Skip to main content

Parallel Algorithm of Local Support Vector Regression for Large Datasets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10646))

Abstract

We propose the new parallel algorithm of local support vector regression (local SVR), called kSVR for effectively dealing with large datasets. The learning strategy of kSVR performs the regression task with two main steps. The first one is to partition the training data into k clusters, followed which the second one is to learn the SVR model from each cluster to predict the data locally in the parallel way on multi-core computers. The kSVR algorithm is faster than the standard SVR for the non-linear regression of large datasets while maintaining the high correctness in the prediction. The numerical test results on datasets from UCI repository showed that our proposed kSVR is efficient compared to the standard SVR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It must be noted that the complexity of the kSVR approach does not include the kmeans clustering used to partition the full dataset. But this step requires insignificant time compared with the quadratic programming solution.

References

  1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). doi:10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  2. Guyon, I.: Web page on svm applications (1999). http://www.clopinet.com/isabelle/Projects/-SVM/app-list.html

  3. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, vol. 1, pp. 281–297. University of California Press, January 1967

    Google Scholar 

  4. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  6. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, pp. 185–208 (1999)

    Google Scholar 

  7. OpenMP Architecture Review Board: OpenMP application program interface version 3.0 (2008)

    Google Scholar 

  8. Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in Neural Information Processing Systems 4, [NIPS Conference, Denver, 2–5 December 1991], pp. 831–838 (1991)

    Google Scholar 

  9. Bottou, L., Vapnik, V.: Local learning algorithms. Neural Comput. 4(6), 888–900 (1992)

    Article  Google Scholar 

  10. Vapnik, V., Bottou, L.: Local algorithms for pattern recognition and dependencies estimation. Neural Comput. 5(6), 893–909 (1993)

    Article  Google Scholar 

  11. Do, T.-N., Poulet, F.: Parallel learning of local SVM algorithms for classifying large datasets. In: Hameurlain, A., Küng, J., Wagner, R., Dang, T.K., Thoai, N. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXI. LNCS, vol. 10140, pp. 67–93. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54173-9_4

    Chapter  Google Scholar 

  12. Chang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)

    Article  Google Scholar 

  13. Lin, C.: A practical guide to support vector classification (2003)

    Google Scholar 

  14. Boser, B., Guyon, I., Vapnik, V.: An training algorithm for optimal margin classifiers. In: Proceedings of 5th ACM Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

    Google Scholar 

  15. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector machines. In: Principe, J., Gile, L., Morgan, N., Wilson, E. (eds.) Neural Networks for Signal Processing VII, pp. 276–285 (1997)

    Google Scholar 

  16. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated sub-gradient solver for SVM. In: Proceedings of the Twenty-Fourth International Conference Machine Learning, pp. 807–814. ACM (2007)

    Google Scholar 

  17. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. NIPS Foundation (2008). http://books.nips.cc

  18. Do, T.N.: Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes. Vietnam J. Comput. Sci. 1(2), 107–115 (2014)

    Article  Google Scholar 

  19. Do, T.-N., Poulet, F.: Parallel multiclass logistic regression for classifying large scale image datasets. In: Le Thi, H.A., Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 358, pp. 255–266. Springer, Cham (2015). doi:10.1007/978-3-319-17996-4_23

    Chapter  Google Scholar 

  20. Do, T.-N., Tran-Nguyen, M.-T.: Incremental parallel support vector machines for classifying large-scale multi-class image datasets. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 20–39. Springer, Cham (2016). doi:10.1007/978-3-319-48057-2_2

    Chapter  Google Scholar 

  21. Yuan, G., Ho, C., Lin, C.: Recent advances of large-scale linear classification. Proc. IEEE 100(9), 2584–2603 (2012)

    Article  Google Scholar 

  22. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(4), 1871–1874 (2008)

    MATH  Google Scholar 

  23. Ho, C., Lin, C.: Large-scale linear support vector regression. J. Mach. Learn. Res. 13, 3323–3348 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. HotCloud 2010, Berkeley, p. 10. USENIX Association (2010)

    Google Scholar 

  25. Lin, C., Tsai, C., Lee, C., Lin, C.: Large-scale logistic regression and linear support vector machines using spark. In: IEEE International Conference on Big Data, Big Data 2014, Washington, DC, 27–30 October 2014, pp. 519–528 (2014)

    Google Scholar 

  26. Zhuang, Y., Chin, W.-S., Juan, Y.-C., Lin, C.-J.: Distributed Newton methods for regularized logistic regression. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 690–703. Springer, Cham (2015). doi:10.1007/978-3-319-18032-8_54

    Chapter  Google Scholar 

  27. Chiang, W., Lee, M., Lin, C.: Parallel dual coordinate descent method for large-scale linear classification in multi-core environments. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13–17 August 2016, pp. 1485–1494 (2016)

    Google Scholar 

  28. Tsai, C., Lin, C., Lin, C.: Incremental and decremental training for linear classification. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, 24–27 August 2014, pp. 343–352 (2014)

    Google Scholar 

  29. Huang, H., Lin, C.: Linear and kernel classification: when to use which? In: Proceedings of the SIAM International Conference on Data Mining (2016)

    Google Scholar 

  30. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  31. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  32. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  33. Collobert, R., Bengio, S., Bengio, Y.: A parallel mixture of SVMs for very large scale problems. Neural Comput. 14(5), 1105–1114 (2002)

    Article  MATH  Google Scholar 

  34. Gu, Q., Han, J.: Clustered support vector machines. In: Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale, 29 April–1 May 2013, vol. 31, pp. 307–315. JMLR Proceedings (2013)

    Google Scholar 

  35. Do, T.-N.: Non-linear classification of massive datasets with a parallel algorithm of local support vector machines. In: Le Thi, H.A., Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 358, pp. 231–241. Springer, Cham (2015). doi:10.1007/978-3-319-17996-4_21

    Chapter  Google Scholar 

  36. Do, T.-N., Poulet, F.: Random local SVMs for classifying large datasets. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2015. LNCS, vol. 9446, pp. 3–15. Springer, Cham (2015). doi:10.1007/978-3-319-26135-5_1

    Chapter  Google Scholar 

  37. Chang, F., Guo, C.Y., Lin, X.R., Lu, C.J.: Tree decomposition for large-scale SVM problems. J. Mach. Learn. Res. 11, 2935–2972 (2010)

    MATH  MathSciNet  Google Scholar 

  38. Chang, F., Liu, C.C.: Decision tree as an accelerator for support vector machines. In: Ding, X. (ed.) Advances in Character Recognition. InTech (2012)

    Google Scholar 

  39. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  40. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.: Classification and Regression Trees. Wadsworth International, Belmont (1984)

    MATH  Google Scholar 

  41. Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neighbor algorithms. In: Advances in Neural Information Processing Systems, pp. 985–992. The MIT Press (2001)

    Google Scholar 

  42. Zhang, H., Berg, A., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2126–2136 (2006)

    Google Scholar 

  43. Yang, T., Kecman, V.: Adaptive local hyperplane classification. Neurocomputing 71(13–15), 3001–3004 (2008)

    Article  Google Scholar 

  44. Segata, N., Blanzieri, E.: Fast and scalable local kernel machines. J. Mach. Learn. Res. 11, 1883–1926 (2010)

    MATH  MathSciNet  Google Scholar 

  45. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 97–104. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Nghi Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, LD., Tran-Nguyen, MT., Kim, YG., Do, TN. (2017). Parallel Algorithm of Local Support Vector Regression for Large Datasets. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2017. Lecture Notes in Computer Science(), vol 10646. Springer, Cham. https://doi.org/10.1007/978-3-319-70004-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70004-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70003-8

  • Online ISBN: 978-3-319-70004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics