Skip to main content

A Light Weight Data Encryption Method for WSN Communication

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2017)

Abstract

In a wireless sensor network, all sensed data are sent to a sink node via a wireless communication network and then sent to data collection center so that appropriate operations or controls can be performed. However, without employing security mechanisms, the sensed data may be easily falsified or eavesdropped. Modern data encryption methods are effectiveness on data protection, but they also consume some level of energy due to complex encryption processes. In this paper, we propose a light weight data encryption method, named the Light Encryption for WSN Data communication (LED for short), for a wireless sensor network. The LED provides a secure environment for sensors to encrypt data with a simple, secure, and low-computation method before the data are transmitted to the sink node via a wireless network. The security analysis shows that the LED is able to resist replay attack, eavesdropping attack and known-key attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chahid, Y., Benabdellah, M., Azizi, A.: Internet of Things security. In: Proceedings of International Conference on Wireless Technologies, Embedded and Intelligent Systems, pp. 1–6 (2017)

    Google Scholar 

  2. Pathan, A.-S.K., Lee, H.-W., Hong, C.S.: Security in wireless sensor networks: issues and challenges. In: Proceedings of International Conference on Advanced Communication Technology, pp. 1043–1048 (2006)

    Google Scholar 

  3. Islam, K., Shen, W., Wang, X.: Wireless sensor network reliability and security in factory automation: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1243–1256 (2012)

    Article  Google Scholar 

  4. Tsai, K.L., Leu, F.Y., Tsai, S.H.: Data encryption method using environmental secret key with server assistance. Intell. Autom. Soft Comput. 22(3), 423–430 (2016)

    Article  Google Scholar 

  5. Prasithsangaree, P., Krishnamurthy, P.: Analysis of energy consumption of RC4 and AES algorithms in wireless LANs. In: Proceedings of IEEE Global Telecommunications Conference, pp. 1445–1449 (2003)

    Google Scholar 

  6. Syverson, P.: A taxonomy of replay attacks. In: Proceedings of Computer Security Foundations Workshop, pp. 187–191 (1994)

    Google Scholar 

  7. Tugnait, J.K.: Detection of active eavesdropping attack by spoofing relay in multiple antenna systems. IEEE Wirel. Commun. Lett. 5(5), 460–463 (2016)

    Article  Google Scholar 

  8. Cogliati, B., Seurin, Y.: Strengthening the known-key security notion for block ciphers. In: Proceedings of International Conference on Fast Software Encryption, pp. 494–513 (2016)

    Google Scholar 

  9. Zhou, J., Cao, Z., Dong, X., Vasilakos, A.V.: Security and privacy for cloud-based IoT: challenges, countermeasures, and future directions. IEEE Commun. Mag. 55(1), 26–33 (2017)

    Article  Google Scholar 

  10. Newsome, J., Shi, E., Song, D., Perrig, A.: The Sybil attack in sensor networks: analysis & defenses. Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, pp. 259–268 (2004)

    Google Scholar 

  11. Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture for wireless sensor networks. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 162–175 (2004)

    Google Scholar 

  12. Shim, K.-A.: A survey of public-key cryptographic primitives in wireless sensor networks. IEEE Commun. Surv. Tutorials 18(1), 577–601 (2016)

    Article  MathSciNet  Google Scholar 

  13. Trappe, W., Howard, R., Moore, R.S.: Low-energy security: limits and opportunities in the Internet of Things. IEEE Secur. Priv. 13(1), 14–21 (2015)

    Article  Google Scholar 

  14. Salami, S.A., Baek, J., Salah, K., Damiani, E.: Lightweight encryption for smart home. In: Proceedings of International Conference on Availability, Reliability and Security, pp. 382–388 (2016)

    Google Scholar 

  15. Bui, D.-H., Puschini, D., Bacles-Min, S., Beigné, E., Tran, X.-T.: Ultra low-power and low-energy 32-bit datapath AES architecture for IoT applications. In: Proceedings of International Conference on IC Design and Technology, pp. 1–4 (2016)

    Google Scholar 

  16. Weng, C.E., Sharma, V., Chen, H.C., Mao, C.H.: PEER: proximity-based energy-efficient routing algorithm for wireless sensor networks. J. Internet Serv. Inf. Secur. 6(1), 47–56 (2016)

    Google Scholar 

  17. Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, S.S., Wehrle, K.: Security challenges in the IP-based Internet of Things. Wirel. Pers. Commun. 61(3), 527–542 (2011)

    Article  Google Scholar 

  18. Leu, F.Y., Tsai, K.L., Hsiao, Y.T., Yang, C.T.: An internal intrusion detection and protection system by using data mining and forensic techniques. IEEE Syst. J. 11(2), 427–438 (2017)

    Article  Google Scholar 

  19. Aram, S., Shirvani, R.A., Pasero, E.G., Chouikha, M.F.: Implantable medical devices; networking security survey. J. Internet Serv. Inf. Secur. 6(3), 40–60 (2016)

    Google Scholar 

  20. Valenza, F., Su, T., Spinoso, S., Lioy, A., Sisto, R., Vallini, M.: A formal approach for network security policy validation. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 8(1), 79–100 (2017)

    Google Scholar 

  21. Announcing the ADVANCED ENCRYPTION STANDARD (AES): Federal Information Processing Standards Publication 197. United States National Institute of Standards and Technology (NIST) (2001)

    Google Scholar 

  22. Tsai, K.L., Huang, Y.L., Leu, F.Y., You, I.: TTP based high-efficient multi-key exchange protocol. IEEE Access. 4, 6261–6271 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Lin Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsai, KL., Leu, FY., Su, TH., Chang, YC. (2018). A Light Weight Data Encryption Method for WSN Communication. In: Barolli, L., Xhafa, F., Conesa, J. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69811-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69811-3_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69810-6

  • Online ISBN: 978-3-319-69811-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics