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At present no company develops oil and gas fields without constructing ge-
ologic and hydrodynamic models. This is due in particular to the fact that
recently the emphasis in design, planning and monitoring has shifted to over-
dissected and low-permeability reservoirs. To assess economic efficiency and
optimal placement of wells and to predict hydrocarbon production levels, it is
important to have some quantitative representation of the object under study.
This requires a mathematical measure of a geological description and mathe-
matical models of the structure of oil and gas reservoirs.

The geological modeling based on digital oil and gas reservoirs splits into
two parts:

1. a digital interpolation of a reservoir based on the observed data and on
the probabilistic nature of functions which describe formations;

2. a hydrodynamic modeling based on the filtration equations.

Therewith it is important to choose the most suitable model for developing.
In [1] we proposed to use topological characteristics of digital reservoirs as one
of the factors for choosing a model. These characteristics can be used for

• comparing different stochastic realizations of the same reservoir and, in
particular, using that information for choosing a certain realization for
industrial development;

• estimating the topological complexity of a reservoir.
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In particular, this method can help to choose realization that gives a reliable
model of a reservoir and whose exploration does not need resource-intensive
calculations.

For optimizing a process of geological and hydrodynamic modeling by limit-
ing a series of direct problems there arise tasks of creating a list of topological,
geometric, fractal, and other characteristics of inhomogeneous anisotropic envi-
ronment and their subsequent influences on the construction of a model. Such
problems are studied in geometry of random fields.

In [1] we demonstrated that two different stochastic approaches for con-
structing digital reservoirs gives topologically similar pictures and one of them,
being more rough is nevertheless preferable for dynamical modeling due to its
relative simplicity for numerical dynamical modeling. We expose some results
on the Betti numbers of reservoirs in §2.

Since the “permeability” function Z determines a natural filtration of the
reservoir by the excursion sets it is reasonable to pick up the topological picture
of the filtration and use for that the persistent homology [2, 3] (see also [4, 5,
6, 7]). In this framework

• the “bottleneck” distance between persistent diagrams can be used for es-
timating differences between reservoirs and not only between their models.

We discuss this approach in §3.

1 Stochastic and topological preliminaries

1.1 The kriging

The digital reservoirs under consideration are constructed by the kriging method
from the observed data (see [8, 9, 10] and the references therein). This method
has many variations, based on the same idea, and we explain which one we use.

In our case a digital reservoir is a union of cubes such that a certain char-
acteristic related to the permeability is a function Z on the set of these cubes.
For simplicity we assume that the reservoir is the domain

D = {x0 ≤ x ≤ x0 +Nxδx, y0 ≤ y ≤ y0 +Nyδy, z0 ≤ z ≤ z0 +Nzδz},

where x and y are the lateral coordinates and z is the height coordinate, while
δx, δy, δz are the length, width and depth of the elementary cube. The domain
D splits into NxNyNz elementary cubes Ckx,ky,kz defined by the inequalities

x0 + (kx − 1)δx ≤ x ≤ x0 + kxδx, y0 + (ky − 1)δy ≤ y ≤ y0 + kyδy,

z0 + (kz − 1)δz ≤ z ≤ z0 + kzδz,

where the triples (kx, ky, kz) parameterize the elementary cubes and Z is con-
sidered as a function on these triples:

Z = Z(kx, ky, kz).
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We denote the set of all these triples by

S = {1, . . . , Nx} × {1, . . . , Ny} × {1, . . . , Nz}

and for every subset S′ ⊂ S we denote by DS′ the union of elementary cubes
corresponding to triples from S′:

DS′ ⊂ D, DS = D.

Let the function Z is known for some set S′ of elementary cubes. For in-
stance, this may be the observed data from wells. We extend Z onto S by the
following stochastic regression method.

Let us choose a procedure for choosing randomly an element pM+1 from
S \ S′ where M is the number of elements of S′.

The function Z is considered as a random field such that

1. it is stationary, i.e., it has the same expectations at all points:

E (Z(p)) = E (Z(q)) = m for all p, q ∈ S

and m is known (simple kriging);

2. the correlation between two random variables depends only on the spatial
distance between them:

C(Z(p), Z(q)) = C(|p− q|).

Here we mean by the spatial distance |p− q| between elementary cubes the
distance between their centers. The correlators are given by the variogram:

γ(|h|) =
1

2
E ((Z(p)− Z(p+ h))2) = C(0)− C(|h|).

This variogram is derived from observations.
Given a sample (Z(p1), . . . , Z(pM )), the values of Z at S′, the value sM+1

is obtained from the conditions

Z∗ =

M∑
i=1

λiZ(pi),
∑

λi = 1, E ((sM+1 − Z∗)2)→ min

which results in the system: ∑
λi = 1,

σ2 = C(0)− 2
∑
i

λiC(|pi − p0|) +
∑
i,j

λiλjC(|pi − pj |)→ min,

where σ2 is a measure of precision. To determine Z(pM+1) we put

Z(pM+1) = sM+1 + ξ
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where the random process ξ satisfies the Gauss distribution with E = 0,Var =
σ2. Thus we derive the new sample Z(p1), . . . , Z(pM+1), add pM+1 to S′ and
resume by the same way until we extend Z onto S.

This procedure is called the sequential Gauss simulation (SGS). The stan-
dard variograms that are used are

• the Gaussian variogram: C(h) = const (1− e−h2/R2

),

• the exponential variogram: C(h) = const (1− e−h/R).

In both cases R is the radius of a variogram.
There is another stochastic regression in which the field is represented as a

linear combination of the first M Legendre polynomials

Z(x, y, h) =

M∑
i=1

ai(x, y)Li(h)

where x and y are the lateral variables, h is the depth, and ai(x, y) are indepen-
dent random fields which are extrapolated by some two-dimensional stochastic
regression. This method is called the spectral expansion.

In developing oil formations an important data is

Z(p) = GL(p)

which is the gamma logging, i.e., the natural radioactivity of formation. We put

α(p) =
GL(p)−GLmin

GLmax −GLmin

and assume that p belongs to the formation if

α(p) ≤ α0,

where α0 is the excursion coefficient. By varying α0 we obtain a filtration of
the reservoir D by the excursion sets

D1 ⊂ D2 ⊂ · · · ⊂ DM ⊂ D∞ = D

where ε1 < ε2 < · · · < εM < 1 and Di = DSεi
, Sεi = {α ≤ εi} ⊂ S.

The double difference parameter α is widely used in practice. Therewith
GLmin and GLmax are the minimal and maximal values of GL which correspond
to a neat oil and gas reservoir and a clay which supports a reservoir. These
values should not be confused with the absolute minimum and maxima values
of GL with which they coincide only in exceptional model examples. This is due,
in particular, to the possible presence of minor anomaly noises and to effects
of stochastic modeling. Moreover, often GLmin and GLmax are calibrated by
certain samples. Therefore sometimes in modeling there appear values of α
which are less than zero or greater or equal than 1 and, if not to take care of
that, D∞ may not coincide with D.
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The stochastic modeling leads to very adequate pictures of reservoirs. As
an example, we present on Fig. 1 the model of a reservoir obtained from the
observed data. This model is obtained by the SGS data, the parameters of the
domain D are Nx = Ny = 120, Nz = 490, δx = δy = 50 m, δz = 0.4 m, the colors
vary from light to dark that corresponds to the variation of α from small to
large values, the reservoir corresponds to the excursion α = 0.6.

Figure 1: A reservoir modeled by the SGS method

1.2 Topological characteristics of 3-dimensional bodies

We consider three-dimensional solid bodies as composed from elementary cubes
(cubic complexes).

The main topological characteristics of such bodies are their Betti numbers
(with Z2 coefficients) b0, b1 and b2. The meaning of these characteristics is very
natural: b0 is the number of connected components, b1 is the number of handles,
and b2 is the number of holes (cavities).

If we start from a solid cube, remove k holes from its interior and attach
l handles to the cube we obtain the body X for which b0 = 1, b1 = l, b2 = k.
The Betti numbers of a topological space are the ranks of the corresponding
homology groups Hi(X;Z2) (here an in the sequel we consider the homology
groups with coefficients with Z2 and for denote them by Hi(X) for simplicity):

H0 = Zb02 = Z2 ⊕ · · · ⊕ Z2 (the sum of b0 copies of Z2),

H1 = Zb12 , H2 = Zb22 .
The alternated sum

χ = b0 − b1 + b2
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is called the Euler characteristic of a three-dimensional solid body.
We refer to [6] for an introductory exposition, of these topological character-

istics, oriented to applications. We recall that if two topological spaces (bodies)
are topologically equivalent (or homeomorphic), i.e. if there exists a continuous
in both sides one-to-one correspondence between points of spaces, then they
have the same topological characteristics (the Betti numbers, homology groups
etc.)

The Euler characteristic may be easily computed from the cubic decompo-
sition of the solid body X. We have X as a union of cubes such that

a) two different cubes may intersect each other only by a joint vertex, edge
or face;

b) two different faces may intersect each other only by a joint vertex or edge;
c) two different edges my intersect each other only by a joint vertex.
We denote by c0 the number of vertices; by c1 the number of edges; by c2

the number of faces; and by c3 the number of cubes. For instance, the cubic
decomposition of an elementary cube has 8 vertices, 12 edges, 6 faces and 1
cube.

The Euler characteristic of a three-dimensional body is given also by the
formula:

χ = c0 − c1 + c2 − c3. (1)

For an elementary cube we have χ = 8− 12 + 6− 1 = 1.
If X is body composed from finitely many cubes and lies in the three-space

R3, then the particular case of the Alexander duality implies that

b2(X) = b0(R3 \X)− 1.

Hence, in difference with higher-dimensional space, for calculating the Betti
numbers of a three-dimensional body X it is enough to find its Euler charac-
teristic χ from the cubic decomposition (see (1)) and the numbers of connected
components of X and of its complement. Then b1 is given by the equality

b1(X) = b0(X) + b0(R3 \X)− 1− χ(X). (2)

That drastically simplifies the calculation of the Betti numbers and reduces it
to calculating of the numbers of connected components of cubic complexes.

The development of numerical methods for calculating the Betti numbers
is necessary because reservoirs may be very complicated. In particular, some
numerical approach, based on a certain discretization of the Morse theory to
finding the Betti numbers of reservoirs was exposed in [11].

2 The Betti numbers of digital reservoirs

Since geological formations are natural examples of three-dimensional solid bod-
ies, it is reasonable to consider their topology for geological applications however
that was started not long ago (see [1] for oil and gas reservoirs and [12, 13] and
references therein for applications to structural geology).
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Let us demonstrate numerical examples of the Betti numbers of reservoirs.
Given the excursion parameter α0, we have the cubic complex

Dα0 = ∪Z(kx,ky,kz)≤α0
Ckx,ky,kz

composed from all cubes for which Z ≤ α0.
To construct from Dα0 the topological model of the corresponding reservoir

we have to keep in mind that if two cubes do have only a joint edge or a joint
vertex then there is no percolation between them through the joint cell (edge or
vertex). The percolation between two adjacent cubes is possible only through a
joint two-dimensional face. Hence we have to unstack all such cubes and obtain
an abstract cubic complex Xα0

. This complex is the right model that respects
the percolation rules and can be chosen for industrial development.

To give an impression on the topological complexity of reservoirs we present
results of some calculations corresponding to simulated reservoirs (see Table
1). We consider the four digital models that correspond to the exponential
variogram C(h) = (1 − e−h/R) with R = 500 m and R = 1000 m and to the

Gaussian variogram C(h) = (1 − e−h2/R2

) with R = 500 m and R = 1000 m.
The data of the reservoirs are Nx = Ny = Nz = 100, δx = δy = 100 m, δz = 1 m.

The numerical experiment shows the stability of the integral topological
characteristics (the Betti numbers weighted by a volume) under stochastic mod-
eling, sensitivity to the type and the rank of the variogram (see Figures 2 and 3).
The characteristics lie on similar cycles and in both cases the inner (smaller)
cycle corresponds to the largest value of R(= 1000). Thus these characteris-
tics can serve as classifiers for assigning digital geological models to equivalent
and as a consequence, they have important applied values for the determina-
tion of analogs in the modeling of poorly studied oil fields (the case of lack of
information for a reliable distribution of reservoir properties).

We remark that for regular (smooth) Gaussian fields the expectation of the
Euler characteristic of the excursion set was found in [14] and this approach
was extended for random fields related to Gaussian [15]. The formula for the
expectation of the number of components, i.e. of b0, is not derived until recently,
as well for the expectations of other relations between topological and metric
characteristics which are demonstrated in Figures 2 and 3.

3 The “bottleneck” distance between digital reser-
voirs

To every continuous mapping of topological spaces and, in particular, of three-
dimensional bodies

f : X → Y

there correspond the homomorphisms of their homology groups

f∗ : Hi(X)→ Hi(Y ).
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Table 1: The Betti numbers and the Euler characteristic
α0 b0 b1 b2 χ

0.1
1664 0 0 1664
477 1 0 476
5042 1 0 5041
3491 2 0 3489

0.2
4751 9 0 4742
1330 10 0 1320
18691 9 0 18682
11779 60 0 11719

0.3
6113 260 0 5853
1606 110 0 1496
32601 495 3 32109
18757 997 12 17772

0.4
1932 3682 3 -1747
487 1150 0 -663
20905 9355 329 11879
12813 9455 391 3749

0.5
245 11389 163 -10981
55 2995 29 -2911
4971 45256 4187 -36098
3713 28695 3324 -21658

0.6
18 8523 1434 -7071
1 1927 265 -1661
528 53806 18129 -35149
473 29870 11421 -17976

0.7
1 3133 4903 1771
1 545 1045 501
14 28988 29705 731
31 15949 16832 914

0.8
1 721 4132 3412
1 92 974 883
1 6658 17563 10906
3 4216 10220 6007

0.9
1 85 1488 1404
1 6 389 384
1 637 4798 4162
1 608 3171 2564
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Figure 2: Relations between the weighted Betti numbers of digital reservoirs for
the exponential variogram

Given a filtration
X1 ⊂ · · · ⊂ XM

where every inclusion is treated as the embedding Xi → Xi+1 and the compo-
sitions of such inclusions give embeddings Xi → Xj for all i < j, we have for
every dimension q the homomorphism

f i,jq : Hq(Xi)→ Hq(Xj).

The persistent homology groups [2, 3, 4] are defined as

Hi,j
q = Im f i,jq = f∗(Hq(Xi)) ⊂ Hq(Xj).

Let us fix q. To every generator z ∈ Hq(Xi) such that z does not lie in
the image of Hq(Xi−1) → Hq(Xi), it is mapped into nontrivial elements by
homomorphisms Hq(Xi) → Hq(Xj−1) and f i,jq (z) = 0 we correspond a point
on the plane with coordinates (i, j). Here we recall that we consider homology
groups with coefficients in Z2 and this procedure is defined for all coefficients
and also for continuous values of indices i.

The persistent diagram of a filtration (for the q-dimensional homology) is
the union U of all such points taken with their multiplicities and points of of
the diagonal (x, x) ⊂ R2 taken with infinite multiplicities.

The persistent homology and their persistent diagrams play a fundamental
role in the modern topological data analysis [5, 7].
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Figure 3: Relations between the weighted Betti numbers of digital reservoirs for
the Gaussianl variogram

The persistent diagrams are stable under small perturbations of initial topo-
logical data [16]. The distance between different persistent diagrams is given by
the bottleneck distance defined as follows

ρ(U, V ) = inf
η:U→V

sup
u∈U
|u− η(u)|,

where the infimum is taken over all bijections η : U → V and the norm |u| on
the plane has the form |u| = |x|+ |y| where u = (x, y). This bottleneck distance
plays an important role in the optimization theory and different algorithms for
its computation were recently used in topological data analysis (see, for instance,
[17, 18]).

The bottleneck distance can be used for comparing different digital reser-
voirs. We present results of some numerical experiments. We compute the bot-
tleneck distances between the 0-dimensional (q = 0) persistent diagrams corre-
sponding to 8 digital reservoirs which splits into four pairs corresponding to the
exponential (E) and Gaussian (G) variograms and to R = 500 m or R = 1000 m.
This reservoirs correspond to Nx = Ny = Nz = 25, δx = δy = 400 m, δz = 4 m,
and the step of the discretized excursion parameter α0 (the step of the excur-
sion filtration) is equal to ∆α0 = 0.01. Metrically these reservoirs have the
same form — 10000 m×10000 m×400 m — as the reservoirs in Table 1. But we
consider a rough decomposition because the complexity of the calculation of the
bottleneck distance is O(n2 log n) where n is the number of points in the persis-
tence diagram and for some digital reservoirs from Table 1 we have n ≈ 50000

10



which makes the calculation time- and resource-consuming. Keeping in mind
that 0 ≤ α ≤ 1 and hence the distance between such diagrams is at most 1, the
data shows that this metric really distinguishes diagrams but it needs to under-
stand for which types of digital reservoirs and, in particular, for which ratios of
R and the sizes of elementary cubes this approach gives applicable answers.

Table 2: The bottleneck distance
E500-
1

E500-
2

E1000-
1

E1000-
2

G500-
1

G500-
2

G1000-
1

G1000-
2

E500-1 0 0.11 0.11 0.12 0.13 0.09 0.15 0.16
E500-2 0.11 0 0.055 0.1 0.07 0.06 0.11 0.13
E1000-1 0.11 0.055 0 0.09 0.05 0.06 0.11 0.11
E1000-2 0.12 0.1 0.09 0 0.05 0.05 0.07 0.07
G500-1 0.13 0.07 0.05 0.05 0 0.07 0.08 0.08
G500-2 0.09 0.06 0.06 0.05 0.07 0 0.08 0.09
G1000-1 0.15 0.11 0.11 0.07 0.08 0.08 0 0.05
G1000-2 0.16 0.13 0.11 0.07 0.08 0.09 0.05 0
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