Skip to main content

Tethered and Implantable Optical Sensors

  • Chapter
  • First Online:
Implantable Sensors and Systems

Abstract

Optical imaging and sensing modalities have been used in medical diagnosis for many years. An obvious example is endoscopy , which allows remote wide-field imaging of internal tissues using optical fibers and/or miniature charge-coupled device (CCD) cameras. While techniques such as endoscopy provide useful tools for clinicians, they do not typically allow a complete diagnosis to be made. Instead, physical biopsies may be required to confirm or refute the presence of disease. Furthermore, endoscopic procedures are both invasive and time-consuming. As such, much research is currently directed toward the development of devices that can provide a complete in vivo diagnosis without the requirement for a physical biopsy. Ideally, such devices should also be minimally or non-invasive, and they should provide immediate identification of disease at the point of care. Additionally, there is significant interest in the development of implantable diagnostic devices that can be left within patients’ bodies for extended periods of time (for several days or longer). Such systems could be used for automated disease diagnosis, and example applications include the detection of post-surgical infections as well as monitoring of the health status of patients undergoing chemotherapy. This chapter focuses on the development of optical instruments that can provide in situ diagnosis at the point of care, with an emphasis on progress towards miniature devices that may function as implants in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFI:

Autofluorescence imaging

AMD:

Age-related macular degeneration

Arch:

Archaerhodopsin

ASIC:

Application-specific integrated circuit

BE:

Barrett’s Esophagus

CCD:

Charge-coupled device

ChR2:

Channelrhodopsin-2

CW:

Continuous wave

ECG:

Electrocardiogram

GI:

Gastro-intestinal

IBD:

Inflammatory bowel disease

IOL:

Intraocular lens

IR:

Infrared

LDA:

Linear discriminant analysis

LED:

Light-emitting diode

LSI:

Laser speckle imaging

LSR:

Laser speckle rheology

NpHR:

Halorhodopsin

OCT:

Optical coherence tomography

OFDI:

Optical frequency domain imaging

PCA:

Principal components analysis

PPG:

Photoplethysmography

PpIX:

Protoporphyrin IX

PTT:

Pulse transit time

PWV:

Pulse wave velocity

RF:

Radio-frequency

RGC:

Retinal ganglion cell

RP:

Retinitis pigmentosa

SECM:

Spectrally encoded confocal microscopy

SEM:

Scanning electron microscopy

SERS:

Surface-enhanced Raman spectroscopy

SLM:

Spatial light modulator

SNR:

Signal-to-noise ratio

SO2:

Oxygen saturation

SSI:

Surgical site infection

TCE:

Tethered capsule endomicroscopy

UTI:

Urinary tract infection

VEP:

Visual-evoked potential

VPU:

Visual processing unit

1D:

1-dimensional

2D:

2-dimensional

3D:

3-dimensional

5-ALA:

5-aminolevulinic acid

ÎĽLED:

Micro-scale light-emitting diode

References

  1. C.M. Chen, R. Kwasnicki, B. Lo, G.Z. Yang, Wearable tissue oxygenation monitoring sensor and a forearm vascular phantom design for data validation, in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (2014), pp. 64–68

    Google Scholar 

  2. J. Fiala, P. Bingger, D. Ruh, K. Foerster, C. Heilmann, F. Beyersdorf, H. Zappe, A. Seifert, An implantable optical blood pressure sensor based on pulse transit time. Biomed. Microdev. 15(1), 73–81 (2013)

    Article  Google Scholar 

  3. M. Theodor, D. Ruh, J. Fiala, K. Forster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, A. Seifert, Subcutaneous blood pressure monitoring with an implantable optical sensor. Biomed. Microdev. 15(5), 811–820 (2013)

    Article  Google Scholar 

  4. P.C.A. Jeronimo, A.N. Araujo, M. Montenegro, Optical sensors and biosensors based on sol-gel films. Talanta 72(1), 13–27 (2007)

    Article  Google Scholar 

  5. G. Iddan, G. Meron, A. Glukhovsky, P. Swain, Wireless capsule endoscopy. Nature 405(6785), 417 (2000)

    Article  Google Scholar 

  6. M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19(2), 238–240 (2013)

    Article  Google Scholar 

  7. L. Scolaro, D. Lorenser, W.-J. Madore, R.W. Kirk, A.S. Kramer, G.C. Yeoh, N. Godbout, D.D. Sampson, C. Boudoux, R.A. McLaughlin, Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue. Biomed. Opt. Express 6(5), 1767–1781 (2015)

    Article  Google Scholar 

  8. G. Berci, K.A. Forde, History of endoscopy: what lessons have we learned from the past? Surg. Endosc. 14(1), 5–15 (2000)

    Article  Google Scholar 

  9. F. Helmchen, Miniaturization of fluorescence microscopes using fibre optics. Exp. Physiol. 87(6), 737–745 (2002)

    Article  Google Scholar 

  10. T. Wilson, Confocal microscopy, in Confocal Microscopy, ed. by T. Wilson (Academic Press Limited, London, 1990), pp. 1–60

    Google Scholar 

  11. T. Wilson, Resolution and optical sectioning in the confocal microscope. J. Microsc. 244(2), 113–121 (2011)

    Article  Google Scholar 

  12. A.F. Gmitro, D. Aziz, Confocal microscopy through a fiberoptic imaging bundle. Opt. Lett. 18(8), 565–567 (1993)

    Article  Google Scholar 

  13. D.L. Dickensheets, G.S. Kino, Micromachined scanning confocal optical microscope. Opt. Lett. 21(10), 764–766 (1996)

    Article  Google Scholar 

  14. F. Helmchen, M.S. Fee, D.W. Tank, W. Denk, A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31(6), 903–912 (2001)

    Article  Google Scholar 

  15. A. Polglase, W. McLaren, S. Skinner, R. Kiesslich, M. Neurath, P. Delaney, A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc. 62(5), 686–695 (2005)

    Article  Google Scholar 

  16. W. Gobel, J.N. Kerr, A. Nimmerjahn, F. Helmchen, Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29(21), 2521–2523 (2004)

    Article  Google Scholar 

  17. M.T. Myaing, D.J. MacDonald, X. Li, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31(8), 1076–1078 (2006)

    Article  Google Scholar 

  18. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.C. Ahn, B.J. Tromberg, Z. Chen, Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning. J. Biomed. Opt. 14(3), 034005 (2009)

    Article  Google Scholar 

  19. H. Bao, M. Gu, Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy. Opt. Lett. 34(2), 148–150 (2009)

    Article  Google Scholar 

  20. F. Jean, G. Bourg-Heckly, B. Viellerobe, Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis. Opt. Express 15(7), 4008–4017 (2007)

    Article  Google Scholar 

  21. G.T. Kennedy, H.B. Manning, D.S. Elson, M.A.A. Neil, G.W. Stamp, B. Viellerobe, F. Lacombe, C. Dunsby, P.M.W. French, A fluorescence lifetime imaging scanning confocal endomicroscope. J. Biophoton. 3(1–2), 103–107 (2010)

    Google Scholar 

  22. G.O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, F. Festy, Fluorescence lifetime endoscopy using TCSPC for the measurement of fret in live cells. Opt. Express 18(11), 11148–11158 (2010)

    Article  Google Scholar 

  23. A.J. Thompson, C. Paterson, M.A. Neil, C. Dunsby, P.M. French, Adaptive phase compensation for ultracompact laser scanning endomicroscopy. Opt. Lett. 36(9), 1707–1709 (2011)

    Article  Google Scholar 

  24. T. Cizmar, M. Mazilu, K. Dholakia, In situ wavefront correction and its application to micromanipulation. Nat. Photonics 4(6), 388–394 (2010)

    Article  Google Scholar 

  25. M. Ploschner, T. Tyc, T. Cizmar, Seeing through chaos in multimode fibres. Nat. Photonics 9(8), 529 (2015)

    Article  Google Scholar 

  26. Y. Kim, S.C. Warren, J.M. Stone, J.C. Knight, M.A.A. Neil, C. Paterson, C.W. Dunsby, P.M.W. French, Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre. IEEE J. Sel. Top. Quantum Electron. 11(99), 1 (2015)

    Article  Google Scholar 

  27. N. Bedard, T.S. Tkaczyk, Snapshot spectrally encoded fluorescence imaging through a fiber bundle. J. Biomed. Opt. 17(8) (2012)

    Google Scholar 

  28. M. Kyrish, R. Kester, R. Richards-Kortum, T. Tkaczyk, Improving spatial resolution of a fiber bundle optical biopsy system. Endoscopic Microsc. V, 7558 (2010)

    Google Scholar 

  29. Y.S. Sabharwal, A.R. Rouse, L. Donaldson, M.F. Hopkins, A.F. Gmitro, Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38(34), 7133–7144 (1999)

    Article  Google Scholar 

  30. A. Rouse, A. Gmitro, Multispectral imaging with a confocal microendoscope. Opt. Lett. 25(23), 1708–1710 (2000)

    Article  Google Scholar 

  31. M. Hughes, G.Z. Yang, High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking. Biomed. Opt. Express 6(4), 1241–1252 (2015)

    Article  Google Scholar 

  32. H. Neumann, F.S. Fuchs, M. Vieth, R. Atreya, J. Siebler, R. Kiesslich, M.F. Neurath, Review article: in vivo imaging by endocytoscopy. Aliment. Pharmacol. Ther. 33(11), 1183–1193 (2011)

    Article  Google Scholar 

  33. M. Hughes, T.P. Chang, G.-Z. Yang, Fiber bundle endocytoscopy. Biomed. Opt. Express 4(12), 2781–2794 (2013)

    Article  Google Scholar 

  34. J.S. Louie, R. Richards-Kortum, S. Anandasabapathy, Applications and advancements in the use of high-resolution microendoscopy for detection of gastrointestinal neoplasia. Clin. Gastroenterol. Hepatol. 12(11), 1789–1792 (2014)

    Article  Google Scholar 

  35. M.-A. Protano, H. Xu, G. Wang, A.D. Polydorides, S.M. Dawsey, J. Cui, L. Xue, F. Zhang, T. Quang, M.C. Pierce, D. Shin, R.A. Schwarz, M.S. Bhutani, M. Lee, N. Parikh, C. Hur, W. Xu, E. Moshier, J. Godbold, J. Mitcham, C. Hudson, R.R. Richards-Kortum, S. Anandasabapathy, Low-cost high-resolution microendoscopy for the detection of esophageal squamous cell neoplasia: an international trial. Gastroenterology 149(2), 321–329 (2015)

    Article  Google Scholar 

  36. P.A. Keahey, T.S. Tkaczyk, K.M. Schmeler, R.R. Richards-Kortum, Optimizing modulation frequency for structured illumination in a fiber-optic microendoscope to image nuclear morphometry in columnar epithelium. Biomed. Opt. Express 6(3), 870–880 (2015)

    Article  Google Scholar 

  37. G.J. Tearney, R.H. Webb, B.E. Bouma, Spectrally encoded confocal microscopy. Opt. Lett. 23(15), 1152–1154 (1998)

    Article  Google Scholar 

  38. C. Boudoux, S.H. Yun, W.Y. Oh, W.M. White, N.V. Iftimia, M. Shishkov, B.E. Bouma, G.J. Tearney, Rapid wavelength-swept spectrally encoded confocal microscopy. Opt. Express 13(20), 8214–8221 (2005)

    Article  Google Scholar 

  39. D. Kang, R.W. Carruth, M. Kim, S.C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, G.J. Tearney, Endoscopic probe optics for spectrally encoded confocal microscopy. Biomed. Opt. Express 4(10), 1925–1936 (2013)

    Article  Google Scholar 

  40. A. Zeidan, D. Yelin, Miniature forward-viewing spectrally encoded endoscopic probe. Opt. Lett. 39(16), 4871–4874 (2014)

    Article  Google Scholar 

  41. M. Abbaci, I. Breuskin, O. Casiraghi, F. De Leeu, M. Ferchiou, S. Temam, C. Laplace-Builhe, Confocal laser endomicroscopy for non-invasive head and neck cancer imaging: a comprehensive review. Oral Oncol. 50(8), 711–716 (2014)

    Article  Google Scholar 

  42. A. Gupta, B.M. Attar, P. Koduru, A.R. Murali, B.T. Go, R. Agarwal, Utility of confocal laser endomicroscopy in identifying high-grade dysplasia and adenocarcinoma in Barrett’s esophagus: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 26(4), 369–377 (2014)

    Article  Google Scholar 

  43. F. Salvatori, S. Siciliano, F. Maione, D. Esposito, S. Masone, M. Persico, G.D. De Palma, Confocal laser endomicroscopy in the study of colonic mucosa in IBD patients: a review. Gastroenterol. Res. Pract. (2012)

    Google Scholar 

  44. P. Su, Y. Liu, S. Lin, K. Xiao, P. Chen, S. An, J. He, Y. Bai, Efficacy of confocal laser endomicroscopy for discriminating colorectal neoplasms from non-neoplasms: a systematic review and meta-analysis. Colorectal Dis. 15(1), E1–E12 (2013)

    Article  Google Scholar 

  45. V. Subramanian, K. Ragunath, Advanced endoscopic imaging: a review of commercially available technologies. Clin. Gastroenterol. Hepatol. 12(3), 368 (2014)

    Article  Google Scholar 

  46. P.S.-P. Thong, M. Olivo, S.S. Tandjung, M.M. Movania, F. Lin, K. Qian, H.-S. Seah, K.-C. Soo, Review of confocal fluorescence endomicroscopy for cancer detection. IEEE J. Sel. Top. Quantum Electron. 18(4), 1355–1366 (2012)

    Article  Google Scholar 

  47. A.H. Zehri, W. Ramey, J.F. Georges, M.A. Mooney, N.L. Martirosyan, M.C. Preul, P. Nakaji, Neurosurgical confocal endomicroscopy: a review of contrast agents, confocal systems, and future imaging modalities. Surg. Neurol. Int. 5, 60 (2014)

    Article  Google Scholar 

  48. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P.R. Galle, M.F. Neurath, Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127(3), 706–713 (2004)

    Article  Google Scholar 

  49. R. Kiesslich, M. Goetz, K. Lammersdorf, C. Schneider, J. Burg, M. Stolte, M. Vieth, B. Nafe, P.R. Galle, M.F. Neurath, Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132(3), 874–882 (2007)

    Article  Google Scholar 

  50. R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P.R. Galle, M.F. Neurath, In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 4(8), 979–987 (2006)

    Article  Google Scholar 

  51. A.M. Buchner, M.W. Shahid, M.G. Heckman, M. Krishna, M. Ghabril, M. Hasan, J.E. Crook, V. Gomez, M. Raimondo, T. Woodward, H.C. Wolfsen, M.B. Wallace, Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology 138(3), 834–842 (2010)

    Article  Google Scholar 

  52. T. Kuiper, F.J.C. van den Broek, S. van Eeden, P. Fockens, E. Dekker, Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions. Am. J. Gastroenterol. 107(4), 543–550 (2012)

    Article  Google Scholar 

  53. V. Gomez, A.M. Buchner, E. Dekker, F.J.C. van den Broek, A. Meining, M.W. Shahid, M.S. Ghabril, P. Fockens, M.G. Heckman, M.B. Wallace, Interobserver agreement and accuracy among international experts with probe-based confocal laser endomicroscopy in predicting colorectal neoplasia. Endoscopy 42(4), 286–291 (2010)

    Article  Google Scholar 

  54. K.B. Dunbar, P. Okolo III, E. Montgomery, M.I. Canto, Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest. Endosc. 70(4), 645–654 (2009)

    Article  Google Scholar 

  55. M. Bajbouj, M. Vieth, T. Roesch, S. Miehlke, V. Becker, M. Anders, H. Pohl, A. Madisch, T. Schuster, R.M. Schmid, A. Meining, Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barrett’s esophagus. Endoscopy 42(6), 435–440 (2010)

    Article  Google Scholar 

  56. P. Sharma, A.R. Meining, E. Coron, C.J. Lightdale, H.C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galiniche, J.A. Abrams, A. Rastogi, N. Gupta, J.E. Michalek, G.Y. Lauwers, M.B. Wallace, Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest. Endosc. 74(3), 465–472 (2011)

    Article  Google Scholar 

  57. M.B. Wallace, P. Sharma, C. Lightdale, H. Wolfsen, E. Coron, A. Buchner, M. Bajbouj, A. Bansal, A. Rastogi, J. Abrams, J.E. Crook, A. Meining, Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy. Gastrointest. Endosc. 72(1), 19–24 (2010)

    Article  Google Scholar 

  58. F.J.C. van den Broek, J.A. van Es, S. van Eeden, P.C.F. Stokkers, C.Y. Ponsioen, J.B. Reitsma, P. Fockens, E. Dekker, Pilot study of probe-based confocal laser endomicroscopy during colonoscopic surveillance of patients with longstanding ulcerative colitis. Endoscopy 43(2), 116–122 (2011)

    Article  Google Scholar 

  59. H. Neumann, M. Vieth, R. Atreya, M. Grauer, J. Siebler, T. Bernatik, M.F. Neurath, J. Mudter, Assessment of Crohn’s disease activity by confocal laser endomicroscopy. Inflammat. Bowel Dis. 18(12), 2261–2269 (2012)

    Article  Google Scholar 

  60. C.-Q. Li, X.-J. Xie, T. Yu, X.-M. Gu, X.-L. Zuo, C.-J. Zhou, W.-Q. Huang, H. Chen, Y.-Q. Li, Classification of inflammation activity in ulcerative colitis by confocal laser endomicroscopy. Am. J. Gastroenterol. 105(6), 1391–1396 (2010)

    Article  Google Scholar 

  61. B. Andre, T. Vercauteren, A.M. Buchner, M. Krishna, N. Ayache, M.B. Wallace, Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps. World J. Gastroenterol. 18(39), 5560–5569 (2012)

    Article  Google Scholar 

  62. S. Gaddam, S.C. Mathur, M. Singh, J. Arora, S.B. Wani, N. Gupta, A. Overhiser, A. Rastogi, V. Singh, N. Desai, S.B. Hall, A. Bansal, P. Sharma, Novel probe-based confocal laser endomicroscopy criteria and interobserver agreement for the detection of dysplasia in Barrett’s esophagus. Am. J. Gastroenterol. 106(11), 1961–1969 (2011)

    Article  Google Scholar 

  63. H. Neumann, C. Langner, M.F. Neurath, M. Vieth, Confocal laser endomicroscopy for diagnosis of Barrett’s esophagus. Front. Oncol. 2, 42 (2012)

    Article  Google Scholar 

  64. I. Smith, P.E. Kline, M. Gaidhane, M. Kahaleh, A review on the use of confocal laser endomicroscopy in the bile duct. Gastroenterol. Res. Pract. (2012)

    Google Scholar 

  65. M. Behbahaninia, N.L. Martirosyan, J. Georges, J.A. Udovich, M.Y.S. Kalani, B.G. Feuerstein, P. Nakaji, R.F. Spetzler, M.C. Preul, Intraoperative fluorescent imaging of intracranial tumors: a review. Clin. Neurol. Neurosurg. 115(5), 517–528 (2013)

    Article  Google Scholar 

  66. F. Acerbi, C. Cavallo, M. Broggi, R. Cordella, E. Anghileri, M. Eoli, M. Schiariti, G. Broggi, P. Ferroli, Fluorescein-guided surgery for malignant gliomas: a review. Neurosurg. Rev. 37(4), 547–555 (2014)

    Article  Google Scholar 

  67. C. Ell, S. Remke, A. May, L. Helou, R. Henrich, G. Mayer, The first prospective controlled trial comparing wireless capsule endoscopy with push enteroscopy in chronic gastrointestinal bleeding. Endoscopy 34(9), 685–689 (2002)

    Article  Google Scholar 

  68. B.S. Lewis, P. Swain, Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: results of a pilot study. Gastrointest. Endosc. 56(3), 349–353 (2002)

    Article  Google Scholar 

  69. M. Mylonaki, A. Fritscher-Ravens, P. Swain, Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding. Gut 52(8), 1122–1126 (2003)

    Article  Google Scholar 

  70. M. Pennazio, R. Santucci, E. Rondonotti, C. Abbiati, G. Beccari, F.P. Rossini, R. de Franchis, Outcome of patients with obscure gastrointestinal bleeding after capsule endoscopy: report of 100 consecutive cases. Gastroenterology 126(3), 643–653 (2004)

    Article  Google Scholar 

  71. N. Tabatabaei, D. Kang, T. Wu, M. Kim, R.W. Carruth, J. Leung, J.S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N.S. Nishioka, G.J. Tearney, Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis. Biomed. Opt. Express 5(1), 197–207 (2014)

    Article  Google Scholar 

  72. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  Google Scholar 

  73. B. Cense, N.A. Nassif, T. Chen, M. Pierce, S.H. Yun, B.H. Park, B.E. Bouma, G.J. Tearney, J.F. de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12(11), 2435–2447 (2004)

    Article  Google Scholar 

  74. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  Google Scholar 

  75. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, J.F. de Boer, High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Opt. Express 11(26), 3598–3604 (2003)

    Article  Google Scholar 

  76. P.H. Tomlins, R.K. Wang, Theory, developments and applications of optical coherence tomography. J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005)

    Article  Google Scholar 

  77. T. Alasil, P.A. Keane, D.A. Sim, A. Tufail, M.E. Rauser, Optical coherence tomography in pediatric ophthalmology: current roles and future directions. Ophthalm. Surg. Lasers Imaging Retina 44(6), S19–S29 (2013)

    Article  Google Scholar 

  78. J.P. Ehlers, Y.K. Tao, S.K. Srivastava, The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery. Curr. Opin. Ophthalmol. 25(3), 221–227 (2014)

    Article  Google Scholar 

  79. T. Garcia, A. Tourbah, E. Setrouk, A. Ducasse, C. Arndt, Optical coherence tomography in neuro-ophthalmology. J. Francais D: Ophtalmol. 35(6), 454–466 (2012)

    Article  Google Scholar 

  80. B.E. Goldhagen, M.T. Bhatti, P.P. Srinivasan, S.J. Chiu, S. Farsiu, M.A. El-Dairi, Retinal atrophy in eyes with resolved papilledema detected by optical coherence tomography. J. Neuro-Ophthalmol. 35(2), 122–126 (2015)

    Google Scholar 

  81. G.J. Jaffe, J. Caprioli, Optical coherence tomography to detect and manage retinal disease and glaucoma. Am. J. Ophthalmol. 137(1), 156–169 (2004)

    Article  Google Scholar 

  82. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, J.F. de Boer, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 12(3), 367–376 (2004)

    Article  Google Scholar 

  83. G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, M. Michelessi, Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst. Rev. 1 (2015)

    Google Scholar 

  84. M.E. Brezinski, G.J. Tearney, N.J. Weissman, S.A. Boppart, B.E. Bouma, M.R. Hee, A.E. Weyman, E.A. Swanson, J.F. Southern, J.G. Fujimoto, Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77(5), 397–403 (1997)

    Article  Google Scholar 

  85. A.H. Chau, R.C. Chan, M. Shishkov, B. MacNeill, N. Iftimiia, G.J. Tearney, R.D. Kamm, B.E. Bouma, M.R. Kaazempur-Mofrad, Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann. Biomed. Eng. 32(11), 1494–1503 (2004)

    Article  Google Scholar 

  86. G. Ferrante, P. Presbitero, R. Whitbourn, P. Barlis, Current applications of optical coherence tomography for coronary intervention. Int. J. Cardiol. 165(1), 7–16 (2013)

    Article  Google Scholar 

  87. I.K. Jang, B.E. Bouma, D.H. Kang, S.J. Park, S.W. Park, K.B. Seung, K.B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S.L. Houser, H.T. Aretz, G.J. Tearney, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. College Cardiol. 39(4), 604–609 (2002)

    Article  Google Scholar 

  88. O.C. Raffel, G.J. Tearney, D.D. Gauthier, E.F. Halpern, B.E. Bouma, I.-K. Jang, Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler. Thromb. Vasc. Biol. 27(8), 1820–1827 (2007)

    Article  Google Scholar 

  89. T. Roleder, J. Jakala, G.L. Kaluza, L. Partyka, K. Proniewska, E. Pociask, W. Zasada, W. Wojakowski, Z. Gasior, D. Dudek, The basics of intravascular optical coherence tomography. Postepy W Kardiologii Interwencyjnej 11(2), 74–83 (2015)

    Google Scholar 

  90. A. Tanaka, G. J. Tearney, B.E. Bouma, Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography. J. Biomed. Opt. 15(1) (2010)

    Google Scholar 

  91. G.J. Tearney, S. Waxman, M. Shishkov, B.J. Vakoc, M.J. Suter, M.I. Freilich, A.E. Desjardins, W.-Y. Oh, L.A. Bartlett, M. Rosenberg, B.E. Bouma, Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC-Cardiovasc. Imag. 1(6), 752–761 (2008)

    Article  Google Scholar 

  92. G.J. Tearney, H. Yabushita, S.L. Houser, H.T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, E.F. Halpern, B.E. Bouma, Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1), 113–119 (2003)

    Article  Google Scholar 

  93. L. Vignali, E. Solinas, E. Emanuele, Research and clinical applications of optical coherence tomography in invasive cardiology: a review. Curr. Cardiol. Rev. 10(4), 369–376 (2014)

    Article  Google Scholar 

  94. H. Yabushita, B.E. Bourna, S.L. Houser, T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, D.H. Kang, E.F. Halpern, G.J. Tearney, Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13), 1640–1645 (2002)

    Article  Google Scholar 

  95. S. Brand, J.M. Poneros, B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, Optical coherence tomography in the gastrointestinal tract. Endoscopy 32(10), 796–803 (2000)

    Article  Google Scholar 

  96. J.A. Evans, B.E. Bouma, J. Bressner, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, N.S. Nishioka, G.J. Tearney, Identifying intestinal metaplasia at the squamocolumnar junction by using optical coherence tomography. Gastrointest. Endosc. 65(1), 50–56 (2007)

    Article  Google Scholar 

  97. C.-P. Liang, C.-W. Chen, J. Wierwille, J. Desai, R. Gullapalli, R. Mezrich, C.-M. Tang, Y. Chen, Endoscopic microscopy using optical coherence tomography. Curr. Med. Imag. Rev. 8(3), 174–193 (2012)

    Article  Google Scholar 

  98. M.J. Suter, B.J. Vakoc, P.S. Yachimski, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, B.E. Bouma, N.S. Nishioka, G.J. Tearney, Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging. Gastrointest. Endosc. 68(4), 745–753 (2008)

    Article  Google Scholar 

  99. G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, J.G. Fujimoto, Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am. J. Gastroenterol. 92(10), 1800–1804 (1997)

    Google Scholar 

  100. B.J. Vakoc, M. Shishko, S.H. Yun, W.-Y. Oh, M.J. Suter, A.E. Desjardins, J.A. Evans, N.S. Nishioka, G.J. Tearney, B.E. Bouma, Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest. Endosc. 65(6), 898–905 (2007)

    Article  Google Scholar 

  101. S.A. Coulman, J.C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, B. Povazay, In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography. Pharma. Res. 28(1), 66–81 (2011)

    Article  Google Scholar 

  102. T. Gambichler, V. Jaedicke, S. Terras, Optical coherence tomography in dermatology: technical and clinical aspects. Arch. Dermatol. Res. 303(7), 457–473 (2011)

    Article  Google Scholar 

  103. T. Gambichler, A. Pljakic, L. Schmitz, Recent advances in clinical application of optical coherence tomography of human skin. Clin. Cosmet. Investig. Dermatol. 8, 345–354 (2015)

    Google Scholar 

  104. J. Welzel, Optical coherence tomography in dermatology: a review. Skin Res. Tech. 7(1), 1–9 (2001)

    Article  Google Scholar 

  105. A.S. Fjeldstad, N.G. Carlson, J.W. Rose, Optical coherence tomography as a biomarker in multiple sclerosis. Expert Opinion Med. Diagnost. 6(6), 593–604 (2012)

    Article  Google Scholar 

  106. L.M. Simao, The contribution of optical coherence tomography in neurodegenerative diseases. Curr. Opinion Ophthalmol. 24(6), 521–527 (2013)

    Article  Google Scholar 

  107. A. Vidal-Jordana, J. Sastre-Garriga, X. Montalban, Optical coherence tomography in multiple sclerosis. Rev. Neurol. 54(9), 556–563 (2012)

    Google Scholar 

  108. A. Vinekar, S. Mangalesh, C. Jayadev, R.S. Maldonado, N. Bauer, C.A. Toth, Retinal imaging of infants on spectral domain optical coherence tomography. Biomed. Res. Int. (2015)

    Google Scholar 

  109. K.A. Townsend, G. Wollstein, J.S. Schuman, Imaging of the retinal nerve fibre layer for glaucoma. Br. J. Ophthalmol. 93(2), 139–143 (2009)

    Article  Google Scholar 

  110. G.J. Tearney, OCT imaging of macrophages a bright spot in the study of inflammation in human atherosclerosis. JACC Cardiovasc. Imag. 8(1), 73–75 (2015)

    Article  Google Scholar 

  111. K. Toutouzas, Y.S. Chatzizisis, M. Riga, A. Giannopoulos, A.P. Antoniadis, S. Tu, Y. Fujino, D. Mitsouras, C. Doulaverakis, I. Tsampoulatidis, V.G. Koutkias, K. Bouki, Y. Li, I. Chouvarda, G. Cheimariotis, N. Maglaveras, I. Kompatsiaris, S. Nakamura, J.H.C. Reiber, F. Rybicki, H. Karvounis, C. Stefanadis, D. Tousoulis, G.D. Giannoglou, Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 240(2), 510–519 (2015)

    Article  Google Scholar 

  112. R.A. McLaughlin, B.C. Quirk, A. Curatolo, R.W. Kirk, L. Scolaro, D. Lorenser, P.D. Robbins, B.A. Wood, C.M. Saunders, D.D. Sampson, Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J. Sel. Top. Quantum Electron. 18(3), 1184–1191 (2012)

    Article  Google Scholar 

  113. C. Zhou, D.W. Cohen, Y. Wang, H.-C. Lee, A.E. Mondelblatt, T.-H. Tsai, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res. 70(24), 10071–10079 (2010)

    Article  Google Scholar 

  114. A.M. Zysk, S.A. Boppart, Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J. Biomed. Opt. 11(5) (2006)

    Google Scholar 

  115. B.G. Muller, D.M. de Bruin, W. van den Bos, M.J. Brandt, J.F. Velu, M.T.J. Bus, D.J. Faber, D. Savci, P.J. Zondervan, T.M. de Reijke, P.L. Pes, J. de la Rosette, T.G. van Leeuwen, Prostate cancer diagnosis: the feasibility of needle-based optical coherence tomography. J. Med Imag. (Bellingham, Wash.) 2(3), 037501 (2015)

    Google Scholar 

  116. M.T.J. Bus, D.M. de Bruin, D.J. Faber, G.M. Kamphuis, P.J. Zondervan, M.P.L. Pes, T.M. de Reijke, O. Traxer, T.G. van Leeuwen, J.J.M.C.H. de la Rosette, Optical diagnostics for upper urinary tract urothelial cancer: technology, thresholds, and clinical applications. J. Endourol. 29(2), 113–123 (2015)

    Article  Google Scholar 

  117. J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 120(1), 7–12 (2001)

    Article  Google Scholar 

  118. H.G. Bezerra, M.A. Costa, G. Guagliumi, A.M. Rollins, D.I. Simon, Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc. Interven. 2(11), 1035–1046 (2009)

    Article  Google Scholar 

  119. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321), 2037–2039 (1997)

    Article  Google Scholar 

  120. J. Ha, H. Yoo, G.J. Tearney, B.E. Bouma, Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography. Int. J. Cardiovasc. Imag. 28(6), 1299–1304 (2012)

    Article  Google Scholar 

  121. I. Ben-Dor, M. Mahmoudi, A.D. Pichard, L.F. Satler, R. Waksman, Optical coherence tomography: a new imaging modality for plaque characterization and stent implantation. J. Interven. Cardiol. 24(2), 184–192 (2011)

    Article  Google Scholar 

  122. B.E. Bouma, G.J. Tearney, H. Yabushita, M. Shishkov, C.R. Kauffman, D.D. Gauthier, B.D. MacNeill, S.L. Houser, H.T. Aretz, E.F. Halpern, I.K. Jang, Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89(3), 317–320 (2003)

    Article  Google Scholar 

  123. R.C. Chan, A.H. Chau, W.C. Karl, S. Nadkarni, A.S. Khalil, N. Iftimia, M. Shishkov, G.J. Tearney, M.R. Kaazempur-Mofrad, B.E. Bouma, OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt. Express 12(19), 4558–4572 (2004)

    Article  Google Scholar 

  124. X. Yang, D. Lorenser, R.A. McLaughlin, R.W. Kirk, M. Edmond, M.C. Simpson, M.D. Grounds, D.D. Sampson, Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed. Opt. Express 5(1), 136–148 (2014)

    Article  Google Scholar 

  125. B.C. Quirk, R.A. McLaughlin, A. Curatolo, R.W. Kirk, P.B. Noble, D.D. Sampson, In situ imaging of lung alveoli with an optical coherence tomography needle probe. J. Biomed. Opt. 16(3) (2011)

    Google Scholar 

  126. D. Lorenser, X. Yang, R.W. Kirk, B.C. Quirk, R.A. McLaughlin, D.D. Sampson, Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett. 36(19), 3894–3896 (2011)

    Article  Google Scholar 

  127. M.J. Gora, J.S. Sauk, R.W. Carruth, W. Lu, D.T. Carlton, A. Soomro, M. Rosenberg, N.S. Nishioka, G.J. Tearney, Imaging the upper gastrointestinal tract in unsedated patients using tethered capsule endomicroscopy. Gastroenterology 145(4), 723–725 (2013)

    Article  Google Scholar 

  128. K. Liang, G. Traverso, H.-C. Lee, O.O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, J.G. Fujimoto, Ultrahigh speed en face OCT capsule for endoscopic imaging. Biomed. Opt. Express 6(4), 1146–1163 (2015)

    Article  Google Scholar 

  129. M.D. Stern, In vivo evaluation of microcirculation by coherent light scattering. Nature 254(5495), 56–58 (1975)

    Article  Google Scholar 

  130. D.A. Boas, A.K. Dunn, Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15(1), 011109 (2010)

    Article  Google Scholar 

  131. A.F. Fercher, J.D. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37(5), 326–330 (1981)

    Article  Google Scholar 

  132. H. Li, Q. Liu, H.Y. Lu, Y. Li, H.F. Zhang, S.B. Tong, Directly measuring absolute flow speed by frequency-domain laser speckle imaging. Opt. Express 22(17), 21079–21087 (2014)

    Article  Google Scholar 

  133. Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, H. Fujii, Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest. Ophthalmol. Vis. Sci. 35(11), 3825–3834 (1994)

    Google Scholar 

  134. Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, H. Fujii, Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp. Eye Res. 60(4), 373–383 (1995)

    Article  Google Scholar 

  135. M. Nagahara, Y. Tamaki, A. Tomidokoro, M. Araie, In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest. Ophthalmol. Vis. Sci. 52(1), 87–92 (2011)

    Article  Google Scholar 

  136. H. Isono, S. Kishi, Y. Kimura, N. Hagiwara, N. Konishi, H. Fujii, Observation of choroidal circulation using index of erythrocytic velocity. Arch. Ophthalmol. 121(2), 225–231 (2003)

    Article  Google Scholar 

  137. B. Choi, N.M. Kang, J.S. Nelson, Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model. Microvasc. Res. 68(2), 143–146 (2004)

    Article  Google Scholar 

  138. B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, J. Stuart Nelson, Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics. J. Biomed. Opt. 11(4), 041129 (2006)

    Article  Google Scholar 

  139. K.R. Forrester, J. Tulip, C. Leonard, C. Stewart, R.C. Bray, A laser speckle imaging technique for measuring tissue perfusion. IEEE Trans. Biomed. Eng. 51(11), 2074–2084 (2004)

    Article  Google Scholar 

  140. Y.C. Huang, T.L. Ringold, J.S. Nelson, B. Choi, Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers Surg. Med. 40(3), 167–173 (2008)

    Article  Google Scholar 

  141. A.K. Dunn, A. Devor, A.M. Dale, D.A. Boas, Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27(2), 279–290 (2005)

    Article  Google Scholar 

  142. A.K. Dunn, H. Bolay, M.A. Moskowitz, D.A. Boas, Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001)

    Article  Google Scholar 

  143. H. Bolay, U. Reuter, A.K. Dunn, Z. Huang, D.A. Boas, M.A. Moskowitz, Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8(2), 136–142 (2002)

    Article  Google Scholar 

  144. C. Ayata, H.K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D.A. Boas, A.K. Dunn, M.A. Moskowitz, Pronounced hypoperfusion during spreading depression in mouse cortex. J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004)

    Article  Google Scholar 

  145. H.K. Shin, A.K. Dunn, P.B. Jones, D.A. Boas, M.A. Moskowitz, C. Ayata, Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J. Cereb. Blood Flow Metab. 26(8), 1018–1030 (2006)

    Article  Google Scholar 

  146. H.K. Shin, A.K. Dunn, P.B. Jones, D.A. Boas, E.H. Lo, M.A. Moskowitz, C. Ayata, Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130(Pt 6), 1631–1642 (2007)

    Article  Google Scholar 

  147. S. Zhang, T.H. Murphy, Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol. 5(5), e119 (2007)

    Article  Google Scholar 

  148. Z. Hajjarian, S.K. Nadkarni, Evaluating the viscoelastic properties of tissue from laser speckle fluctuations. Sci. Rep. 2 (2012)

    Google Scholar 

  149. M.M. Tripathi, Z. Hajjarian, E.M. Van Cott, S.K. Nadkarni, Assessing blood coagulation status with laser speckle rheology. Biomed. Opt. Express 5(3), 817–831 (2014)

    Article  Google Scholar 

  150. Z. Hajjarian, M.M. Tripathi, S.K. Nadkarni, Optical thromboelastography to evaluate whole blood coagulation. J. Biophotonics 8(5), 372–381 (2015)

    Article  Google Scholar 

  151. S.K. Nadkarni, B.E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M.S. Minsky, J.T. Motz, S.L. Houser, G.J. Tearney, Characterization of atherosclerotic plaques by laser speckle imaging. Circulation 112(6), 885–892 (2005)

    Article  Google Scholar 

  152. S.K. Nadkarni, A. Bilenca, B.E. Bouma, G.J. Tearney, Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images. J. Biomed. Opt. 11(2), 8 (2006)

    Article  Google Scholar 

  153. S.K. Nadkarni, Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture. J. Biomed. Opt. 18(12), (2013)

    Google Scholar 

  154. J. Wang, S.K. Nadkarni, The influence of optical fiber bundle parameters on the transmission of laser speckle patterns. Opt. Express 22(8), 8908–8918 (2014)

    Article  Google Scholar 

  155. A.A. Stratonnikov, V.B. Loschenov, Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 6(4), 457–467 (2001)

    Article  Google Scholar 

  156. R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D.R. Venturoli, In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: discriminant analysis between nevus and melanoma. Photochem. Photobiol. 55(4), 515–522 (1992)

    Article  Google Scholar 

  157. N. Rajaram, T.J. Aramil, K. Lee, J.S. Reichenberg, T.H. Nguyen, J.W. Tunnell, Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. Appl. Opt. 49(2), 142–152 (2010)

    Article  Google Scholar 

  158. A.J. Thompson, S. Coda, M. Brydegaard Sørensen, G. Kennedy, R. Patalay, U. Waitong-Bramming, P.A.A. De Beule, M.A.A. Neil, S. Andersson-Engels, N. Bendsoe, P.M.W. French, K. Svanberg, C. Dunsby, In vivo measurements of diffuse reflectance and time-resolved autofluorescence emission spectra of basal cell carcinomas. J. Biophotonics 5(3), 240–254 (2012)

    Article  Google Scholar 

  159. I.J. Bigio, T.M. Johnson, J.R. Mourant, B.J. Tromberg, Y. Tadir, M. Fehr, H. Nilsson, V.C. Darrow, Determination of the cervical transformation zone using elastic-scattering spectroscopy, in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases III: Optical Biopsy, Proceedings, vol. 2679 (1996), pp. 85–91

    Google Scholar 

  160. J.R. Mourant, T.J. Bocklage, T.M. Powers, H.M. Greene, K.L. Bullock, L.R. Marr-Lyon, M.H. Dorin, A.G. Waxman, M.M. Zsemlye, H.O. Smith, In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol. Oncol. 105(2), 439–445 (2007)

    Article  Google Scholar 

  161. J.R. Mourant, T.J. Bocklage, T.M. Powers, H.M. Greene, M.H. Dorin, A.G. Waxman, M.M. Zsemlye, H.O. Smith, Detection of cervical intraepithelial neoplasias and cancers in cervical tissue by in vivo light scattering. J. Lower Genital Tract Dis. 13(4), 216–223 (2009)

    Article  Google Scholar 

  162. J.R. Mourant, I.J. Bigio, J. Boyer, R.L. Conn, T. Johnson, T. Shimada, Spectroscopic diagnosis of bladder cancer with elastic light scattering. Lasers Surg. Med. 17(4), 350–357 (1995)

    Article  Google Scholar 

  163. J.R. Mourant, J. Boyer, T.M. Johnson, J. Lacey, I.J. Bigio, A. Bohorfoush, M. Mellow, Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the los-alamos optical biopsy system, in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, Proceedings, vol. 2387 (1995), pp. 210–217

    Google Scholar 

  164. H.W. Wang, J.K. Jiang, C.H. Lin, J.K. Lin, G.J. Huang, J.S. Yu, Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors. Opt. Express 17(4), 2805–2817 (2009)

    Article  Google Scholar 

  165. J.P. Culver, T. Durduran, T. Furuya, C. Cheung, J.H. Greenberg, A.G. Yodh, Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J. Cerebral Blood Flow Metabol. 23(8), 911–924 (2003)

    Article  Google Scholar 

  166. H. Levy, D. Ringuette, O. Levi, Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. Biomed. Opt. Express 3(4), 777–791 (2012)

    Article  Google Scholar 

  167. Y. Shang, L. Chen, M. Toborek, G.Q. Yu, Diffuse optical monitoring of repeated cerebral ischemia in mice. Opt. Express 19(21), 20301–20315 (2011)

    Article  Google Scholar 

  168. F.F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977)

    Article  Google Scholar 

  169. N. Sato, T. Kamada, M. Shichiri, S. Kawano, H. Abe, B. Hagihara, Measurement of hemoperfusion and oxygen sufficiency in gastric mucosa in vivo. Evidence of mucosal hypoxia as the cause of hemorrhagic shock-induced gastric mucosal lesion in rats. Gastroenterology 76(4), 814–819 (1979)

    Google Scholar 

  170. G.A. Mook, A. Buursma, A. Gerding, G. Kwant, W.G. Zijlstra, Spectrophotometric determination of oxygen saturation of blood independent of the presence of indocyanine green. Cardiovasc. Res. 13(4), 233–237 (1979)

    Article  Google Scholar 

  171. F.W. Leung, T. Morishita, E.H. Livingston, T. Reedy, P.H. Guth, Reflectance spectrophotometry for the assessment of gastroduodenal mucosal perfusion. Am. J. Physiol. 252(6 Pt 1), G797–G804 (1987)

    Google Scholar 

  172. J.W. Feather, M. Hajizadeh-Saffar, G. Leslie, J.B. Dawson, A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments. Phys. Med. Biol. 34(7), 807–820 (1989)

    Article  Google Scholar 

  173. K.H. Frank, M. Kessler, K. Appelbaum, W. Dummler, The erlangen micro-lightguide spectrophotometer empho I. Phys. Med. Biol. 34(12), 1883–1900 (1989)

    Article  Google Scholar 

  174. E.M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation. Anal. Biochem. 195(2), 330–351 (1991)

    Article  Google Scholar 

  175. I.J. Bigio, J.R. Mourant, G. Los, Elastic-scattering spectroscopy for quantitative measurement of chemotherapy and PDT drug concentrations in vivo, in Optical Biopsies and Microscopic Techniques III, Proceedings, vol. 3568 (1999), pp. 26–30

    Google Scholar 

  176. J.R. Mourant, I.J. Bigio, J. Boyer, J. Lacey, T. Johnson, R.L. Conn, Diagnosis of tissue pathology with elastic scattering spectroscopy, in Leos’94—Conference Proceedings, vol. 1 (1994), pp. 17–18

    Google Scholar 

  177. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  178. J. Haringsma, G.N.J. Tytgat, H. Yano, H. Iishi, M. Tatsuta, T. Ogihara, H. Watanabe, N. Sato, N. Marcon, B.C. Wilson, R.W. Cline, Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology. Gastrointest. Endosc. 53(6), 642–650 (2001)

    Article  Google Scholar 

  179. F.J.C. van den Broek, P. Fockens, S. van Eeden, J.B. Reitsma, J.C.H. Hardwick, P.C.F. Stokkers, E. Dekker, Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut 57(8), 1083–1089 (2008)

    Article  Google Scholar 

  180. W.L. Curvers, R. Singh, L.M.W.-K. Song, H.C. Wolfsen, K. Ragunath, K. Wang, M.B. Wallace, P. Fockens, J.J.G.H.M. Bergman, Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57(2), 167–172 (2008)

    Article  Google Scholar 

  181. M.A. Kara, F.P. Peters, P. Fockens, F.J.W. ten Kate, J.J.G.H.M. Bergman, Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus. Gastrointest. Endosc. 64(2), 176–185 (2006)

    Article  Google Scholar 

  182. N. Rajaram, J.S. Reichenberg, M.R. Migden, T.H. Nguyen, J.W. Tunnell, Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer. Lasers Surg. Med. 42(10), 716–727 (2010)

    Article  Google Scholar 

  183. L. Brancaleon, A.J. Durkin, J.H. Tu, G. Menaker, J.D. Fallon, N. Kollias, In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem. Photobiol. 73(2), 178–183 (2001)

    Article  Google Scholar 

  184. M.A. D’Hallewin, L. Bezdetnaya, F. Guillemin, Fluorescence detection of bladder cancer: a review. Eur. Urol. 42(5), 417–425 (2002)

    Article  Google Scholar 

  185. L. Silveira Jr., J.A. Betiol Filho, F.L. Silveira, R.A. Zangaro, M.T. Pacheco, Laser-induced fluorescence at 488 nm excitation for detecting benign and malignant lesions in stomach mucosa. J. Fluoresc. 18(1), 35–40 (2008)

    Article  Google Scholar 

  186. C.R. Kapadia, F.W. Cutruzzola, K.M. O’Brien, M.L. Stetz, R. Enriquez, L.I. Deckelbaum, Laser-induced fluorescence spectroscopy of human colonic mucosa. Detection of adenomatous transformation. Gastroenterology 99(1), 150–157 (1990)

    Article  Google Scholar 

  187. Y. Yang, G.C. Tang, M. Bessler, R.R. Alfano, Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer. Lasers Life Sci. 6(4), 259–276 (1995)

    Google Scholar 

  188. D.C. De Veld, M. Skurichina, M.J. Witjes, R.P. Duin, H.J. Sterenborg, J.L. Roodenburg, Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy. J. Biomed. Opt. 9(5), 940–950 (2004)

    Article  MATH  Google Scholar 

  189. P.A.A. De Beule, C. Dunsby, N.P. Galletly, G.W. Stamp, A.C. Chu, U. Anand, P. Anand, C.D. Benham, A. Naylor, P.M.W. French, A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev. Sci. Instrum. 78(12), 123101 (2007)

    Article  Google Scholar 

  190. S. Coda, A.J. Thompson, G.T. Kennedy, K.L. Roche, L. Ayaru, D.S. Bansi, G.W. Stamp, A.V. Thillainayagam, P.M. French, C. Dunsby, Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe. Biomed. Opt. Express 5(2), 515–538 (2014)

    Article  Google Scholar 

  191. P.V. Butte, B.K. Pikul, A. Hever, W.H. Yong, K.L. Black, L. Marcu, Diagnosis of meningioma by time-resolved fluorescence spectroscopy. J. Biomed. Opt. 10(6), 064026 (2005)

    Article  Google Scholar 

  192. L. Marcu, J.A. Jo, P.V. Butte, W.H. Yong, B.K. Pikul, K.L. Black, R.C. Thompson, Fluorescence lifetime spectroscopy of glioblastoma multiforme. Photochem. Photobiol. 80(1), 98–103 (2004)

    Article  Google Scholar 

  193. N.P. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D.S. Elson, M.A.A. Neil, A.C. Chu, P.M.W. French, G.W. Stamp, Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br. J. Dermatol. 159(1), 152–161 (2008)

    Article  Google Scholar 

  194. J. McGinty, N.P. Galletly, C. Dunsby, I. Munro, D.S. Elson, J. Requejo-Isidro, P. Cohen, R. Ahmad, A. Forsyth, A.V. Thillainayagam, M.A.A. Neil, P.M.W. French, G.W. Stamp, Wide-field fluorescence lifetime imaging of cancer. Biomed. Opt. Express 1(2), 627–640 (2010)

    Article  Google Scholar 

  195. H.M. Chen, C.P. Chiang, C. You, T.C. Hsiao, C.Y. Wang, Time-resolved autofluorescence spectroscopy for classifying normal and premalignant oral tissues. Lasers Surg. Med. 37(1), 37–45 (2005)

    Article  Google Scholar 

  196. M. Mycek, K. Schomacker, N. Nishioka, Colonic polyp differentiation using time-resolved autofluorescence spectroscopy. Gastrointest. Endosc. 48(4), 390–394 (1998)

    Article  Google Scholar 

  197. T.J. Pfefer, D.Y. Paithankar, J.M. Poneros, K.T. Schomacker, N.S. Nishioka, Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus. Lasers Surg. Med. 32(1), 10–16 (2003)

    Article  Google Scholar 

  198. V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, T. Lotti, Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences. J. Eur. Acad. Dermatology Venereol. 23(3), 314–316 (2009)

    Article  Google Scholar 

  199. B.W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A.M. Raczynska, J. Winczakiewicz, J. Dobber, Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques. Lasers Surg. Med. 21(2), 149–158 (1997)

    Article  Google Scholar 

  200. B.W. Chwirot, Z. Michniewicz, M. Kowalska, J. Nussbeutel, Detection of colonic malignant lesions by digital imaging of UV laser-induced autofluorescence. Photochem. Photobiol. 69(3), 336–340 (1999)

    Article  Google Scholar 

  201. S.D. Xiao, L. Zhong, H.Y. Luo, X.Y. Chen, Y. Shi, Autofluorescence imaging analysis of gastric cancer. Chin. J. Digest. Dis. 3, 95–98 (2002)

    Article  Google Scholar 

  202. J. Mizeret, G. Wagnieres, T. Stepinac, H. VandenBergh, Endoscopic tissue characterization by frequency-domain fluorescence lifetime imaging (FD-FLIM). Lasers Med. Sci. 12(3), 209–217 (1997)

    Article  Google Scholar 

  203. J. Haringsma, G.N.J. Tytgat, Fluorescence and autofluorescence. Best Pract. Res. Clin. Gastroenterol. 13(1), 1–10 (1999)

    Article  Google Scholar 

  204. S. Yamashita, M. Sakabe, T. Ishizawa, K. Hasegawa, Y. Urano, N. Kokudo, Visualization of the leakage of pancreatic juice using a chymotrypsin-activated fluorescent probe. Br. J. Surg. 100(9), 1220–1228 (2013)

    Article  Google Scholar 

  205. R. Petry, M. Schmitt, J. Popp, Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 4(1), 14–30 (2003)

    Article  Google Scholar 

  206. M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E.H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, P. Villoslada, Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis. J. Biophotonics 7(9), 724–734 (2014)

    Article  Google Scholar 

  207. S.K. Teh, W. Zhene, K.Y. Ho, M. Teh, K.G. Yeoh, Z.W. Huang, Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of helicobacter-pylori infection and intestinal metaplasia. Int. J. Cancer 126(8), 1920–1927 (2010)

    Article  Google Scholar 

  208. H. Krishna, S.K. Majumder, P. Chaturvedi, M. Sidramesh, P.K. Gupta, In vivo Raman spectroscopy for detection of oral neoplasia: a pilot clinical study. J. Biophotonics 7(9), 690–702 (2014)

    Article  Google Scholar 

  209. M.S. Bergholt, K. Lin, J. Wang, W. Zheng, H. Xu, Q. Huang, J.L. Ren, K.Y. Ho, M. Teh, S. Srivastava, B. Wong, K.G. Yeoh, Z. Huang, Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J. Biophotonics 9(4), 333–342 (2016)

    Article  Google Scholar 

  210. M.A. Short, S. Lam, A. McWilliams, J.H. Zhao, H. Lui, H.S. Zeng, Development and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers. Opt. Lett. 33(7), 711–713 (2008)

    Article  Google Scholar 

  211. M.A. Short, S. Lam, A.M. McWilliams, D.N. Ionescu, H.S. Zeng, Using laser Raman spectroscopy to reduce false positives of autofluorescence bronchoscopies a pilot study. J. Thoracic Oncol. 6(7), 1206–1214 (2011)

    Article  Google Scholar 

  212. O. Aydin, M. Altas, M. Kahraman, O.F. Bayrak, M. Culha, Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering. Appl. Spectrosc. 63(10), 1095–1100 (2009)

    Article  Google Scholar 

  213. M. Saleem, M. Bilal, S. Anwar, A. Rehman, M. Ahmed, Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy. Laser Phys. Lett. 10(3), 5 (2013)

    Article  Google Scholar 

  214. Z. Huang, H. Zeng, I. Hamzavi, D.I. McLean, H. Lui, Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements. Opt. Lett. 26(22), 1782–1784 (2001)

    Article  Google Scholar 

  215. Z. Huang, S.K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K.Y. Ho, M. Teh, K.G. Yeoh, Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. Opt. Lett. 34(6), 758–760 (2009)

    Article  Google Scholar 

  216. Y. Komachi, H. Sato, H. Tashiro, Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease. Appl. Opt. 45(30), 7938–7943 (2006)

    Article  Google Scholar 

  217. W.F. Howard, W.H. Nelson, J.F. Sperry, Resonance Raman method for the rapid detection and identification of bacteria in water. Appl. Spectrosc. 34(1), 72–75 (1980)

    Article  Google Scholar 

  218. K. Hadjigeorgiou, E. Kastanos, A. Kyriakides, C. Pitris, Complete urinary tract infection (UTI) diagnosis and antibiogram using surface enhanced Raman spectroscopy (SERS), in Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV, vol. 8229 (2012)

    Google Scholar 

  219. E. Kastanos, K. Hadjigeorgiou, C. Pitris, Rapid identification of bacterial resistance to ciprofloxacin using surface enhanced Raman spectroscopy, in Optical Diagnostics and Sensing XIV: Toward Point-of-Care Diagnostics, SPIE Photonics West (SPIE, San Francisco, CA, 2014)

    Google Scholar 

  220. E. Kastanos, A. Kyriakides, K. Hadjigeorgiou, C. Pitris, A novel method for bacterial UTI diagnosis using Raman spectroscopy. Int. J. Spectrosc. (2012)

    Google Scholar 

  221. E.K. Kastanos, A. Kyriakides, K. Hadjigeorgiou, C. Pitris, A novel method for urinary tract infection diagnosis and antibiogram using Raman spectroscopy. J. Raman Spectrosc. 41(9), 958–963 (2010)

    Article  Google Scholar 

  222. A. Kyriakides, E. Kastanos, K. Hadjigeorgiou, C. Pitris, Classification of Raman spectra of bacteria using rank order kernels, in Advanced Biomedical and Clinical Diagnostic Systems XI, vol. 8572 (2013)

    Google Scholar 

  223. A. Sengupta, M.L. Laucks, E.J. Davis, Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl. Spectrosc. 59(8), 1016–1023 (2005)

    Article  Google Scholar 

  224. A. Sengupta, M. Mujacic, E.J. Davis, Detection of bacteria by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 386(5), 1379–1386 (2006)

    Article  Google Scholar 

  225. W.H. Nelson, J.F. Sperry, Direct Detection of Bacteria-Antibody Complexes Via UV Resonance Raman Spectroscopy (The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations, 2005)

    Google Scholar 

  226. X. Yang, C. Gu, F. Qian, Y. Li, J.Z. Zhang, Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem. 83(15), 5888–5894 (2011)

    Article  Google Scholar 

  227. A. Sivanesan, E. Witkowska, W. Adamkiewicz, L. Dziewit, A. Kaminska, J. Waluk, Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst 139(5), 1037–1043 (2014)

    Article  Google Scholar 

  228. A.K. Boardman, W.S. Wong, W.R. Premasiri, L.D. Ziegler, J.C. Lee, M. Miljkovic, C.M. Klapperich, A. Sharon, A.F. Sauer-Budge, Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal. Chem. 88(16), 8026–8035 (2016)

    Article  Google Scholar 

  229. M. Harz, P. Rosch, J. Popp, Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry. Part A: J. Int. Soc. Anal. Cytol. 75(2), 104–113 (2009)

    Google Scholar 

  230. F.S. de Siqueira e Oliveira, H.E. Giana, L. Silveira, Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis. J. Biomed. Opt. 17(10), 107004 (2012)

    Google Scholar 

  231. A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)

    Article  Google Scholar 

  232. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman-spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)

    Article  Google Scholar 

  233. Z.A. Nima, A. Biswas, I.S. Bayer, F.D. Hardcastle, D. Perry, A. Ghosh, E. Dervishi, A.S. Biris, Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metabol. Rev. 46(2), 155–175 (2014)

    Article  Google Scholar 

  234. A.K. Singh, S.A. Khan, Z. Fan, T. Demeritte, D. Senapati, R. Kanchanapally, P.C. Ray, Development of a long-range surface-enhanced Raman spectroscopy ruler. J. Am. Chem. Soc. 134(20), 8662–8669 (2012)

    Article  Google Scholar 

  235. B. Yan, A. Thubagere, W.R. Premasiri, L.D. Ziegler, L. Dal Negro, B.M. Reinhard, Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. ACS Nano 3(5), 1190–1202 (2009)

    Article  Google Scholar 

  236. E. Temur, I.H. Boyaci, U. Tamer, H. Unsal, N. Aydogan, A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal. Bioanal. Chem. 397(4), 1595–1604 (2010)

    Article  Google Scholar 

  237. H.Y. Lin, C.H. Huang, W.H. Hsieh, L.H. Liu, Y.C. Lin, C.C. Chu, S.T. Wang, I.T. Kuo, L.K. Chau, C.Y. Yang, On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small 10(22), 4700–4710 (2014)

    Article  Google Scholar 

  238. C. Yuen, Q. Liu, Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: silver coated microneedle based SERS probe. J. Biophotonics 7(9), 683–689 (2014)

    Article  Google Scholar 

  239. Z. Fan, R. Kanchanapally, P.C. Ray, Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett. 4(21), 3813–3818 (2013)

    Article  Google Scholar 

  240. P.R. Stoddart, D.J. White, Optical fibre SERS sensors. Anal. Bioanal. Chem. 394(7), 1761–1774 (2009)

    Article  Google Scholar 

  241. G.F. Andrade, M. Fan, A.G. Brolo, Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens. Bioelectron. 25(10), 2270–2275 (2010)

    Article  Google Scholar 

  242. G.F.S. Andrade, J.G. Hayashi, M.M. Rahman, W.J. Salcedo, C.M.B. Cordeiro, A.G. Brolo, Surface-enhanced resonance Raman scattering (SERS) using Au nanohole arrays on optical fiber tips. Plasmonics 8(2), 1113–1121 (2013)

    Article  Google Scholar 

  243. F. Deiss, N. Sojic, D.J. White, P.R. Stoddart, Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal. Bioanal. Chem. 396(1), 53–71 (2010)

    Article  Google Scholar 

  244. Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P.J. Klar, Y. Zhang, Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber. Adv. Opt. Mater. 3(9), 1232–1239 (2015)

    Article  Google Scholar 

  245. J.L. Kou, M. Ding, J. Feng, Y.Q. Lu, F. Xu, G. Brambilla, Microfiber-based bragg gratings for sensing applications: a review. Sensors 12(7), 8861–8876 (2012)

    Article  Google Scholar 

  246. A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam, E.J. Friebele, Fiber grating sensors. J. Lightwave Technol. 15(8), 1442–1463 (1997)

    Article  Google Scholar 

  247. J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, N.J. Spencer, M. Costa, S.J. Brookes, M.M. Szczesniak, P.G. Dinning, A fibre optic catheter for simultaneous measurement of longitudinal and circumferential muscular activity in the gastrointestinal tract. J. Biophotonics 4(4), 244–251 (2011)

    Article  Google Scholar 

  248. J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, N.J. Spencer, M. Costa, S.J. Brookes, M.M. Szczesniak, P.G. Dinning, Measurement of muscular activity associated with peristalsis in the human gut using fiber Bragg grating arrays. IEEE Sensors J. 12(1), 113–117 (2012)

    Article  Google Scholar 

  249. M.R. Islam, M.M. Ali, M.H. Lai, K.S. Lim, H. Ahmad, Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review. Sensors (Basel) 14(4), 7451–7488 (2014)

    Article  Google Scholar 

  250. N. Wu, Y. Tian, X.T. Zou, Y. Zhai, K. Barringhaus, X.W. Wang, A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model. Sens. Actuators B: Chem. 181, 172–178 (2013)

    Article  Google Scholar 

  251. O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors. Anal. Chem. 76(12), 3269–3283 (2004)

    Article  Google Scholar 

  252. M.T. Carter, R.C. Thomas, M.E. Berton, Fiber waveguide chemical sensors for detection of explosive related vapors, in Detection and Remediation Technologies for Mines and Minelike Targets VII, Pts 1 and 2, vol. 4742 (2002), pp. 509–519

    Google Scholar 

  253. M. Janotta, A. Katzir, B. Mizaikoff, Sol-gel-coated mid-infrared fiber-optic sensors. Appl. Spectrosc. 57(7), 823–828 (2003)

    Article  Google Scholar 

  254. C.A. Browne, D.H. Tarrant, M.S. Olteanu, J.W. Mullens, E.L. Chronister, Intrinsic sol-gel clad fiber-optic sensors with time-resolved detection. Anal. Chem. 68(14), 2289–2295 (1996)

    Article  Google Scholar 

  255. G. Okeeffe, B.D. Maccraith, A.K. Mcevoy, C.M. Mcdonagh, J.F. Mcgilp, Development of a led-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilized dye. Sens. Actuators B: Chem. 29(1–3), 226–230 (1995)

    Article  Google Scholar 

  256. O.S. Wolfbeis, M. Schaferling, A. Durkop, Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim. Acta 143(4), 221–227 (2003)

    Article  Google Scholar 

  257. Y. Qin, S. Peper, A. Radu, A. Ceresa, E. Bakker, Plasticizer-free polymer containing a covalently immobilized Ca2+-selective ionophore for potentiometric and optical sensors. Anal. Chem. 75(13), 3038–3045 (2003)

    Article  Google Scholar 

  258. A.S. Jeevarajan, S. Vani, T.D. Taylor, M.M. Anderson, Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor. Biotechnol. Bioeng. 78(4), 467–472 (2002)

    Article  Google Scholar 

  259. N.A. Yusof, M. Ahmad, A flow cell optosensor for lead based on immobilized gallocynin in chitosan membrane. Talanta 58(3), 459–466 (2002)

    Article  Google Scholar 

  260. A. Lobnik, I. Oehme, I. Murkovic, O.S. Wolfbeis, Ph optical sensors based on sol-gels: chemical doping versus covalent immobilization. Anal. Chim. Acta 367(1–3), 159–165 (1998)

    Article  Google Scholar 

  261. T.M. Butler, B.D. Maccraith, C.M. Mcdonagh, Development of an extended range fibre optic ph sensor using evanescent wave absorption of sol-gel entrapped pH indicators. Chem. Biochem. Environ. Fiber Sens. VII 2508, 168–178 (1995)

    Article  Google Scholar 

  262. B.D. Gupta, D.K. Sharma, Evanescent wave absorption based fiber optic ph sensor prepared by dye doped sol-gel immobilization technique. Opt. Commun. 140(1–3), 32–35 (1997)

    Article  Google Scholar 

  263. E. Alvarado-Mendez, R. Rojas-Laguna, J.A. Andrade-Lucio, D. Hernandez-Cruz, R.A. Lessard, J.G. Avina-Cervantes, Design and characterization of pH sensor based on sol-gel silica layer on plastic optical fiber. Sens. Actuators B: Chem. 106(2), 518–522 (2005)

    Article  Google Scholar 

  264. B.D. Maccraith, C.M. Mcdonagh, G. Okeeffe, A.K. Mcevoy, T. Butler, F.R. Sheridan, Sol-gel coatings for optical chemical sensors and biosensors. Sens. Actuators B: Chem. 29(1–3), 51–57 (1995)

    Article  Google Scholar 

  265. H.P. Williams, Sir Harold Ridley’s vision. Br. J. Ophthalmol. 85(9), 1022–1023 (2001)

    Article  Google Scholar 

  266. M. Leyland, E. Zinicola, Multifocal versus monofocal intraocular lenses in cataract surgery: a systematic review. Ophthalmology 110(9), 1789–1798 (2003)

    Article  Google Scholar 

  267. S.R. de Silva, J.R. Evans, V. Kirthi, M. Ziaei, M. Leyland, Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst. Rev. 12 (2016)

    Google Scholar 

  268. D. Madrid-Costa, A. Cervino, T. Ferrer-Blasco, S. Garcia-Lazaro, R. Montes-Mico, Visual and optical performance with hybrid multifocal intraocular lenses. Clin. Exp. Optom. 93(6), 426–440 (2010)

    Article  Google Scholar 

  269. M. Chen, Accommodation in pseudophakic eyes. Taiwan J. Ophthalmol. 2(4), 117–121 (2012)

    Article  Google Scholar 

  270. R.F. Steinert, B.L. Aker, D.J. Trentacost, P.J. Smith, N. Tarantino, A prospective comparative study of the amo array zonal-progressive multifocal silicone intraocular lens and a monofocal intraocular lens. Ophthalmology 106(7), 1243–1255 (1999)

    Article  Google Scholar 

  271. M.C. Knorz, Results of a European multicenter study of the true vista bifocal intraocular lens. J. Cataract Refract. Surg. 19(5), 626–634 (1993)

    Article  Google Scholar 

  272. H.V. Gimbel, D.R. Sanders, M.G. Raanan, Visual and refractive results of multifocal intraocular lenses. Ophthalmology 98(6), 881–888 (1991)

    Article  Google Scholar 

  273. J.D. Hunkeler, T.M. Coffman, J. Paugh, A. Lang, P. Smith, N. Tarantino, Characterization of visual phenomena with the array multifocal intraocular lens. J. Cataract Refract. Surg. 28(7), 1195–1204 (2002)

    Article  Google Scholar 

  274. J.S. Chang, J.C. Ng, S.Y. Lau, Visual outcomes and patient satisfaction after presbyopic lens exchange with a diffractive multifocal intraocular lens. J. Refract. Surg. 28(7), 468–474 (2012)

    Article  Google Scholar 

  275. J.L. Alió, D.P. Piñero, A.B. Plaza-Puche, M.J.R. Chan, Visual outcomes and optical performance of a monofocal intraocular lens and a new-generation multifocal intraocular lens. J. Cataract Refract. Surg. 37(2), 241–250 (2011)

    Article  Google Scholar 

  276. R.K. Shepherd, M.N. Shivdasani, D.A. Nayagam, C.E. Williams, P.J. Blamey, Visual prostheses for the blind. Trends Biotechnol. 31(10), 562–571 (2013)

    Article  Google Scholar 

  277. S. Picaud, J.A. Sahel, Retinal prostheses: clinical results and future challenges. C.R. Biol. 337(3), 214–222 (2014)

    Article  Google Scholar 

  278. A.E. Hadjinicolaou, H. Meffin, M.I. Maturana, S.L. Cloherty, M.R. Ibbotson, Prosthetic vision: devices, patient outcomes and retinal research. Clin. Exper. Optometry 98(5), 395–410 (2015)

    Article  Google Scholar 

  279. A.H. Milam, Z.Y. Li, R.N. Fariss, Histopathology of the human retina in retinitis pigmentosa. Progr. Retinal Eye Res. 17(2), 175–205 (1998)

    Article  Google Scholar 

  280. M.S. Humayun, M. Prince, E. de Juan, Y. Barron, M. Moskowitz, I.B. Klock, A.H. Milam, Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 40(1), 143–148 (1999)

    Google Scholar 

  281. M.P. Villegas-Perez, J.M. Lawrence, M. Vidal-Sanz, M.M. Lavail, R.D. Lund, Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J. Comp. Neurol. 392(1), 58–77 (1998)

    Article  Google Scholar 

  282. R.E. Marc, B.W. Jones, C.B. Watt, E. Strettoi, Neural remodeling in retinal degeneration. Progr. Retinal Eye Res. 22(5), 607–655 (2003)

    Article  Google Scholar 

  283. G.S. Brindley, W.S. Lewin, The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196(2), 479–493 (1968)

    Article  Google Scholar 

  284. W.H. Dobelle, M.G. Mladejovsky, J.P. Girvin, Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183(4123), 440–444 (1974)

    Article  Google Scholar 

  285. Second Sight Medical Products, The Argus® II retinal prosthesis system. http://www.2-sight.com/argus-ii-rps-pr-en.html (2016)

  286. E. Zrenner, K.U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, R. Wilke, Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Roy. Soc. B: Biol. Sci. 278(1711), 1489–1497 (2011)

    Article  Google Scholar 

  287. K. Stingl, K.U. Bartz-Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, U. Greppmaier, S. Hipp, G. Hortdorfer, C. Kernstock, A. Koitschev, A. Kusnyerik, H. Sachs, A. Schatz, K.T. Stingl, T. Peters, B. Wilhelm, E. Zrenner, Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. Roy. Soc. B 280(1757), 20130077 (2013)

    Article  Google Scholar 

  288. Retina Implant AG, Subretinal implant technology. http://www.retina-implant.de/en/patients/technology/default.aspx (2016)

  289. Pixium Vision, Iris® bionic vision restoration system. http://www.pixium-vision.com/en/technology-1/iris-vision-restoration-system (2017)

  290. M.S. Humayun, J.D. Dorn, L. da Cruz, G. Dagnelie, J.A. Sahel, P.E. Stanga, A.V. Cideciyan, J.L. Duncan, D. Eliott, E. Filley, A.C. Ho, A. Santos, A.B. Safran, A. Arditi, L.V. Del Priore, R.J. Greenberg, Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology 119(4), 779–788 (2012)

    Article  Google Scholar 

  291. S. Klauke, M. Goertz, S. Rein, D. Hoehl, U. Thomas, R. Eckhorn, F. Bremmer, T. Wachtler, Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest. Ophthalmol. Vis. Sci. 52(1), 449–455 (2011)

    Article  Google Scholar 

  292. A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O’Brien, Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 33(24), 5812–5820 (2012)

    Article  Google Scholar 

  293. H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, D. Palanker, Photovoltaic restoration of sight with high visual acuity. Nature Med. 21(5), 476–482 (2015)

    Article  Google Scholar 

  294. K. Mathieson, J. Loudin, G. Goetz, P. Huie, L.L. Wang, T.I. Kamins, L. Galambos, R. Smith, J.S. Harris, A. Sher, D. Palanker, Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6(6), 391–397 (2012)

    Article  Google Scholar 

  295. Pixium Vision, Prima bionic vision restoration system. http://www.pixium-vision.com/en/technology-1/prima-vision-restoration-system (2017)

  296. M.N. Shivdasani, C.D. Luu, R. Cicione, J.B. Fallon, P.J. Allen, J. Leuenberger, G.J. Suaning, N.H. Lovell, R.K. Shepherd, C.E. Williams, Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J. Neural Eng. 7(3) (2010)

    Google Scholar 

  297. R. Cicione, M.N. Shivdasani, J.B. Fallon, C.D. Luu, P.J. Allen, G.D. Rathbone, R.K. Shepherd, C.E. Williams, Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J. Neural Eng. 9(3) (2012)

    Google Scholar 

  298. T. Fujikado, M. Kamei, H. Sakaguchi, H. Kanda, T. Morimoto, Y. Ikuno, K. Nishida, H. Kishima, T. Maruo, K. Konoma, M. Ozawa, K. Nishida, Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 52(7), 4726–4733 (2011)

    Article  Google Scholar 

  299. L.N. Ayton, P.J. Blamey, R.H. Guymer, C.D. Luu, D.A. Nayagam, N.C. Sinclair, M.N. Shivdasani, J. Yeoh, M.F. McCombe, R.J. Briggs, N.L. Opie, J. Villalobos, P.N. Dimitrov, M. Varsamidis, M.A. Petoe, C.D. McCarthy, J.G. Walker, N. Barnes, A.N. Burkitt, C.E. Williams, R.K. Shepherd, P.J. Allen, C. Bionic Vision Australia Research, First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One 9(12), e115239 (2014)

    Google Scholar 

  300. C. Veraart, F. Duret, M. Brelen, J. Delbeke, Vision rehabilitation with the optic nerve visual prosthesis, in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vols. 1–7, 26 (2004), pp. 4163–4164

    Google Scholar 

  301. M.E. Brelen, V. Vince, B. Gerard, C. Veraart, J. Delbeke, Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest. Ophthalmol. Vis. Sci. 51(10), 5351–5355 (2010)

    Article  Google Scholar 

  302. J.J. Sun, Y.L. Lu, P.J. Cao, X.L. Li, C.S. Cai, X.Y. Chai, Q.S. Ren, L.M. Li, Spatiotemporal properties of multipeaked electrically evoked potentials elicited by penetrative optic nerve stimulation in rabbits. Invest. Ophthalmol. Vis. Sci. 52(1), 146–154 (2011)

    Article  Google Scholar 

  303. R.A. Normann, B.A. Greger, P. House, S.F. Romero, F. Pelayo, E. Fernandez, Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng. 6(3) (2009)

    Google Scholar 

  304. E.M. Schmidt, M.J. Bak, F.T. Hambrecht, C.V. Kufta, D.K. O’Rourke, P. Vallabhanath, Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt 2), 507–522 (1996)

    Article  Google Scholar 

  305. P.H. Schiller, W.M. Slocum, M.C. Kwak, G.L. Kendall, E.J. Tehovnik, New methods devised specify the size and color of the spots monkeys see when striate cortex (area v1) is electrically stimulated. Proc. Natl. Acad. Sci. U.S.A. 108(43), 17809–17814 (2011)

    Article  Google Scholar 

  306. K. Deisseroth, Optogenetics. Nature Meth. 8(1), 26–29 (2011)

    Article  Google Scholar 

  307. L. Fenno, O. Yizhar, K. Deisseroth, The development and application of optogenetics, in Annual Review of Neuroscience, vol. 34, ed. by S.E. Hyman et al. (2011), pp. 389–412

    Google Scholar 

  308. V. Gradinaru, M. Mogri, K.R. Thompson, J.M. Henderson, K. Deisseroth, Optical deconstruction of Parkinsonian neural circuitry. Science 324(5925), 354–359 (2009)

    Article  Google Scholar 

  309. G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U.S.A. 100(24), 13940–13945 (2003)

    Article  Google Scholar 

  310. B. Schobert, J.K. Lanyi, Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257(17), 306–313 (1982)

    Google Scholar 

  311. B.Y. Chow, X. Han, A.S. Dobry, X.F. Qian, A.S. Chuong, M.J. Li, M.A. Henninger, G.M. Belfort, Y.X. Lin, P.E. Monahan, E.S. Boyden, High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277), 98–102 (2010)

    Article  Google Scholar 

  312. E.S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8(9), 1263–1268 (2005)

    Article  Google Scholar 

  313. B. Fan, W. Li, Miniaturized optogenetic neural implants: a review. Lab Chip 15(19), 3838–3855 (2015)

    Article  Google Scholar 

  314. J.M. Barrett, R. Berlinguer-Palmini, P. Degenaar, Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31(4–5), 345–354 (2014)

    Article  Google Scholar 

  315. B.R. Arenkiel, J. Peca, I.G. Davison, C. Feliciano, K. Deisseroth, G.J. Augustine, M.D. Ehlers, G.P. Feng, In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2), 205–218 (2007)

    Article  Google Scholar 

  316. S.L. Zhao, C. Cunha, F. Zhang, Q. Liu, B. Gloss, K. Deisseroth, G.J. Augustine, G.P. Feng, Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36(1–4), 141–154 (2008)

    Article  Google Scholar 

  317. F. Zhang, V. Gradinaru, A.R. Adamantidis, R. Durand, R.D. Airan, L. de Lecea, K. Deisseroth, Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5(3), 439–456 (2010)

    Article  Google Scholar 

  318. K.M. Tye, J.J. Mirzabekov, M.R. Warden, E.A. Ferenczi, H.-C. Tsai, J. Finkelstein, S.-Y. Kim, A. Adhikari, K.R. Thompson, A.S. Andalman, L.A. Gunaydin, I.B. Witten, K. Deisseroth, Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493(7433), 537 (2013)

    Article  Google Scholar 

  319. K.M. Tye, R. Prakash, S.-Y. Kim, L.E. Fenno, L. Grosenick, H. Zarabi, K.R. Thompson, V. Gradinaru, C. Ramakrishnan, K. Deisseroth, Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471(7338), 358–362 (2011)

    Article  Google Scholar 

  320. D. Chaudhury, J.J. Walsh, A.K. Friedman, B. Juarez, S.M. Ku, J.W. Koo, D. Ferguson, H.-C. Tsai, L. Pomeranz, D.J. Christoffel, A.R. Nectow, M. Ekstrand, A. Domingos, M.S. Mazei-Robison, E. Mouzon, M.K. Lobo, R.L. Neve, J.M. Friedman, S.J. Russo, K. Deisseroth, E.J. Nestler, M.-H. Han, Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493(7433), 532 (2013)

    Article  Google Scholar 

  321. A.M. Aravanis, L.P. Wang, F. Zhang, L.A. Meltzer, M.Z. Mogri, M.B. Schneider, K. Deisseroth, An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4(3), S143–S156 (2007)

    Article  Google Scholar 

  322. Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschenes, R. Vallee, Y. De Koninck, A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nature Meth. 8(4), 319–325 (2011)

    Article  Google Scholar 

  323. J. Wang, F. Wagner, D.A. Borton, J.Y. Zhang, I. Ozden, R.D. Burwell, A.V. Nurmikko, R. van Wagenen, I. Diester, K. Deisseroth, Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9(1) (2012)

    Google Scholar 

  324. N. Grossman, V. Poher, M.S. Grubb, G.T. Kennedy, K. Nikolic, B. McGovern, R.B. Palmini, Z. Gong, E.M. Drakakis, M.A.A. Neil, M.D. Dawson, J. Burrone, P. Degenaar, Multi-site optical excitation using chr2 and micro-led array. J. Neural Eng. 7(1) (2010)

    Google Scholar 

  325. K.Y. Kwon, B. Sirowatka, A. Weber, W. Li, Opto-mu ecog array: a hybrid neural interface with transparent mu ecog electrode array and integrated leds for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7(5), 593–600 (2013)

    Article  Google Scholar 

  326. M. Schwaerzle, P. Elmlinger, O. Paul, P. Ruther, Miniaturized 3 × 3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection, in 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2015)

    Google Scholar 

  327. R.D. Airan, K.R. Thompson, L.E. Fenno, H. Bernstein, K. Deisseroth, Temporally precise in vivo control of intracellular signalling. Nature 458(7241), 1025–1029 (2009)

    Article  Google Scholar 

  328. J.A. Cardin, M. Carlen, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth, L.H. Tsai, C.I. Moore, Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat. Protoc. 5(2), 247–254 (2010)

    Article  Google Scholar 

  329. P. Anikeeva, A.S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L.A. Gunaydin, L.M. Frank, K. Deisseroth, Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nature Neurosci. 15(1), 163–170 (2012)

    Article  Google Scholar 

  330. E. Stark, T. Koos, G. Buzsaki, Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108(1), 349–363 (2012)

    Article  Google Scholar 

  331. T.V.F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G.A. Clark, F. Solzbacher, Characterization of a 3D optrode array for infrared neural stimulation. Biomed. Opt. Express 3(9), 2200–2219 (2012)

    Article  Google Scholar 

  332. Y. Iwai, S. Honda, H. Ozeki, M. Hashimoto, H. Hirase, A simple head-mountable led device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70(1), 124–127 (2011)

    Article  Google Scholar 

  333. L. Campagnola, H. Wang, M.J. Zyka, Fiber-coupled light-emitting diode for localized photo stimulation of neurons expressing channelrhodopsin-2. J. Neurosci. Meth. 169(1), 27–33 (2008)

    Article  Google Scholar 

  334. T. Ishizuka, M. Kakuda, R. Araki, H. Yawo, Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54(2), 85–94 (2006)

    Article  Google Scholar 

  335. H. Cao, L. Gu, S.K. Mohanty, J.C. Chiao, An integrated µLED optrode for optogenetic stimulation and electrical recording. IEEE Trans. Biomed. Eng. 60(1), 225–229 (2013)

    Article  Google Scholar 

  336. N. McAlinden, D. Massoubre, E. Richardson, E. Gu, S. Sakata, M.D. Dawson, K. Mathieson, Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt. Lett. 38(6), 992–994 (2013)

    Article  Google Scholar 

  337. K.Y. Kwon, H.M. Lee, M. Ghovanloo, A. Weber, W. Li, Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 9, 69 (2015)

    Article  Google Scholar 

  338. H.M. Lee, K.Y. Kwon, W. Li, M. Ghovanloo, A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE J. Solid-State Circ. 50(1), 360–374 (2015)

    Article  Google Scholar 

  339. M.A. Rossi, V. Go, T. Murphy, Q. Fu, J. Morizio, H.H. Yin, A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front. Integr. Neurosci. 9, 8 (2015)

    Google Scholar 

  340. M. Hashimoto, A. Hata, T. Miyata, H. Hirase, Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics 1(1), 011002 (2014)

    Article  Google Scholar 

  341. S.T. Lee, P.A. Williams, C.E. Braine, D.T. Lin, S.W. John, P.P. Irazoqui, A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator. IEEE Trans. Neural Syst. Rehabil. Eng. 23(4), 655–664 (2015)

    Article  Google Scholar 

  342. C.T. Wentz, J.G. Bernstein, P. Monahan, A. Guerra, A. Rodriguez, E.S. Boyden, A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8(4) (2011)

    Google Scholar 

  343. T.-I. Kim, J.G. McCall, Y.H. Jung, X. Huang, E.R. Siuda, Y. Li, J. Song, Y.M. Song, H.A. Pao, R.-H. Kim, C. Lu, S.D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M.P. Tan, Y. Huang, F.G. Omenetto, J.A. Rogers, M.R. Bruchas, Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129), 211–216 (2013)

    Article  Google Scholar 

  344. S.I. Park, D.S. Brenner, G. Shin, C.D. Morgan, B.A. Copits, H.U. Chung, M.Y. Pullen, K.N. Noh, S. Davidson, S.J. Oh, J. Yoon, K.-I. Jang, V.K. Samineni, M. Norman, J.G. Grajales-Reyes, S.K. Vogt, S.S. Sundaram, K.M. Wilson, J.S. Ha, R. Xu, T. Pan, T.-I. Kim, Y. Huang, M.C. Montana, J.P. Golden, M.R. Bruchas, R.W. Gereau Iv, J.A. Rogers, Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotech. (Advance online publication, 2015)

    Google Scholar 

  345. A.D. Bi, J.J. Cui, Y.P. Ma, E. Olshevskaya, M.L. Pu, A.M. Dizhoor, Z.H. Pan, Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1), 23–33 (2006)

    Article  Google Scholar 

  346. H. Tomita, E. Sugano, H. Isago, T. Hiroi, Z. Wang, E. Ohta, M. Tamai, Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exper. Eye Res. 90(3), 429–436 (2010)

    Article  Google Scholar 

  347. H. Tomita, E. Sugano, H. Yawo, T. Ishizuka, H. Isago, S. Narikawa, S. Kugler, M. Tamai, Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest. Ophthalmol. Vis. Sci. 48(8), 3821–3826 (2007)

    Article  Google Scholar 

  348. P.S. Lagali, D. Balya, G.B. Awatramani, T.A. Munch, D.S. Kim, V. Busskamp, C.L. Cepko, B. Roska, Light-activated channels targeted to on bipolar cells restore visual function in retinal degeneration. Nature Neurosci. 11(6), 667–675 (2008)

    Article  Google Scholar 

  349. B. Lin, A. Koizumi, N. Tanaka, S. Panda, R.H. Masland, Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. U.S.A. 105(41), 16009–16014 (2008)

    Article  Google Scholar 

  350. I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, S. Shoham, Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4 (2013)

    Google Scholar 

  351. B. McGovern, R.B. Palmini, N. Grossman, E.M. Drakakis, V. Poher, M.A.A. Neil, P. Degenaar, A new individually addressable micro-LED array for photogenetic neural stimulation. IEEE Trans. Biomed. Circ. Syst. 4(6), 469–476 (2010)

    Article  Google Scholar 

  352. L. Chaudet, M. Neil, P. Degenaar, K. Mehran, R. Berlinguer-Palmini, B. Corbet, P. Maaskant, D. Rogerson, P. Lanigan, E. Bamberg, B. Roska, Development of optics with micro-LED arrays for improved opto-electronic neural stimulation. Optogenetics: Opt. Meth. Cell. Control 8586 (2013)

    Google Scholar 

  353. J.T. DiPiro, R.G. Martindale, A. Bakst, P.F. Vacani, P. Watson, M.T. Miller, Infection in surgical patients: effects on mortality, hospitalization, and postdischarge care. Am. J. Health-System Pharmacy 55(8), 777–781 (1998)

    Google Scholar 

  354. C.D. Owens, K. Stoessel, Surgical site infections: epidemiology, microbiology and prevention. J. Hosp. Infect. 70(Suppl 2), 3–10 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, A., Yang, GZ. (2018). Tethered and Implantable Optical Sensors. In: Yang, GZ. (eds) Implantable Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-69748-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69748-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69747-5

  • Online ISBN: 978-3-319-69748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics