a random one and send either an honest message m1‖m2 or the random
m′1‖m′2 using the L-R oracle. If the ciphertext does not appear on L1, it can be de-
crypted using Dec to obtain the plaintext. If that plaintext does not appear on L1, then,
as before, B3 derives a key and samples a uniform m′2 before replying with either the
honest or random message (unless the content of the plaintext deviates from the proto-
col). Whenever B3 replies, it records both plaintexts, the session key and the resulting
ciphertext on a list L2. If, however, the decrypted plaintext appears on L1, then B3
learns the bit of the challenger oracle.

Finally, if an oracle simulating an initiator session of V with U receives a ciphertext
(as a second protocol message) that appears on L2, then it is able to check if the ac-
companying plaintexts match the ones computed / sampled earlier. If they do, B3 uses
the accompanying session key to proceed. If they don’t, then this ciphertext was not in-
tended for this session and the oracle rejects. If the ciphertext received does not appear
on L2, it can be decrypted using Dec to obtain the plaintext. If that plaintext appears on
L2, B3 learns the bit of the challenger oracle. If it does not, B3 checks if the first mes-
sage matches either of the plaintexts computed / sampled earlier. If it does, B3 learns
the bit of the challenger oracle. If it doesn’t, then the ciphertext is an invalid protocol
message and the oracle rejects.

If the adversary wins the experiment under the same conditions as for Game 1 and
2, B3 returns 1 to the 2-IND-CCA-b challenger. Let E1 denote the event that an oracle
receives a ciphertext that leads to B3 learning the challenger bit. We then have

Adv2-IND-CCA
B3,E (λ) =

∣∣∣0 · Pr[E1] + Pr
[
Exp2-IND-CCA-0

B3,E
(λ) = 1 | ¬E1

]
· Pr[¬E1]−

1 · Pr[E1]− Pr
[
Exp2-IND-CCA-1

B3,E
(λ) = 1 | ¬E1

]
· Pr[¬E1]

∣∣∣
which implies

Adv2-IND-CCA
B3,E (λ) + Pr[E1] ≥ |Pr[G1]− Pr[G2]| · (1− Pr[E1]) . (4)

It is easy to see from B3 how one can build a reduction B′3 which wins the 2-IND-
CCA experiment against E whenever E1 happens. This allows us to write

Adv2-IND-CCA
B′

3,E
(λ) = Pr[E1]. (5)

Game 2 to Game 3. The reduction B4 acts as an attacker in a KEY-FORCE experiment
against the KA protocol Π . To simulate Game 2, it chooses a session Σs

U,V at random
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and runs the execution environment, sampling protocol messages at random where re-
quired, maintaining consistency. When Σs

U,V receives a ciphertext, B4 decrypts it and
checks whether the plaintext was sampled by an initiator oracle Σt

V,U . If it was, then
B4 recovers the honest m1 that was computed and returns it to the KEY-FORCE chal-
lenger. If it was not, then B4 returns the plaintext it decrypted. When the KEY-FORCE
challenger returns a key κ̃, B4 sets κV = κ̃ and proceeds with its simulation of Game 2.
If A wins the simulation of Game 2 according to the same conditions, B4 returns b̃ = 1
to the challenger.

It is easy to see that if the KEY-FORCE challenger returns the real key, then B4
simulates Game 2 perfectly, and that if the it returns a random KA key, then it is Game
3 that is simulated perfectly. We therefore have

AdvKEY-FORCE
B4,Π (λ) =

∣∣∣Pr [ExpKEY-FORCE-0
B4,Π

(λ) = 1
]
− Pr

[
ExpKEY-FORCE-1

B4,Π
(λ) = 1

]∣∣∣
= |Pr[G2]− Pr[G3]| .

Game 3 to Game 4. We see that, as κ′ is selected uniformly at random, the derived MAC
key k = H1(κ

′) follows the same distribution. Therefore this is a simple re-wording and
we have

Pr[G4] = Pr[G3]. (6)

Bounding Game 4. Finally, we see that Game 4 is very similar to the MAC- sFORGE
game against the MAC M . Indeed, the adversary has no information regarding the
MAC key k′ used by the oracles except perhaps a valid tag m3 if it relayed the two first
messages correctly. We therefore make use of a final reduction B5 to bound Pr[G4].

This reduction works as follows. If the adversary presents the choosen sessionΣs
U,V

with a first KA message m′1, B5 replies by inserting a random message m′2 into m̃2

without deriving a session key. If a instance of V recieves the correct m′1‖m′2 that
matches Σs

U,V , then it queries the MAC oracle for a tag m̃3 on V ‖U . When Σs
U,V

receives a tag m3 6= m̃3, it returns m3 to the MAC-sFORGE challenger.
We can see from the description above that ifAmanages to make a responder accept

in Game 4 without a matching conversation, then B5 is able to win the MAC-sFORGE
experiment. We therefore have

AdvMAC-sFORGE
B5,M (λ) = Pr[G4].

Advantage terms. As E is 2-IND-CCA-secure, there exist negligible functions such that

Adv2-IND-CCA
B3,E (λ) ≤ negl(λ) and Adv2-IND-CCA

B′
3,E

(λ) ≤ negl(λ) .

Combining this with equations (4) and (5) yields

|Pr[G1]− Pr[G2]| ≤ negl(λ) .

As Π is KEY-FORCE-secure, there exists a negligible function such that

|Pr[G2]− Pr[G3]| = AdvKEY-FORCE
B4,Π (λ) ≤ negl(λ) .
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Finally, as M is MAC-sFORGE-secure, there exists a negligible function such that

|Pr[G4]| = AdvMAC-sFORGE
B5,M (λ) ≤ negl(λ) .

Combining the above, together with (3) and (6), yields

Pr[G0] = Pr [A makes resp accept] ≤ negl(λ) . (7)

Final advatage statement. Combining (2) and (7) yields

AdvAKA-AUTH
A,Σ (λ) ≤ negl(λ)

which completes the proof that Σ is a secure mutual authentication protocol.

Finally, we show that our construction yields a protocol that guarantee key secrecy.

Theorem 3. If Π is EAV-KA-secure, M1-GUESS-secure and KEY-FORCE-secure, E is
2-IND-CCA-secure and M is MAC-sFORGE-secure, then Σ is AKA-SEC- secure.

Proof. We show that the three conditions required for AKA-SEC security hold.

Correctness. The proof of Theorem 2 gives us that if two oracles have matching con-
versations, then both of them accept. We now show that they derive identical sessions
keys which are uniformaly distributed.

As the two oracles have had matching conversations, the two messages m1, m2, of
the KA protocol have been correctly received by both entities. The correctness of Π
therefore implies that the keys derived are identical. Furthermore, the matching conver-
sations also imply that the two entites agree on each other’s identities. This all together
implies that the inputs to the KDF H2 are identical for each entity, therefore they derive
the same session key.

Finally, as Π is passively secure, we see that the session keys κU and κV are uni-
formly distributed over KΠ . Therefore, we have that the output of H2, modelled as a
random oracle, is also uniformly distributed over KΣ .

Σ is a secure mutual authentication protocol. This condition is proved by Theorem 2
which holds as we make the same assumptions on the security of Π , E and M .

An arbitrary adversary has negligible advantage against AKA-SEC. We build a reduc-
tion B6 that uses an arbitrary poly(λ)-time adversary A against the AKA-SEC security
of Σ in order to win the EAV-KA experiment against Π .
B6 receives a transcript from the EAV-KA challenger and guesses which session A

will return. It assumes that this will be a initiator session. In order for it to be fresh,
the adversary is cannot have corrupted either participating party and must have made it
accept. As shown by Theorem 2, this implies that this session must have had a match-
ing conversation with another. Therefore, when its chosen session is first activated, B6
inserts the first message of the KA transcript in place of the honestly computed one.

When a session recieves this first ciphertext (and there is one as there must be a
matching conversation), B6 replaces the second message with the one from the KA
transcript. It also replaces the session key with that given by the EAV-KA challenger.
When the second AKA protocol message is relayed to the initiator session, B6 once
again replaces the session key with the challenger’s.
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When the adversary requests to be tested on the chosen session, B6 does not flip
a coin, instead, it simply returns the challenger’s session key. When A terminates and
returns a guess bit, B6 returns that same bit to the EAV-KA challenger.

IfA submits any query that invalidates B6’s chosen session, the reduction aborts the
simulation and guesses the challenger’s bit at random.

As with previous reductions, we see that the probability of B6 picking the correct
test session is 1/n2P · nS , in which case, B6 has the same probability of success in the
EAV-KA game as A. If B6 guesses the session wrongly, then it must output a random
guess which will win with probability 1/2. Therefore we have:

Pr
[
ExpEAV-KA

B6,Π
(λ) = 1

]
− 1

2
=

[
1

n2P · nS
· Pr

[
ExpAKA-SEC

A,Σ (λ) = 1
]

+

(
1− 1

n2P · nS

)
· 1
2

]
− 1

2

=
1

n2P · nS
·
(
Pr
[
ExpAKA-SEC

A,Σ (λ) = 1
]
− 1

2

)
.

This then implies that

AdvAKA-SEC
A,Σ (λ) = n2P · nS · AdvEAV-KA

B6,Π (λ).

We conclude the proof by stating that as Π is EAV-KA-secure, there exists a neg-
ligible function negl(λ) which, combined with the above, gives the desired relation,

AdvAKA-SEC
A,Σ (λ) ≤ negl(λ) .
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