Skip to main content

Deep Retinal Image Segmentation: A FCN-Based Architecture with Short and Long Skip Connections for Retinal Image Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Abstract

This paper presents Deep Retinal Image Segmentation, a unified framework of retinal image analysis that provides both optic disc and exudates segmentation. The paper presents a new formulation of fully Convolutional Neural Networks (FCNs) that allows accurate segmentation of the retinal images. A major modification in these retinal image segmentation tasks are to improve and speed-up the FCNs training by adding short and long skip connections in standard FCNs architecture with class-balancing loss. The proposed method is experimented on the DRIONS-DB dataset for optic disc segmentation and the privately dataset for exudates segmentation, which achieves strong performance and significantly outperforms the-state-of-the-art. It achieves 93.12% sensitivity (Sen), 99.56% specificity (Spe), 89.90% Positive predictive value (PPV) and 90.93% F-score for optic disc segmentation while 81.35% Sen, 98.76% Spe, 81.64% PPV and 81.50% F-score for exudates segmentation respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Youssif, A.A.H.A.R., Ghalwash, A.Z., Ghoneim, A.A.S.A.R.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1), 11–18 (2008)

    Article  Google Scholar 

  2. Walter, T., Klein, J.-C.: Segmentation of color fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques. In: Crespo, J., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 282–287. Springer, Heidelberg (2001). doi:10.1007/3-540-45497-7_43

    Chapter  Google Scholar 

  3. Morales, S., Naranjo, V., Angulo, J., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)

    Article  Google Scholar 

  4. Yin, F., Liu, J., Wong, D.W.K., Tan, N.M., Cheung, C., Baskaran, M., Aung, T., Wong, T.Y.: Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: 2012 25th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2012)

    Google Scholar 

  5. Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W.K., Tan, N.M., Tao, D., Cheng, C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)

    Article  Google Scholar 

  6. Lim, G., Cheng, Y., Hsu, W., Lee, M.L.: Integrated optic disc and cup segmentation with deep learning. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 162–169. IEEE (2015)

    Google Scholar 

  7. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556

  10. Harangi, B., Lazar, I., Hajdu, A.: Automatic exudate detection using active contour model and regionwise classification. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5951–5954. IEEE (2012)

    Google Scholar 

  11. Ruba, T., Ramalakshmi, K.: Identification and segmentation of exudates using SVM classifier. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–6. IEEE (2015)

    Google Scholar 

  12. Ardiyanto, I., Nugroho, H.A., Buana, R.L.B.: Maximum entropy principle for exudates segmentation in retinal fundus images. In: 2016 International Conference on Information & Communication Technology and Systems (ICTS), pp. 119–123. IEEE (2016)

    Google Scholar 

  13. Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016)

    Article  Google Scholar 

  14. Perdomo, O., Arevalo, J., Gonzalez, F.A.: Convolutional network to detect exudates in eye fundus images of diabetic subjects. In: 12th International Symposium on Medical Information Processing and Analysis, p. 101600T. International Society for Optics and Photonics (2017)

    Google Scholar 

  15. Lenet, B., Komorowski, R., Wu, X.Y., Huang, J., Grad, H., Lawrence, H., Friedman, S.: Antimicrobial substantivity of bovine root dentin exposed to different chlorhexidine delivery vehicles. J. Endod. 26(11), 652–655 (2000)

    Article  Google Scholar 

  16. Carmona, E.J., Rincón, M., Garcia-Feijoó, J., Martínez-de-la Casa, J.M.: Identification of the optic nerve head with genetic algorithms. Artifi. Intell. Med. 43(3), 243–259 (2008)

    Article  Google Scholar 

  17. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)

    Article  Google Scholar 

  20. Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2016)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint (2015). arXiv:1502.03167

  23. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of IEEE International Conference on Computer Vision (2015)

    Google Scholar 

Download references

Acknowledgments

This research is partly supported by NSFC, China (No: 81600776), Committee of Science and Technology, Shanghai, China (No: 16411962100) and (No. 17JC1403000)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Feng, Z., Yang, J., Yao, L., Qiao, Y., Yu, Q., Xu, X. (2017). Deep Retinal Image Segmentation: A FCN-Based Architecture with Short and Long Skip Connections for Retinal Image Segmentation. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics