Skip to main content

Topology Learning Embedding: A Fast and Incremental Method for Manifold Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Abstract

In this paper, we propose a novel manifold learning method named topology learning embedding (TLE). The key issue of manifold learning is studying data’s structure. Instead of blindly calculating the relations between each pair of available data, TLE learns data’s internal structure model in a smarter way: it constructs a topology preserving network rapidly and incrementally through online input data; then with the Isomap-based embedding strategy, it achieves out-of-sample data embedding efficiently. Experiments on synthetic data and real-world handwritten digit data demonstrate that TLE is a promising method for dimensionality reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A Global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  2. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 586–691. MIT Press (2001)

    Google Scholar 

  4. He, X.F., Niyogi, P.: Locality preserving projections. Adv. Neural Inf. Process. Syst. 45(1), 186–197 (2005)

    Google Scholar 

  5. Wang, J.Z.: Local tangent space alignment. In: Geometric Structure of High-Dimensional Data and Dimensionality Reduction, pp. 211–234. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-27497-8_11

  6. Bellman, R.: Adaptative Control Processes: A Guided Tour. Princeton University, Princeton (1961)

    Book  MATH  Google Scholar 

  7. Gan, Q., Shen, F.R., Zhao, J.X.: Improved Manifold Learning with competitive Hebbian rule. In: International Joint Conference on Neural Networks 2015, pp. 1–6 (2015)

    Google Scholar 

  8. Shen, F.R., Hasegawa, O.: An incremental network for on-line unsupervised classification and topology learning. Neural Networks 19(1), 90–106 (2006)

    Article  MATH  Google Scholar 

  9. Xing, Y.L., Shi, X.F., Shen, F.R., Zhou, K., Zhao, J.X.: A self-organizing incremental neural network based on local distribution learning. Neural Networks 84, 143–160 (2016)

    Article  Google Scholar 

  10. Martinetz, T., Schulten, K.: Topology Representing Networks. Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  11. Silva, V.D., Tenenbaum, J.B.: Sparse Multidimensional Scaling using Landmark Points (2004)

    Google Scholar 

  12. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.: Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. Adv. Neural Inf. Process. Syst. 16, 177–184 (2004)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Science Foundation of China under Grant Nos. (61373130, 61375064, 61373001), and Jiangsu NSF grant (BK20141319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furao Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhu, T., Shen, F., Zhao, J., Liang, Y. (2017). Topology Learning Embedding: A Fast and Incremental Method for Manifold Learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics