Skip to main content

Hybrid RVM Algorithm Based on the Prediction Variance

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Included in the following conference series:

Abstract

Relevance Vector Machine (RVM) is an important learning method in the field of machine learning for its sparsity, global optimality and the ability to solve nonlinear problems by using kernel functions. Biased wavelets are localized in time and infrequency but, unlike wavelets, have adjustable nonzero mean. The proposed hybrid algorithm employs a family of biased wavelets to construct the kernel functions of RVM, which makes the kernel of RVM more flexible. RVM models are trained according to the diversity of the signal, and the predicted variance are selected in the hybrid algorithm to improve the accuracy. Test results show that RVM with the biased wavelet kernel is able to get increased prediction precision considering data features and the predicted variance is an efficient metric to construct the hybrid algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1(3), 211–244 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000). doi:10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  3. Son, Y., Lee, J.: Active learning using transductive sparse Bayesian regression. Inf. Sci. 374, 240–254 (2016)

    Article  Google Scholar 

  4. Close, R., Wilson, J., Gader, P.: A Bayesian approach to localized multi-kernel learning using the relevance vector machine. In: 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1103–1106. IEEE (2011)

    Google Scholar 

  5. Gönen, M., Alpaydin, E.: Localized algorithms for multiple kernel learning. Pattern Recogn. 46(3), 795–807 (2013)

    Article  MATH  Google Scholar 

  6. Zhong, S., Chen, D., Xu, Q., et al.: Optimizing the Gaussian kernel function with the formulated kernel target alignment criterion for two-class pattern classification. Pattern Recogn. 46(46), 2045–2054 (2013)

    Article  MATH  Google Scholar 

  7. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., et al.: On kernel-target alignment. In: International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 367–373. MIT Press (2001)

    Google Scholar 

  8. Trafalis, T.B., Malyscheff, A.M.: Optimal selection of the regression kernel matrix with semidefinite programming. In: Floudas, C.A., Pardalos, P. (eds.) Frontiers in Global Optimization, pp. 575–584. Springer, Boston (2004). doi:10.1007/978-1-4613-0251-3_31

    Chapter  Google Scholar 

  9. Ruan, D.: Prospective detection of large prediction errors: a, hypothesis testing approach. Phys. Med. Biol. 55(13), 3885–3904 (2010)

    Article  Google Scholar 

  10. Drichen, R., Wissel, T., Schweikard, A.: Controlling motion prediction errors in radiotherapy with relevance vector machines. Int. J. Comput. Assist. Radiol. Surg. 10(4), 363–371 (2015)

    Article  Google Scholar 

  11. Galvo, R.K.H., Yoneyama, T., Rabello, T.N.: Signal representation by adaptive biased wavelet expansions. Digit. Signal Proc. 9(4), 225–240 (1999)

    Article  Google Scholar 

  12. Fei, S.W., He, Y.: Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int. J. Electr. Power Energy Syst. 73, 625–631 (2015)

    Article  Google Scholar 

  13. Zhao, C.H., Zhang, Y., Wang, Y.L.: Relevant vector machine classification of hyperspectral image based on wavelet kernel principal component analysis. Dianzi Yu Xinxi Xuebao (J. Electron. Inf. Technol.) 34(8), 1905–1910 (2012)

    Google Scholar 

  14. Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MATH  MathSciNet  Google Scholar 

  15. Li, D., Wang, J., Zhao, X., et al.: Multiple kernel-based multi-instance learning algorithm for image classification. J. Vis. Commun. Image Represent. 25(5), 1112–1117 (2014)

    Article  Google Scholar 

  16. De Vito, S., Fattoruso, G., Pardo, M., et al.: Semi-supervised learning techniques in artificial olfaction: a novel approach to classification problems and drift counteraction. IEEE Sens. J. 12(11), 3215–3224 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, F., Zhao, F., Tong, M., Yang, Y., Yu, Z. (2017). Hybrid RVM Algorithm Based on the Prediction Variance. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics