Skip to main content

Electrochemical Sensor Designs for Biomedical Implants

  • Chapter
  • First Online:
Book cover Implantable Sensors and Systems

Abstract

The need to record directly the sensing target of interest in the vicinity of where a physiological and clinically relevant event takes place, rather than indirectly or through surrogate measures, has led to the need for implantable monitoring devices. In addition to ensuring the sensitivity and specificity of sensor responses, issues related to sensor fouling, drift , biocompatibility , and hermeticity of the packaging are important considerations. This chapter examines the current state of the art of sensing techniques, focusing on electrochemical methods (potentiometry , amperometry , and voltammetry ), due to their simplicity in design and fabrication [1], as well as low-power operation .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIROF:

Anodic iridium oxide film

Al2O3:

Aluminium oxide

ATP:

Adenosine triphosphate

CMOS:

Complementary metal-oxide-semiconductor

CNS:

Central nervous system

DOS:

Bis(2-ethylhexyl)sebacate

ESD:

Electrostatic discharge

FEM:

Finite element analysis

FET:

Field-effect transistor

FG-MOS:

Floating-gate MOS

GA:

Glutaraldehyde

GERD:

Gastroesophageal reflux disease

GI tract:

Gastro intestinal tract

IrOx:

Iridium oxide

ISE:

Ion-selective electrode

ISFET:

Ion-sensitive field-effect transistor

LPCVD:

Low pressure chemical vapour deposition

L-PEI:

Linear polyethylenimine polymer

LPF:

Low-pass filter

L-PPI:

Linear polypropyleneimine polymer

MMO:

Metal-metal-oxide

MNOS:

Metal-nitride-oxide-silicon

MOSFET:

Metal oxide semiconductor field effect transistor

MWCNT:

Multi-walled carbon nanotubes

NMOS:

N-type metal-oxide-semiconductor

OCP:

Open circuit potential

o-NPOE:

2-nitrophenyloctyl ether

p(HEMA):

Poly(2-hydroxyethyl methacrylate)

PECVD:

Low temperature chemical vapour deposition

PEDOT:

Poly(3,4-ethylenedioxythiophene) polymer

PEG:

Poly(ethylene glycol)

PMOS:

P-type metal-oxide-semiconductor

PVC:

Polyvinylchloride

RE:

Reference electrode

ReFET:

Reference FET

Si3N4:

Silicon nitride

SIROF:

Sputtered Ir(Ox) films

SNP:

Single-nucleotide polymorphism

SsDNA:

Single-Stranded Deoxyribonucleic acid

Ta2O5:

Tantalum oxide

UV exposure:

Ultraviolet exposure

WE:

Working electrode

References

  1. S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)

    Article  Google Scholar 

  2. A. Lewenstam, Routines and challenges in clinical application of electrochemical ion-sensors. Electroanalysis 26(6), 1171–1181 (2014)

    Article  Google Scholar 

  3. K. Ueshima, Magnesium and ischemic heart disease: a review of epidemiological, experimental, and clinical evidences. Magnes. Res. 18(4), 275–284 (2005)

    Google Scholar 

  4. S.P. Yu, L.M.T. Canzoniero, D.W. Choi, Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. 13(4), 405–411 (2001)

    Article  Google Scholar 

  5. S.P. Yu, Regulation and critical role of potassium homeostasis in apoptosis. Prog. Neurobiol. 70(4), 363–386 (2003)

    Article  Google Scholar 

  6. J. Flores, D.R. DiBona, N. Frega, D.A. Leaf, Cell volume regulation and ischemic tissue damage. J. Membr. Biol. 10(1), 331–343 (1972)

    Article  Google Scholar 

  7. W.E. Cascio, G.X. Yan, A.G. Kléber, Early changes in extracellular potassium in ischemic rabbit myocardium. The role of extracellular carbon dioxide accumulation and diffusion. Circ. Res. 70(2), 409–422 (1992)

    Article  Google Scholar 

  8. A. Sola et al., Multiparametric monitoring of ischemia-reperfusion in rat kidney: effect of ischemic preconditioning. Transplantation 75(6), 744–749 (2003)

    Article  Google Scholar 

  9. O.T. Guenat, S. Generelli, N.F. de Rooij, M. Koudelka-Hep, F. Berthiaume, M.L. Yarmush, Development of an array of ion-selective microelectrodes aimed for the monitoring of extracellular ionic activities. Anal. Chem. 78(21), 7453–7460 (2006)

    Article  Google Scholar 

  10. M. Rossol et al., Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 3, 1329 (2012)

    Article  Google Scholar 

  11. S. Kun, B. Ristic, R.A. Peura, R.M. Dunn, Algorithm for tissue ischemia estimation based on electrical impedance spectroscopy. IEEE Trans. Biomed. Eng. 50(12), 1352–1359 (2003)

    Article  Google Scholar 

  12. J. Wtorek, L. Jozefiak, A. Polinski, J. Siebert, An averaging two-electrode probe for monitoring changes in myocardial conductivity evoked by ischemia. IEEE Trans. Biomed. Eng. 49(3), 240–246 (2002)

    Article  Google Scholar 

  13. B. Ristic, S. Kun, R.A. Peura, Muscle tissue ischemia monitoring using impedance spectroscopy: quantitative results of animal studies, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 5 (1997), pp. 2108–2111, 5

    Google Scholar 

  14. S. Kun, R.A. Peura, Tissue ischemia detection using impedance spectroscopy, in Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers, vol. 2 (1994), pp. 868–869

    Google Scholar 

  15. C.A. González, C. Villanueva, S. Othman, R. Narváez, E. Sacristán, Impedance spectroscopy for monitoring ischemic injury in the intestinal mucosa. Physiol. Meas. 24(2), 277 (2003)

    Article  Google Scholar 

  16. H.-J. Chung et al., Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing Ischemia. Adv. Healthc. Mater. 3(1), 59–68 (2014)

    Article  Google Scholar 

  17. M.S. Frant, Historical perspective. History of the early commercialization of ion-selective electrodes. Analyst 119(11), 2293–2301 (1994)

    Article  Google Scholar 

  18. E. Bakker, R. Meruva, E. Pretsch, M. Meyerhoff, Selectivity of polymer membrane-based ion-selective electrodes: self-consistent model describing the potentiometric response in mixed ion solutions of different charge. Anal. Chem. 66(19), 3021–3030 (1994)

    Article  Google Scholar 

  19. D. O’Hare, K.H. Parker, C.P. Winlove, Metal–metal oxide pH sensors for physiological application. Med. Eng. Phys. 28(10), 982–988 (2006)

    Article  Google Scholar 

  20. C. Fay et al., Wireless ion-selective electrode autonomous sensing system. IEEE Sens. J. 11(10), 2374–2382 (2011)

    Article  Google Scholar 

  21. W.-D. Huang, S. Deb, Y.-S. Seo, S. Rao, M. Chiao, J.C. Chiao, A passive radio-frequency pH-sensing tag for wireless food-quality monitoring. IEEE Sens. J. 12(3), 487–495 (2012)

    Article  Google Scholar 

  22. W.-D. Huang, H. Cao, S. Deb, M. Chiao, J.C. Chiao, A flexible pH sensor based on the iridium oxide sensing film. Sens. Actuators Phys. 169(1), 1–11 (2011)

    Article  Google Scholar 

  23. CN–0326: isolated low power pH monitor with temperature compensation. Analog Devices, Inc., 2013

    Google Scholar 

  24. O. Korostynska, K. Arshak, E. Gill, A. Arshak, Review paper: materials and techniques for in vivo pH monitoring. IEEE Sens. J. 8(1), 20–28 (2008)

    Article  Google Scholar 

  25. M. Cremer, Origin of electromotor properties of tissues, and instructional contribution for polyphasic electrolyte chains. Z. Für Biol. 47, 562–608 (1906)

    Google Scholar 

  26. J. Ruzicka, The seventies—golden age for ion selective electrodes. J. Chem. Educ. 74(2), 167 (1997)

    Article  Google Scholar 

  27. J. Janata, Potentiometric microsensors. Chem. Rev. 90(5), 691–703 (1990)

    Article  Google Scholar 

  28. P. Steegstra, E. Ahlberg, Influence of oxidation state on the pH dependence of hydrous iridium oxide films. Electrochim. Acta 76, 26–33 (2012)

    Article  Google Scholar 

  29. A. Fog, R.P. Buck, Electronic semiconducting oxides as pH sensors. Sens. Actuators 5(2), 137–146 (1984)

    Article  Google Scholar 

  30. L.D. Burke, J.K. Mulcahy, D.P. Whelan, Preparation of an oxidized iridium electrode and the variation of its potential with pH. J. Electroanal. Chem. Interfacial Electrochem. 163(1), 117–128 (1984)

    Article  Google Scholar 

  31. K. Kinoshita, M.J. Madou, Electrochemical measurements on Pt, Ir, and Ti oxides as pH probes. J. Electrochem. Soc. 131(5), 1089–1094 (1984)

    Article  Google Scholar 

  32. E. Kinoshita, F. Ingman, G. Edwall, S. Thulin, S. Gła̧b, Polycrystalline and monocrystalline antimony, iridium and palladium as electrode material for pH-sensing electrodes. Talanta 33(2), 125–134 (1986)

    Google Scholar 

  33. M.L. Hitchman, S. Ramanathan, Evaluation of iridium oxide electrodes formed by potential cycling as pH probes. Analyst 113(1), 35–39 (1988)

    Article  Google Scholar 

  34. J. Bobacka, Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18(1), 7–18 (2006)

    Article  Google Scholar 

  35. J. Bobacka, A. Ivaska, A. Lewenstam, Potentiometric ion sensors. Chem. Rev. 108(2), 329–351 (2008)

    Article  Google Scholar 

  36. Z. Štefanac, W. Simon, Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem. J. 12(1), 125–132 (1967)

    Article  Google Scholar 

  37. Z. Stefanac, W. Simon, Highly selective cation electrode systems based on in-vitro behavior of macrotetrolides in membranes. Chimica 20 (1966)

    Google Scholar 

  38. L.A.R. Pioda, H.A. Wachter, R.E. Dohner, W. Simon, Complexes of nonactin and monactin with sodium, potassium and ammonium ions. Helv. Chim. Acta 50, 1373–1375 (1967)

    Article  Google Scholar 

  39. A.C. Ion, E. Bakker, E. Pretsch, Potentiometric Cd2+-selective electrode with a detection limit in the low ppt range. Anal. Chim. Acta 440(2), 71–79 (2001)

    Article  Google Scholar 

  40. A. Ceresa, E. Bakker, B. Hattendorf, D. Günther, E. Pretsch, Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: new requirements for selectivities and measuring protocols, and comparison with ICPMS. Anal. Chem. 73(2), 343–351 (2001)

    Article  Google Scholar 

  41. E. Bakker, M.E. Meyerhoff, Ionophore-based membrane electrodes: new analytical concepts and non-classical response mechanisms. Anal. Chim. Acta 416(2), 121–137 (2000)

    Article  Google Scholar 

  42. A. Shvarev, E. Bakker, Reversible electrochemical detection of nonelectroactive polyions. J. Am. Chem. Soc. 125(37), 11192–11193 (2003)

    Article  Google Scholar 

  43. M.E. Collison, G.V. Aebli, J. Petty, M.E. Meyerhoff, Potentiometric combination ion-carbon dioxide sensors for in vitro and in vivo blood measurements. Anal. Chem. 61(21), 2365–2372 (1989)

    Article  Google Scholar 

  44. D.L. Simpson, R.K. Kobos, Potentiometric microbiological assay of gentamicin, streptomycin, and neomycin with a carbon dioxide gas-sensing electrode. Anal. Chem. 55(12), 1974–1977 (1983)

    Article  Google Scholar 

  45. A.F. Bradley, Determination of blood-gases utilizing specially designed electrodes for PCO2, PO2, PO2 and pH. Biomed. Sci. Instrum. 3, 181–188 (1966)

    Google Scholar 

  46. R. Zahradník, P. Hobza, Z. Slanina, Calculations of Henry constants and partition coefficients using quantum chemical approach, in Quantitative Structure-Activity Relationships, ed. by M. Tichý (Birkhäuser Basel, 1976), p. 217–230

    Google Scholar 

  47. I.A. Pechenkina, K.N. Mikhelson, Materials for the ionophore-based membranes for ion-selective electrodes: problems and achievements (review paper). Russ. J. Electrochem. 51(2), 93–102 (2015)

    Article  Google Scholar 

  48. A. Radu, Y. Qin, S. Peper, A. Ceresa, E. Bakker, Improving the low detection limit of polymer-based ion selective electrodes with a plasticizer-free polymer containing a covalently immobilized Ca2+-selective ionophore. Abstr. Pap. Am. Chem. Soc. 226, U105–U105 (2003)

    Google Scholar 

  49. L.Y. Heng, E.A.H. Hall, One-step synthesis of K+-selective methacrylic-acrylic copolymers containing grafted ionophore and requiring no plasticizer. Electroanalysis 12(3), 178–186 (2000)

    Article  Google Scholar 

  50. E. Malinowska, L. Gawart, P. Parzuchowski, G. Rokicki, Z. Brzózka, Novel approach of immobilization of calix[4]arene type ionophore in ‘self-plasticized’ polymeric membrane. Anal. Chim. Acta 421(1), 93–101 (2000)

    Article  Google Scholar 

  51. E. Bakker, P. Bühlmann, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97(8), 3083–3132 (1997)

    Article  Google Scholar 

  52. W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport (Elsevier, New York, 2012)

    Google Scholar 

  53. E. Bakker, M. Willer, M. Lerchi, K. Seiler, E. Pretsch, Determination of complex formation constants of neutral cation-selective ionophores in solvent polymeric membranes. Anal. Chem. 66(4), 516–521 (1994)

    Article  Google Scholar 

  54. P. Anker, E. Wieland, D. Ammann, R.E. Dohner, R. Asper, W. Simon, Neutral carrier based ion-selective electrode for the determination of total calcium in blood serum. Anal. Chem. 53(13), 1970–1974 (1981)

    Article  Google Scholar 

  55. D. Ammann et al., Preparation of neutral ionophores for Alkali and Alkaline earth metal cations and their application in ion selective membrane electrodes. Helv. Chim. Acta 58(6), 1535–1548 (1975)

    Article  Google Scholar 

  56. Y. Qin, E. Bakker, Evaluation of the separate equilibrium processes that dictate the upper detection limit of neutral ionophore-based potentiometric sensors. Anal. Chem. 74(13), 3134–3141 (2002)

    Article  Google Scholar 

  57. E. Lindner, K. Toth, E. Pungor, Lead-selective neutral carrier based liquid membrane electrode. Anal. Chem. 56(7), 1127–1131 (1984)

    Article  Google Scholar 

  58. E. Bakker, A. Xu, E. Pretsch, Optimum composition of neutral carrier based pH electrodes. Anal. Chim. Acta 295(3), 253–262 (1994)

    Article  Google Scholar 

  59. M. Telting-Diaz, E. Bakker, Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes. Anal. Chem. 73(22), 5582–5589 (2001)

    Article  Google Scholar 

  60. E. Lindner et al., Ion-selective membranes with low plasticizer content: electroanalytical characterization and biocompatibility studies. J. Biomed. Mater. Res. 28(5), 591–601 (1994)

    Article  Google Scholar 

  61. R. Lenigk, H. Zhu, T.-C. Lo, R. Renneberg, Recessed microelectrode array for a micro flow-through system allowing on-line multianalyte determination in vivo. Fresenius J. Anal. Chem. 364(1–2), 66–71 (1999)

    Article  Google Scholar 

  62. R.E. Gyurcsányi, N. Rangisetty, S. Clifton, B.D. Pendley, E. Lindner, Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts. Talanta 63(1), 89–99 (2004)

    Article  Google Scholar 

  63. S.Y. Yun et al., Potentiometric properties of ion-selective electrode membranes based on segmented polyether urethane matrices. Anal. Chem. 69(5), 868–873 (1997)

    Article  Google Scholar 

  64. D.N. Reinhoudt et al., Development of durable K+-selective chemically modified field effect transistors with functionalized polysiloxane membranes. Anal. Chem. 66(21), 3618–3623 (1994)

    Article  Google Scholar 

  65. G.J. Moody, B. Saad, J.D.R. Thomas, Glass transition temperatures of poly(vinyl chloride) and polyacrylate materials and calcium ion-selective electrode properties. Analyst 112(8), 1143–1147 (1987)

    Article  Google Scholar 

  66. L.Y. Heng, E.A.H. Hall, Methacrylic–acrylic polymers in ion-selective membranes: achieving the right polymer recipe. Anal. Chim. Acta 403(1–2), 77–89 (2000)

    Article  Google Scholar 

  67. E. Bakker, P. Bühlmann, E. Pretsch, Polymer membrane ion-selective electrodes-what are the limits? Electroanalysis 11(13), 915–933 (1999)

    Article  Google Scholar 

  68. S. Joo, R.B. Brown, Chemical sensors with integrated electronics. Chem. Rev. 108(2), 638–651 (2008)

    Article  Google Scholar 

  69. I.A. Ges, B.L. Ivanov, D.K. Schaffer, E.A. Lima, A.A. Werdich, F.J. Baudenbacher, Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron. 21(2), 248–256 (2005)

    Article  Google Scholar 

  70. W. Olthuis, M.A.M. Robben, P. Bergveld, M. Bos, W.E. van der Linden, pH sensor properties of electrochemically grown iridium oxide. Sens. Actuators B Chem. 2(4), 247–256 (1990)

    Article  Google Scholar 

  71. S. Yao, M. Wang, M. Madou, A pH electrode based on melt-oxidized iridium oxide. J. Electrochem. Soc. 148(4), H29–H36 (2001)

    Article  Google Scholar 

  72. J. Kieninger, A. Marx, F. Spies, A. Weltin, G.A. Urban, G. Jobst, pH micro sensor with micro-fluidic liquid-junction reference electrode on-chip for cell culture applications. IEEE Sens. 2009, 2009–2012

    Google Scholar 

  73. C.M. Nguyen et al., Sol-Gel iridium oxide-based pH sensor array on flexible polyimide substrate. IEEE Sens. J. 13(10), 3857–3864 (2013)

    Article  Google Scholar 

  74. M. Kubon et al., A microsensor system to probe physiological environments and tissue response. IEEE Sens. 2010, 2607–2611 (2010)

    Google Scholar 

  75. M.D. Johnson, O.E. Kao, D.R. Kipke, Spatiotemporal pH dynamics following insertion of neural microelectrode arrays. J. Neurosci. Methods 160(2), 276–287 (2007)

    Article  Google Scholar 

  76. X. Yue et al., A real-time multi-channel monitoring system for stem cell culture process. IEEE Trans. Biomed. Circuits Syst. 2(2), 66–77 (2008)

    Article  Google Scholar 

  77. S.A.M. Marzouk, S. Ufer, R.P. Buck, T.A. Johnson, L.A. Dunlap, W.E. Cascio, Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Anal. Chem. 70(23), 5054–5061 (1998)

    Article  Google Scholar 

  78. P.J. Kinlen, J.E. Heider, D.E. Hubbard, A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators B Chem. 22(1), 13–25 (1994)

    Article  Google Scholar 

  79. E. Lindner et al., In vivo and in vitro testing of microelectronically fabricated planar sensors designed for applications in cardiology. Fresenius J. Anal. Chem. 346(6–9), 584–588 (1993)

    Article  Google Scholar 

  80. V.V. Cosofret, E. Lindner, T.A. Johnson, M.R. Neuman, Planar micro sensors for in vivo myocardial pH measurements. Talanta 41(6), 931–938 (1994)

    Article  Google Scholar 

  81. V.V. Cosofret, M. Erdosy, T.A. Johnson, R.P. Buck, R.B. Ash, M.R. Neuman, Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart. Anal. Chem. 67(10), 1647–1653 (1995)

    Article  Google Scholar 

  82. S.A.M. Marzouk, R.P. Buck, L.A. Dunlap, T.A. Johnson, W.E. Cascio, Measurement of extracellular pH, K+, and lactate in ischemic heart. Anal. Biochem. 308(1), 52–60 (2002)

    Article  Google Scholar 

  83. S. Anastasova-Ivanova et al., Development of miniature all-solid-state potentiometric sensing system. Sens. Actuators B Chem. 146(1), 199–205 (2010)

    Article  Google Scholar 

  84. G. Urban et al., Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications. Biosens. Bioelectron. 7(10), 733–739 (1992)

    Article  Google Scholar 

  85. H. Cao et al., An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring. IEEE Trans. Biomed. Eng. 59(11), 3131–3139 (2012)

    Article  Google Scholar 

  86. E. Bitziou, D. O’Hare, B.A. Patel, Spatial changes in acid secretion from isolated stomach tissue using a pH-histamine sensing microarray. Analyst 135(3), 482–487 (2010)

    Article  Google Scholar 

  87. E. Bitziou, D. O’Hare, B.A. Patel, Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach. Anal. Chem. 80(22), 8733–8740 (2008)

    Article  Google Scholar 

  88. I.A. Ges, B.L. Ivanov, A.A. Werdich, F.J. Baudenbacher, Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes. Biosens. Bioelectron. 22(7), 1303–1310 (2007)

    Article  Google Scholar 

  89. I.A. Ges, I.A. Dzhura, F.J. Baudenbacher, On-chip acidification rate measurements from single cardiac cells confined in sub-nanoliter volumes. Biomed. Microdevices 10(3), 347–354 (2008)

    Article  Google Scholar 

  90. M. Mir, R. Lugo, I.B. Tahirbegi, J. Samitier, Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications. Sensors 14(7), 11844–11854 (2014)

    Article  Google Scholar 

  91. W. Qin, T. Zwickl, E. Pretsch, Improved detection limits and unbiased selectivity coefficients obtained by using ion-exchange resins in the inner reference solution of ion-selective polymeric membrane electrodes. Anal. Chem. 72(14), 3236–3240 (2000)

    Google Scholar 

  92. E.J. Parra, P. Blondeau, G.A. Crespo, F.X. Rius, An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. Chem. Commun. 47(8), 2438–2440 (2011)

    Article  Google Scholar 

  93. M.A. Simon, R.P. Kusy, Plasticizer-level study of poly(vinyl chloride) ion-selective membranes. J. Biomed. Mater. Res. 30(3), 313–320 (1996)

    Article  Google Scholar 

  94. V.G. Gavalas, M.J. Berrocal, L.G. Bachas, Enhancing the blood compatibility of ion-selective electrodes. Anal. Bioanal. Chem. 384(1), 65–72 (2005)

    Article  Google Scholar 

  95. M. Pawlak, E. Bakker, Chemical modification of polymer ion-selective membrane electrode surfaces. Electroanalysis 26(6), 1121–1131 (2014)

    Article  Google Scholar 

  96. S. Yajima, Y. Sonoyama, K. Suzuki, K. Kimura, Ion-sensor property and blood compatibility of neutral-carrier-type poly(vinyl chloride) membranes coated by phosphorylcholine polymers. Anal. Chim. Acta 463(1), 31–37 (2002)

    Article  Google Scholar 

  97. M.J. Berrocal, R.D. Johnson, I.H.A. Badr, M. Liu, D. Gao, L.G. Bachas, Improving the blood compatibility of ion-selective electrodes by employing poly(MPC-co-BMA), a copolymer containing phosphorylcholine, as a membrane coating. Anal. Chem. 74(15), 3644–3648 (2002)

    Article  Google Scholar 

  98. J.A. Hayward, D. Chapman, Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials 5(3), 135–142 (1984)

    Article  Google Scholar 

  99. A. Ivorra et al., Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 19(4), 391–399 (2003)

    Article  MathSciNet  Google Scholar 

  100. G.P. Gumbrell, R.A. Peura, S. Kun, R.M. Dunn, Development of a pH based tissue ischemia monitor: hardware realization, in Proceedings of the 1996 IEEE Twenty-Second Annual Northeast Bioengineering Conference, 54–55 (1996)

    Google Scholar 

  101. G.P. Gumbrell, R.A. Peura, S. Kun, R.M. Dunn, Development of a minimally invasive microvascular ischemia monitor: drift reduction results, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, 25–27 (1997)

    Google Scholar 

  102. G.P. Gumbrell, R.A. Peura, S. Kun, R.M. Dunn, Development of a pH based tissue ischemia monitor: preliminary clinical results, in Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine, vol. 1, 40–41 (1996)

    Google Scholar 

  103. A.H. Auerbach, B.R. Soller, R.A. Peura, Sources of error in measuring tissue pH with microsensors, in Proceedings of the 20th Annual Northeast Bioengineering Conference, 108–109 (1994)

    Google Scholar 

  104. J. Songer, Tissue ischemia monitoring using impedance spectroscopy. MSc. Thesis, Worcester Polytechnic Institute, 2001

    Google Scholar 

  105. A. Senagore, D.J.W. Milsom, R.K. Walshaw, R. Dunstan, W.P. Mazier, I.H. Chaudry, Intramural pH: a quantitative measurement for predicting colorectal anastomotic healing. Dis. Colon Rectum 33(3), 175–179 (1990)

    Article  Google Scholar 

  106. S.G. Nugent, D. Kumar, D.S. Rampton, D.F. Evans, Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48(4), 571–577 (2001)

    Article  Google Scholar 

  107. D.C.J. McDougall, R. Wong, P. Scudera, M. Lesser, J.J. DeCosse, Colonic mucosal pH in humans. Dig. Dis. Sci. 38(3), 542–545 (1993)

    Article  Google Scholar 

  108. M. Millan, E. García-Granero, B. Flor, S. García-Botello, S. Lledo, Early prediction of anastomotic leak in colorectal cancer surgery by intramucosal pH. Dis. Colon Rectum 49(5), 595–601 (2006)

    Article  Google Scholar 

  109. C.A. Eckley, H.O. Costa, Comparative study of salivary pH and volume in adults with chronic laryngopharyngitis by gastroesophageal reflux disease before and after treatment. Rev. Bras. Otorrinolaringol. 72(1), 55–60 (2006)

    Article  Google Scholar 

  110. S. Ghimenti et al., Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy. PLoS ONE 6(12), e28182 (2011)

    Article  Google Scholar 

  111. J.L. Gonzalez-Guillaumin, D.C. Sadowski, K.V.I.S. Kaler, M.P. Mintchev, Ingestible capsule for impedance and pH monitoring in the esophagus. IEEE Trans. Biomed. Eng. 54(12), 2231–2236 (2007)

    Article  Google Scholar 

  112. G.X. Yan, K.A. Yamada, A.G. Kléber, J. McHowat, P.B. Corr, Dissociation between cellular K+ loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia. Circ. Res. 72(3), 560–570 (1993)

    Article  Google Scholar 

  113. J.N. Weiss, S.T. Lamp, K.I. Shine, Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition. Am. J. Physiol. Heart Circ. Physiol. 256(4), H1165–H1175 (1989)

    Google Scholar 

  114. B.F. Palmer, Regulation of potassium homeostasis. Clin. J. Am. Soc. Nephrol. 10(6), 1050–1060 (2015)

    Article  Google Scholar 

  115. A.G. Kléber, C.B. Riegger, M.J. Janse, Extracellular K+ and H+ shifts in early ischemia: mechanisms and relation to changes in impulse propagation. J. Mol. Cell. Cardiol. 19(Suppl 5), 35–44 (1987)

    Article  Google Scholar 

  116. I.A. Marques de Oliveira et al., Sodium ion sensitive microelectrode based on a p-tert-butylcalix[4]arene ethyl ester. Sens. Actuators B Chem. 130(1), 295–299 (2008)

    Google Scholar 

  117. S. Chandra, H. Lang, A new sodium ion selective electrode based on a novel silacrown ether. Sens. Actuators B Chem. 114(2), 849–854 (2006)

    Article  Google Scholar 

  118. K.Y. Chumbimuni-Torres, N. Rubinova, A. Radu, L.T. Kubota, E. Bakker, Solid contact potentiometric sensors for trace level measurements. Anal. Chem. 78(4), 1318–1322 (2006)

    Article  Google Scholar 

  119. F. Li et al., All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst 137(3), 618–623 (2012)

    Article  Google Scholar 

  120. N. Zine et al., Potassium-ion selective solid contact microelectrode based on a novel 1,3-(di-4-oxabutanol)-calix[4]arene-crown–5 neutral carrier. Electrochim. Acta 51(24), 5075–5079 (2006)

    Article  Google Scholar 

  121. J.E. Pandolfino, J.E. Richter, T. Ours, J.M. Guardino, J. Chapman, P.J. Kahrilas, Ambulatory esophageal pH monitoring using a wireless system. Am. J. Gastroenterol. 98(4), 740–749 (2003)

    Article  Google Scholar 

  122. G. Karamanolis et al., Bravo 48-hour wireless pH monitoring in patients with non-cardiac chest pain. Objective gastroesophageal reflux disease parameters predict the responses to proton pump inhibitors. J. Neurogastroenterol. Motil. 18(2), 169–173 (2012)

    Article  Google Scholar 

  123. E. Lindner, R. Buck, Microfabricated potentiometric electrodes and their in vivo applications. Anal. Chem. 72(9), 336 A–345 A (2000)

    Google Scholar 

  124. I.B. Tahirbegi, M. Mir, S. Schostek, M. Schurr, J. Samitier, In vivo ischemia monitoring array for endoscopic surgery. Biosens. Bioelectron. 61, 124–130 (2014)

    Google Scholar 

  125. A. Errachid, A. Ivorra, J. Aguiló, R. Villa, N. Zine, J. Bausells, New technology for multi-sensor silicon needles for biomedical applications. Sens. Actuators B Chem. 78(1–3), 279–284 (2001)

    Article  Google Scholar 

  126. R. Gómez et al., A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices 8(1), 43–49 (2006)

    Article  Google Scholar 

  127. M. Genescà et al., Electrical bioimpedance measurement during hypothermic rat kidney preservation for assessing ischemic injury. Biosens. Bioelectron. 20(9), 1866–1871 (2005)

    Article  Google Scholar 

  128. M. Tijero et al., SU–8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009)

    Article  Google Scholar 

  129. L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014)

    Google Scholar 

  130. I.B. Tahirbegi, M. Mir, J. Samitier, Real-time monitoring of ischemia inside stomach. Biosens. Bioelectron. 40(1), 323–328 (2013)

    Article  Google Scholar 

  131. P. Bergveld, Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88(1), 1–20 (2003)

    Article  Google Scholar 

  132. P.A. Hammond, D. Ali, D.R.S. Cumming, Design of a single-chip pH sensor using a conventional 0.6 μm CMOS process. IEEE Sens. J. 4(6), 706–712 (2004)

    Article  Google Scholar 

  133. P. Georgiou, C. Toumazou, ISFET characteristics in CMOS and their application to weak inversion operation. Sens. Actuators B Chem. 143(1), 211–217 (2009)

    Article  Google Scholar 

  134. D. Binkley, Tradeoffs and optimization in analog CMOS design (Wiley, Chichester, West Sussex, UK, 2008)

    Book  Google Scholar 

  135. A. Al-Ahdal, C. Toumazou, ISFET-based chemical switch. IEEE Sens. J. 12(5), 1140–1146 (2012)

    Article  Google Scholar 

  136. L.M. Shepherd, C. Toumazou, A biochemical translinear principle with weak inversion ISFETs. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2614–2619 (2005)

    Article  Google Scholar 

  137. Y. Liu, P. Georgiou, T. Prodromakis, T.G. Constandinou, C. Toumazou, An extended CMOS ISFET model incorporating the physical design geometry and the effects on performance and offset variation. IEEE Trans. Electron Devices 58(12), 4414–4422 (2011)

    Article  Google Scholar 

  138. N. Miscourides, P. Georgiou, Impact of technology scaling on ISFET performance for genetic sequencing. IEEE Sens. J. 15(4), 2219–2226 (2015)

    Article  Google Scholar 

  139. M. Sohbati, Y. Liu, P. Georgiou, C. Toumazou, An ISFET design methodology incorporating CMOS passivation, IEEE Biomedical Circuits and Systems Conference (BioCAS), 65–68 (2012)

    Google Scholar 

  140. M. Sohbati, C. Toumazou, Dimension and shape effects on the ISFET performance. IEEE Sens. J. 15(3), 1670–1679 (2015)

    Article  Google Scholar 

  141. J. Bausells, J. Carrabina, A. Errachid, A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sens. Actuators B Chem. 57(1–3), 56–62 (1999)

    Article  Google Scholar 

  142. M.J. Milgrew, D.R.S. Cumming, Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge. IEEE Trans. Electron Devices 55(4), 1074–1079 (2008)

    Article  Google Scholar 

  143. M.J. Milgrew, M.O. Riehle, D.R.S. Cumming, A large transistor-based sensor array chip for direct extracellular imaging. Sens. Actuators B Chem. 111–112, 347–353 (2005)

    Article  Google Scholar 

  144. T. Prodromakis, Y. Liu, T. Constandinou, P. Georgiou, C. Toumazou, Exploiting CMOS technology to enhance the performance of ISFET sensors. IEEE Electron Device Lett. 31(9), 1053–1055 (2010)

    Article  Google Scholar 

  145. J.M. Rothberg, W. Hinz, K.L. Johnson, J. Bustillo, Methods and apparatus for measuring analytes using large scale fet arrays. CA2672315 A1, 26 Jun 2008

    Google Scholar 

  146. M. Milgrew, J. Bustillo, T. Rearick, Chemically-sensitive field effect transistor based pixel array with protection diodes. US20130001653 A1, 03 Jan 2013

    Google Scholar 

  147. H.-S. Wong, M.H. White, A CMOS-integrated `ISFET-operational amplifier’ chemical sensor employing differential sensing. IEEE Trans. Electron Devices 36(3), 479–487 (1989)

    Article  Google Scholar 

  148. V.P. Chodavarapu, A.H. Titus, A.N. Cartwright, Differential read-out architecture for CMOS ISFET microsystems. Electron. Lett. 41(12), 698–699 (2005)

    Article  Google Scholar 

  149. D. Garner, H. Bai, Electrostatic discharge protection. US20130188288 A1, 25 July 2013

    Google Scholar 

  150. R. Smith, R.J. Huber, J. Janata, Electrostatically protected ion sensitive field effect transistors. Sens. Actuators 5(2), 127–136 (1984)

    Article  Google Scholar 

  151. Y. Hu, P. Georgiou, A robust ISFET pH-measuring front-end for chemical reaction monitoring. IEEE Trans. Biomed. Circuits Syst. 8(2), 177–185 (2014)

    Article  Google Scholar 

  152. P. Georgiou, C. Toumazou, CMOS-based programmable gate ISFET. Electron. Lett. 44(22), 1289–1290 (2008)

    Article  Google Scholar 

  153. A. Al-Ahdal, P. Georgiou, C. Toumazou, ISFET’s threshold voltage control using bidirectional electron tunnelling, in 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), 172–175 (2012)

    Google Scholar 

  154. P. Georgiou, C. Toumazou, ISFET threshold voltage programming in CMOS using hot-electron injection. Electron. Lett. 45(22), 1112–1113 (2009)

    Article  Google Scholar 

  155. A.G. Al-Ahdal, C. Toumazou, ISFET threshold voltage programming in CMOS using electron tunnelling. Electron. Lett. 47(25), 1398–1399 (2011)

    Article  Google Scholar 

  156. J.M. Rothberg et al., An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356), 348–352 (2011)

    Article  Google Scholar 

  157. C. Toumazou et al., Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10(7), 641–646 (2013)

    Article  Google Scholar 

  158. X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, D. Wu, A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Trans. Biomed. Eng. 62(9), 2224–2233 (2015)

    Article  Google Scholar 

  159. P. Rai, S. Jung, T. Ji, V.K. Varadan, Drain current centric modality: instrumentation and evaluation of ISFET for monitoring myocardial ischemia like variations in pH and potassium ion concentration. IEEE Sens. J. 9(12), 1987–1995 (2009)

    Article  Google Scholar 

  160. F. Xu, G. Yan, Z. Wang, P. Jiang, Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule. Measurement 64, 49–56 (2015)

    Google Scholar 

  161. P.A. Hammond, D. Ali, D.R.S. Cumming, A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Trans. Biomed. Eng. 52(4), 687–694 (2005)

    Article  Google Scholar 

  162. C.-S. Lee, S.K. Kim, M. Kim, Ion-sensitive field-effect transistor for biological sensing. Sensors 9(9), 7111–7131 (2009)

    Article  Google Scholar 

  163. S. Migita, K. Ozasa, T. Tanaka, T. Haruyama, Enzyme-based field-effect transistor for adenosine triphosphate (ATP) sensing. Anal. Sci. 23(1), 45–48 (2007)

    Article  Google Scholar 

  164. A. Bratov, N. Abramova, A. Ipatov, Recent trends in potentiometric sensor arrays—a review. Anal. Chim. Acta 678(2), 149–159 (2010)

    Article  Google Scholar 

  165. J. Janata, Principles of Chemical Sensors (Springer Science & Business Media, 2010)

    Google Scholar 

  166. T.-W. Huang, J.-C. Chou, T.-P. Sun, S.-K. Hsiung, Fabrication of a screen-printing reference electrode for potentiometric measurement. Sens. Lett. 6(6), 860–863 (2008)

    Article  Google Scholar 

  167. W. Vonau, W. Oelßner, U. Guth, J. Henze, An all-solid-state reference electrode. Sens. Actuators B Chem. 144(2), 368–373 (2010)

    Article  Google Scholar 

  168. J. Sutter, E. Lindner, R.E. Gyurcsányi, E. Pretsch, A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit. Anal. Bioanal. Chem. 380(1), 7–14 (2004)

    Article  Google Scholar 

  169. A. Cadogan, Z. Gao, A. Lewenstam, A. Ivaska, D. Diamond, All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Anal. Chem. 64(21), 2496–2501 (1992)

    Article  Google Scholar 

  170. G.D. O’Neil, R. Buiculescu, S.P. Kounaves, N.A. Chaniotakis, Carbon-nanofiber-based nanocomposite membrane as a highly stable solid-state junction for reference electrodes. Anal. Chem. 83(14), 5749–5753 (2011)

    Article  Google Scholar 

  171. H.J. Yoon et al., Solid-state ion sensors with a liquid junction-free polymer membrane-based reference electrode for blood analysis. Sens. Actuators B Chem. 64(1–3), 8–14 (2000)

    Article  Google Scholar 

  172. G. Valdés-Ramírez, G.A. Álvarez-Romero, C.A. Galán-Vidal, P.R. Hernández-Rodríguez, M.T. Ramírez-Silva, Composites: a novel alternative to construct solid state Ag/AgCl reference electrodes. Sens. Actuators B Chem. 110(2), 264–270 (2005)

    Article  Google Scholar 

  173. D. Rehm, E. McEnroe, D. Diamond, An all solid-state reference electrode based on a potassium chloride doped vinyl ester resin. Anal. Proc. Anal. Commun. 32(8), 319–322 (1995)

    Article  Google Scholar 

  174. R. Mamińska, A. Dybko, W. Wróblewski, All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sens. Actuators B Chem. 115(1), 552–557 (2006)

    Article  Google Scholar 

  175. D. Cicmil et al., Ionic liquid-based, liquid-junction-free reference electrode. Electroanalysis 23(8), 1881–1890 (2011)

    Article  Google Scholar 

  176. Ł. Tymecki, E. Zwierkowska, R. Koncki, Screen-printed reference electrodes for potentiometric measurements. Anal. Chim. Acta 526(1), 3–11 (2004)

    Article  Google Scholar 

  177. A. Kisiel, A. Michalska, K. Maksymiuk, E.A.H. Hall, All-solid-state reference electrodes with poly(n-butyl acrylate) based membranes. Electroanalysis 20(3), 318–323 (2008)

    Article  Google Scholar 

  178. A. Kisiel, M. Donten, J. Mieczkowski, F.X. Rius-Ruiz, K. Maksymiuk, A. Michalska, Polyacrylate microspheres composite for all-solid-state reference electrodes. Analyst 135(9), 2420–2425 (2010)

    Article  Google Scholar 

  179. G.A. Crespo, S. Macho, F.X. Rius, Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal. Chem. 80(4), 1316–1322 (2008)

    Article  Google Scholar 

  180. G.A. Crespo, S. Macho, J. Bobacka, F.X. Rius, Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Anal. Chem. 81(2), 676–681 (2009)

    Article  Google Scholar 

  181. F.X. Rius-Ruiz, D. Bejarano-Nosas, P. Blondeau, J. Riu, F.X. Rius, Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane. Anal. Chem. 83(14), 5783–5788 (2011)

    Article  Google Scholar 

  182. F.X. Rius-Ruiz, A. Kisiel, A. Michalska, K. Maksymiuk, J. Riu, F.X. Rius, Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Anal. Bioanal. Chem. 399(10), 3613–3622 (2011)

    Article  Google Scholar 

  183. Z. Mousavi, K. Granholm, T. Sokalski, A. Lewenstam, An analytical quality solid-state composite reference electrode. The Analyst 138(18), 5216–5220 (2013)

    Article  Google Scholar 

  184. T. Guinovart, G.A. Crespo, F.X. Rius, F.J. Andrade, A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chim. Acta 821, 72–80 (2014)

    Article  Google Scholar 

  185. A.K. Ghosh, V. Ramachandhran, M.S. Hanra, B.M. Misra, Studies on fouling and gel polarisation aspects of polyvinyl butyral blended cellulose acetate ultrafiltration membrane by resistance model approach. Indian J. Chem. Technol. 7(2), 55–60 (2000)

    Google Scholar 

  186. Y. Saito, M. Okano, K. Kubota, T. Sakai, J. Fujioka, T. Kawakami, Evaluation of interactive effects on the ionic conduction properties of polymer gel electrolytes. J. Phys. Chem. B 116(33), 10089–10097 (2012)

    Article  Google Scholar 

  187. E. Bakker, Hydrophobic membranes as liquid junction-free reference electrodes. Electroanalysis 11(10–11), 788–792 (1999)

    Article  Google Scholar 

  188. T. Kakiuchi, T. Yoshimatsu, N. Nishi, New class of Ag/AgCl electrodes based on hydrophobic ionic liquid saturated with AgCl. Anal. Chem. 79(18), 7187–7191 (2007)

    Article  Google Scholar 

  189. C. Zuliani, G. Matzeu, D. Diamond, A liquid-junction-free reference electrode based on a PEDOT solid-contact and ionogel capping membrane. Talanta 125, 58–64 (2014)

    Article  Google Scholar 

  190. M. Shibata, H. Sakaida, T. Kakiuchi, Determination of the activity of hydrogen ions in dilute sulfuric acids by use of an ionic liquid salt bridge sandwiched by two hydrogen electrodes. Anal. Chem. 83(1), 164–168 (2011)

    Article  Google Scholar 

  191. U. Guth, F. Gerlach, M. Decker, W. Oelßner, W. Vonau, Solid-state reference electrodes for potentiometric sensors. J. Solid State Electrochem. 13(1), 27–39 (2008)

    Article  Google Scholar 

  192. B. Palán, F.V. Santos, J.M. Karam, B. Courtois, M. Husák, New ISFET sensor interface circuit for biomedical applications. Sens. Actuators B Chem. 57(1–3), 63–68 (1999)

    Article  Google Scholar 

  193. M.F. Chaplin, C. Bucke, Enzyme Technology (CUP Archive, 1990)

    Google Scholar 

  194. G.N. Meloni, Building a microcontroller based potentiostat: a inexpensive and versatile platform for teaching electrochemistry and instrumentation. J. Chem. Educ. 93(7), 1320–1322 (2016)

    Article  Google Scholar 

  195. M.D.M. Dryden, A.R. Wheeler, DStat: a versatile, open-source potentiostat for electroanalysis and integration. PLoS ONE 10(10), e0140349 (2015)

    Article  Google Scholar 

  196. R.S. Freire, C.A. Pessoa, L.D. Mello, L.T. Kubota, Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J. Braz. Chem. Soc. 14(2), 230–243 (2003)

    Article  Google Scholar 

  197. B.P. Schaffar, Thick film biosensors for metabolites in undiluted whole blood and plasma samples. Anal. Bioanal. Chem. 372(2), 254–260 (2002)

    Article  Google Scholar 

  198. Z. Chen, C. Fang, H. Wang, J. He, Disposable glucose test strip for whole blood with integrated sensing/diffusion-limiting layer. Electrochim. Acta 55(2), 544–550 (2009)

    Article  Google Scholar 

  199. R.A. Croce, S. Vaddiraju, F. Papadimitrakopoulos, F.C. Jain, Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes. Sensors 12(10), 13402–13416 (2012)

    Article  Google Scholar 

  200. F. Valentini, L. Galache Fernàndez, E. Tamburri, G. Palleschi, Single Walled Carbon Nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: Study of the extended linearity. Biosens. Bioelectron. 43, 75–78 (2013)

    Article  Google Scholar 

  201. A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108(7), 2482–2505 (2008)

    Article  Google Scholar 

  202. Z. Zhou, L. Xu, S. Wu, B. Su, A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst 139(19), 4934–4939 (2014)

    Article  Google Scholar 

  203. Y. Liu, Y. Dong, C.X. Guo, Z. Cui, L. Zheng, C.M. Li, Protein-directed in situ synthesis of gold nanoparticles on reduced graphene oxide modified electrode for nonenzymatic glucose sensing. Electroanalysis 24(12), 2348–2353 (2012)

    Article  Google Scholar 

  204. Y. Fu et al., One-pot preparation of polymer–enzyme–metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv. Funct. Mater. 19(11), 1784–1791 (2009)

    Article  Google Scholar 

  205. D. Xu, L. Luo, Y. Ding, P. Xu, Sensitive electrochemical detection of glucose based on electrospun La0.88Sr0.12MnO3 nanofibers modified electrode. Anal. Biochem. 489, 38–43 (2015)

    Article  Google Scholar 

  206. N.G. Poulos, J.R. Hall, M.C. Leopold, functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors. Langmuir 31(4), 1547–1555 (2015)

    Article  Google Scholar 

  207. M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)

    Article  Google Scholar 

  208. Medtronic MiniMed 530G. [Online]. Available: http://www.medtronicdiabetes.com/products/minimed–530g-diabetes-system-with-enlite. Accessed: 28 Jan 2016

  209. Dexcom G5TM Mobile Continuous Glucose Monitoring (CGM) System. [Online]. Available: http://www.dexcom.com/g5-mobile-cgm. Accessed: 28 Jan 2016

  210. FreeStyle Libre| FreeStyle Blood Glucose Meters. [Online]. Available: https://abbottdiabetescare.co.uk/our-products/freestyle-libre. Accessed: 26 Jan 2016

  211. D. De Backer, J. Creteur, H. Zhang, M. Norrenberg, J.-L. Vincent, Lactate production by the lungs in acute lung injury. Am. J. Respir. Crit. Care Med. 156(4), 1099–1104 (1997)

    Article  Google Scholar 

  212. J.A. Kruse, S.A.J. Zaidi, R.W. Carlson, Significance of blood lactate levels in critically III patients with liver disease. Am. J. Med. 83(1), 77–82 (1987)

    Article  Google Scholar 

  213. S. Mm, M. Pn, Adenine nucleotide and lactate metabolism in the lung in endotoxin shock. Circ. Shock 8(6), 657–666 (1980)

    Google Scholar 

  214. J. Karlsson, J.T. Willerson, S.J. Leshin, C.B. Mullins, J.H. Mitchell, Skeletal muscle metabolites in patients with cardiogenic shock or severe congestive heart failure. Scand. J. Clin. Lab. Invest. 35(1), 73–79 (1975)

    Article  Google Scholar 

  215. R. Rimachi, F. Bruzzi de Carvahlo, C. Orellano-Jimenez, F. Cotton, J.L. Vincent, D. De Backer, Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth. Intensive Care 40(3), 427–432 (2012)

    Google Scholar 

  216. B. Carbonne, K. Pons, E. Maisonneuve, Foetal scalp blood sampling during labour for pH and lactate measurements. Best Pract. Res. Clin. Obstet. Gynaecol. 30, 62–67 (2016)

    Google Scholar 

  217. R.K.D. Suveera Dhup, Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr. Pharm. Des. 18(10), 1319–1330 (2012)

    Google Scholar 

  218. K.M. Kennedy, M.W. Dewhirst, Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6(1), 127–148 (2009)

    Article  Google Scholar 

  219. R.M.A. Bhatia et al., Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery. Neurosurgery 58(4) (2006)

    Google Scholar 

  220. J.C. Goodman, A.B. Valadka, S.P. Gopinath, M. Uzura, C.S.M. Robertson, Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. [Miscellaneous Article]. Crit. Care Med. 27(9), 1965–1973 (1999)

    Article  Google Scholar 

  221. E.L. Cureton, R.O. Kwan, K.C. Dozier, J. Sadjadi, J.D. Pal, G.P. Victorino, A different view of lactate in trauma patients: protecting the injured brain. J. Surg. Res. 159(1), 468–473 (2010)

    Article  Google Scholar 

  222. E. Naylor et al., Lactate as a biomarker for sleep. Sleep 35(9), 1209–1222 (2012)

    Google Scholar 

  223. L. Rassaei, W. Olthuis, S. Tsujimura, E.J.R. Sudhölter, A. van den Berg, Lactate biosensors: current status and outlook. Anal. Bioanal. Chem. 406(1), 123–137 (2013)

    Article  Google Scholar 

  224. G.F. Manbeck, E. Fujita, A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J. Porphyr. Phthalocyanines 19(01–03), 45–64 (2015)

    Article  Google Scholar 

  225. M.R. Romero, F. Ahumada, F. Garay, A.M. Baruzzi, Amperometric biosensor for direct blood lactate detection. Anal. Chem. 82(13), 5568–5572 (2010)

    Article  Google Scholar 

  226. S.A. Bhakta, E. Evans, T.E. Benavidez, C.D. Garcia, Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal. Chim. Acta 872, 7–25 (2015)

    Article  Google Scholar 

  227. M. Gamero, F. Pariente, E. Lorenzo, C. Alonso, Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens. Bioelectron. 25(9), 2038–2044 (2010)

    Article  Google Scholar 

  228. X.-R. He et al., Amperometric L-lactate biosensor based on sol-gel film and multi-walled carbon nanotubes/platinum nanoparticles enhancement. Chin. J. Anal. Chem. Chin. Version 38(1), 57–61 (2010)

    Google Scholar 

  229. Y. Yu, Y. Yang, H. Gu, T. Zhou, G. Shi, Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens. Bioelectron. 41, 511–518 (2013)

    Article  Google Scholar 

  230. J.M. Goran, J.L. Lyon, K.J. Stevenson, Amperometric detection of l-Lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal. Chem. 83(21), 8123–8129 (2011)

    Article  Google Scholar 

  231. L. Agüí, M. Eguílaz, C. Peña-Farfal, P. Yáñez-Sedeño, J.M. Pingarrón, Lactate dehydrogenase biosensor based on an hybrid carbon nanotube-conducting polymer modified electrode. Electroanalysis 21(3–5), 386–391 (2009)

    Article  Google Scholar 

  232. I. Shakir, M. Shahid, H.W. Yang, S. Cherevko, C.-H. Chung, D.J. Kang, α-MoO3 nanowire-based amperometric biosensor for l-lactate detection. J. Solid State Electrochem. 16(6), 2197–2201 (2012)

    Article  Google Scholar 

  233. A.C. Pereira, A. Kisner, C.R.T. Tarley, L.T. Kubota, Development of a carbon paste electrode for lactate detection based on Meldola’s blue adsorbed on silica gel modified with niobium oxide and lactate oxidase. Electroanalysis 23(6), 1470–1477 (2011)

    Article  Google Scholar 

  234. Y.T. Wang et al., A novel l-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J. Electroanal. Chem. 661(1), 8–12 (2011)

    Article  Google Scholar 

  235. U. Spohn, D. Narasaiah, L. Gorton, The influence of the carbon paste composition on the performance of an amperometric bienzyme sensor for L-lactate. Electroanalysis 8(6), 507–514 (1996)

    Article  Google Scholar 

  236. M.R. Romero, F. Garay, A.M. Baruzzi, Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes. Sens. Actuators B Chem. 131(2), 590–595 (2008)

    Article  Google Scholar 

  237. M.M. Rahman, M.J.A. Shiddiky, M.A. Rahman, Y.-B. Shim, A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal. Biochem. 384(1), 159–165 (2009)

    Article  Google Scholar 

  238. E. Al-Jawadi, S. Pöller, R. Haddad, W. Schuhmann, NADH oxidation using modified electrodes based on lactate and glucose dehydrogenase entrapped between an electrocatalyst film and redox catalyst-modified polymers. Microchim. Acta 177(3–4), 405–410 (2012)

    Article  Google Scholar 

  239. E.I. Yashina et al., Sol-gel immobilization of lactate oxidase from organic solvent: toward the advanced lactate biosensor. Anal. Chem. 82(5), 1601–1604 (2010)

    Article  Google Scholar 

  240. M. Tsuchiya, H. Matsuhisa, Y. Hasebe, Selective amperometric response to hydrogen peroxide at a protein-incorporated sol-gel hybrid film-modified platinum electrode. Bunseki Kagaku 61(5), 425–428 (2012)

    Article  Google Scholar 

  241. F. Palmisano, G.E.D. Benedetto, C.G. Zambonin, Lactate amperometric biosensor based on an electrosynthesizedbilayer film with covalently immobilized enzyme. Analyst 122(4), 365–369 (1997)

    Article  Google Scholar 

  242. C.-L. Lin, C.-L. Shih, L.-K. Chau, Amperometric l-Lactate sensor based on sol-gel processing of an enzyme-linked silicon alkoxide. Anal. Chem. 79(10), 3757–3763 (2007)

    Article  Google Scholar 

  243. E. Szymańska, K. Winnicka, Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar. Drugs 13(4), 1819–1846 (2015)

    Article  Google Scholar 

  244. R. Garjonyte, V. Melvydas, A. Malinauskas, Mediated amperometric biosensors for lactic acid based on carbon paste electrodes modified with baker’s yeast Saccharomyces cerevisiae. Bioelectrochemistry 68(2), 191–196 (2006)

    Article  Google Scholar 

  245. M. Piano, S. Serban, R. Pittson, G.A. Drago, J.P. Hart, Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt, coated with lactate dehydrogenase and NAD+. Talanta 82(1), 34–37 (2010)

    Article  Google Scholar 

  246. N. Hamdi, J. Wang, H.G. Monbouquette, Polymer films as permselective coatings for H2O2-sensing electrodes. J. Electroanal. Chem. 581(2), 258–264 (2005)

    Article  Google Scholar 

  247. K. Bridge, F. Davis, S. Collyer, S.P.J. Higson, Flexible ultrathin PolyDVB/EVB composite membranes for the optimization of a whole blood glucose sensor. Electroanalysis 19(4), 487–495 (2007)

    Article  Google Scholar 

  248. K. Bridge, F. Davis, S.D. Collyer, S.P.J. Higson, Flexible ultrathin PolyDVB/EVB composite membranes for the optimization of a lactate sensor. Electroanalysis 19(5), 567–574 (2007)

    Article  Google Scholar 

  249. S. Cosnier, Biosensors based on electropolymerized films: new trends. Anal. Bioanal. Chem. 377(3), 507–520 (2003)

    Article  Google Scholar 

  250. C. Qin et al., Amperometric enzyme electrodes of glucose and lactate based on poly(diallyldimethylammonium)-alginate-metal ion-enzyme biocomposites. Anal. Chim. Acta 720, 49–56 (2012)

    Article  Google Scholar 

  251. A. Radoi, D. Moscone, G. Palleschi, Sensing the lactic acid in probiotic yogurts using an L-Lactate biosensor coupled with a microdialysis fiber inserted in a flow analysis system. Anal. Lett. 43(7–8), 1301–1309 (2010)

    Article  Google Scholar 

  252. J.J. Burmeister, M. Palmer, G.A. Gerhardt, l-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens. Bioelectron. 20(9), 1772–1779 (2005)

    Article  Google Scholar 

  253. J. Park, J. Chang, M. Choi, J.J. Pak, D.-Y. Lee, Y.K. Pak, Microfabirated clark-type sensor for measuring dissolved oxygen. IEEE Sens. 1412–1415 (2007)

    Google Scholar 

  254. K.K. Tremper, T.W. Rutter, J.A. Wahr, Monitoring oxygenation. Curr. Anaesth. Crit. Care 4(4), 213–222 (1993)

    Article  Google Scholar 

  255. C. Cody, D.J. Buggy, B. Marsh, D.C. Moriarity, Subcutaneous tissue oxygen tension after coronary revascularisation with and without cardiopulmonary bypass. Anaesthesia 59(3), 237–242 (2004)

    Article  Google Scholar 

  256. I. Bromley, Transcutaneous monitoring—understanding the principles. Infant 4(3), 95–98 (2008)

    Google Scholar 

  257. L.S. Mortensen et al., Identifying hypoxia in human tumors: a correlation study between 18F-FMISO PET and the Eppendorf oxygen-sensitive electrode. Acta Oncol. 49(7), 934–940 (2010)

    Article  Google Scholar 

  258. T.H. Williamson, J. Grewal, B. Gupta, B. Mokete, M. Lim, C.H. Fry, Measurement of PO2 during vitrectomy for central retinal vein occlusion, a pilot study. Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1019–1023 (2009)

    Article  Google Scholar 

  259. Y.-H. Park, Y.-B. Shui, D.C. Beebe, Comparison of two probe designs for determining intraocular oxygen distribution. Br. J. Ophthalmol. p. bjo.2010.186064 (2010)

    Google Scholar 

  260. L. Toma-Daşu, A. Waites, A. Daşu, J. Denekamp, Theoretical simulation of oxygen tension measurement in tissues using a microelectrode: I. The response function of the electrode. Physiol. Meas. 22(4), 713–725 (2001)

    Article  Google Scholar 

  261. R.A. Linsenmeier, C.M. Yancey, Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J. Appl. Physiol. Bethesda Md 1985, 63(6), 2554–2557 (1987)

    Google Scholar 

  262. F.B. Bolger et al., Characterisation of carbon paste electrodes for real-time amperometric monitoring of brain tissue oxygen. J. Neurosci. Methods 195(2), 135–142 (2011)

    Article  Google Scholar 

  263. G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)

    Article  Google Scholar 

  264. G.S. Wilson, M. Ammam, In vivo biosensors. FEBS J. 274(21), 5452–5461 (2007)

    Article  Google Scholar 

  265. A. Guiseppi-Elie, S. Brahim, G. Slaughter, K.R. Ward, Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sens. J. 5(3), 345–355 (2005)

    Article  Google Scholar 

  266. A.R.A. Rahman, G. Justin, A. Guiseppi-Elie, Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 75–85 (2008)

    Article  Google Scholar 

  267. A.R.A. Rahman, G. Justin, A. Guiseppi-Wilson, A. Guiseppi-Elie, Fabrication and packaging of a dual sensing electrochemical biotransducer for glucose and lactate useful in intramuscular physiologic status monitoring. IEEE Sens. J. 9(12), 1856–1863 (2009)

    Article  Google Scholar 

  268. A. Guiseppi-Elie, An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal. Bioanal. Chem. 399(1), 403–419 (2010)

    Article  Google Scholar 

  269. C.N. Kotanen, A. Guiseppi-Elie, Characterization of a wireless potentiostat for integration with a novel implantable biotransducer. IEEE Sens. J. 14(3), 768–776 (2014)

    Article  Google Scholar 

  270. Pinnacle Technology, Inc. [Online]. Available: http://www.pinnaclet.com/. Accessed: 28 Jan 2016

  271. A. Weltin, B. Enderle, J. Kieninger, G.A. Urban, Multiparametric, flexible microsensor platform for metabolic monitoring. IEEE Sens. J. 14(10), 3345–3351 (2014)

    Article  Google Scholar 

  272. C.A. Cordeiro, M.G. de Vries, W. Ngabi, P.E. Oomen, T.I.F.H. Cremers, B.H.C. Westerink, In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. Biosens. Bioelectron. 67, 677–686 (2015)

    Google Scholar 

  273. G. Calia et al., Biotelemetric monitoring of brain neurochemistry in conscious rats using microsensors and biosensors. Sensors 9(4), 2511–2523 (2009)

    Article  Google Scholar 

  274. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, USA)

    Google Scholar 

  275. P.T. Kissinger, W.R. Heineman, Cyclic voltammetry. J. Chem. Educ. 60(9), 702 (1983)

    Article  Google Scholar 

  276. P. Kissinger, W.R. Heineman, Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded (CRC Press, New York, 1996)

    Google Scholar 

  277. A.J. Bard, M. Stratmann, F. Scholz, C.J. Pickett, Encyclopedia of Electrochemistry, 7A, Inorganic Chemistry

    Google Scholar 

  278. A. Hierlemann, U. Frey, S. Hafizovic, F. Heer, Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc. IEEE 99(2), 252–284 (2011)

    Article  Google Scholar 

  279. M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3(6), 388–397 (2009)

    Article  Google Scholar 

  280. M. Sprenger, Learning and Memory: The Brain in Action. ASCD (1999)

    Google Scholar 

  281. R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, N.V. Thakor, 16-channel integrated potentiostat for distributed neurochemical sensing. IEEE Trans. Circuits Syst. Regul. Pap. 53(11), 2371–2376 (2006)

    Article  Google Scholar 

  282. K. Murari, M. Stanacevic, G. Cauwenberghs, N.V. Thakor, Integrated potentiostat for neurotransmitter sensing. IEEE Eng. Med. Biol. Mag. 24(6), 23–29 (2005)

    Article  Google Scholar 

  283. J. Lerma, A.S. Herranz, O. Herreras, V. Abraira, R.M. del Rio, In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 384(1), 145–155 (1986)

    Article  Google Scholar 

  284. M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, N.V. Thakor, VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst. 1(1), 63–72 (2007)

    Article  Google Scholar 

  285. M. Roham et al., A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans. Biomed. Circuits Syst. 2(1), 3–9 (2008)

    Article  Google Scholar 

  286. S. Ayers, K. Berberian, K.D. Gillis, M. Lindau, B.A. Minch, Post-CMOS fabrication of working electrodes for on-chip recordings of transmitter release. IEEE Trans. Biomed. Circuits Syst. 4(2), 86–92 (2010)

    Article  Google Scholar 

  287. M.H. Nazari, H. Mazhab-Jafari, L. Leng, A. Guenther, R. Genov, CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE Trans. Biomed. Circuits Syst. 7(3), 338–348 (2013)

    Article  Google Scholar 

  288. G. Massicotte, S. Carrara, G. Di Micheli, M. Sawan, A CMOS amperometric system for multi-neurotransmitter detection. IEEE Trans. Biomed. Circuits Syst. 99, 1–1 (2016)

    Google Scholar 

  289. C. Yang, M.E. Denno, P. Pyakurel, B.J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal. Chim. Acta 887, 17–37 (2015)

    Article  Google Scholar 

  290. S. Sainio et al., Integrated carbon nanostructures for detection of neurotransmitters. Mol. Neurobiol. 52(2), 859–866 (2015)

    Article  Google Scholar 

  291. N. Xiao, B.J. Venton, Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests. Anal. Chem. 84(18), 7816–7822 (2012)

    Article  Google Scholar 

  292. S.B. Hočevar, J. Wang, R.P. Deo, M. Musameh, B. Ogorevc, Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 17(5–6), 417–422 (2005)

    Article  Google Scholar 

  293. K.M. Mitchell, Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Anal. Chem. 76(4), 1098–1106 (2004)

    Article  Google Scholar 

  294. M.G. Garguilo, A.C. Michael, Enzyme-modified electrodes for peroxide, choline, and acetylcholine. TrAC Trends Anal. Chem. 14(4), 164–169 (1995)

    Article  Google Scholar 

  295. J. Cui, N.V. Kulagina, A.C. Michael, Pharmacological evidence for the selectivity of in vivo signals obtained with enzyme-based electrochemical sensors. J. Neurosci. Methods 104(2), 183–189 (2001)

    Article  Google Scholar 

  296. I. Suzuki, M. Fukuda, K. Shirakawa, H. Jiko, M. Gotoh, Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49, 270–275 (2013)

    Article  Google Scholar 

  297. M. Ganesana, J.S. Erlichman, S. Andreescu, Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radic. Biol. Med. 53(12), 2240–2249 (2012)

    Article  Google Scholar 

  298. P. Fattahi, G. Yang, G. Kim, M.R. Abidian, A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014)

    Article  Google Scholar 

  299. M.M. Ahmadi, G.A. Jullien, Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans. Circuits Syst. Regul. Pap. 56(7), 1339–1348 (2009)

    Article  MathSciNet  Google Scholar 

  300. M.M. Ahmadi, G.A. Jullien, A very low power CMOS potentiostat for bioimplantable applications, in Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC’05) (2005), pp. 184–189

    Google Scholar 

  301. L. Busoni, M. Carlà, L. Lanzi, A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev. Sci. Instrum. 73(4), 1921–1923 (2002)

    Article  Google Scholar 

  302. P. Kassanos, R.K. Iles, R.H. Bayford, A. Demosthenous, Towards the development of an electrochemical biosensor for hCGβ detection. Physiol. Meas. 29(6), S241 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anastasova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastasova, S., Kassanos, P., Yang, GZ. (2018). Electrochemical Sensor Designs for Biomedical Implants. In: Yang, GZ. (eds) Implantable Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-69748-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69748-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69747-5

  • Online ISBN: 978-3-319-69748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics