Skip to main content

Comparing Hybrid NN-HMM and RNN for Temporal Modeling in Gesture Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

Abstract

This paper provides an extended comparison of two temporal models for gesture recognition, namely Hybrid Neural Network-Hidden Markov Models (NN-HMM) and Recurrent Neural Networks (RNN) which have lately claimed the state-the-art performances. Experiments were conducted on both models in the same body of work, with similar representation learning capacity and comparable computational costs. For both solutions, we have integrated recent contributions to the model architectures and training techniques. We show that, for this task, Hybrid NN-HMM models remain competitive with Recurrent Neural Networks in a standard setting. For both models, we analyze the influence of the training objective function on the final evaluation metric. We further tested the influence of temporal convolution to improve context modeling, a technique which was recently reported to improve the accuracy of gesture recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourlard, H., Morgan, N.: A continuous speech recognition system embedding MLP into HMM. In: Advances in Neural Information Processing Systems, pp. 186–193 (1990)

    Google Scholar 

  2. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  3. Escalera, S., Baró, X., Gonzàlez, J., Bautista, M.A., Madadi, M., Reyes, M., Ponce-López, V., Escalante, H.J., Shotton, J., Guyon, I.: ChaLearn looking at people challenge 2014: dataset and results. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 459–473. Springer, Cham (2015). doi:10.1007/978-3-319-16178-5_32

    Chapter  Google Scholar 

  4. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Heidelberg (2005). doi:10.1007/11550907_126

    Google Scholar 

  5. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  6. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 545–552 (2009)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 37, pp. 448–456, 07–09 July 2015. PMLR, Lille (2015)

    Google Scholar 

  9. Koller, O., Zargaran, S., Ney, H., Bowden, R.: Deep sign: hybrid CNN-HMM for continuous sign language recognition. In: Proceedings of the British Machine Vision Conference 2016, BMVC 2016, York, UK, 19–22 September 2016 (2016)

    Google Scholar 

  10. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)

    Google Scholar 

  11. Neverova, N., Wolf, C., Taylor, G.W., Nebout, F.: Multi-scale deep learning for gesture detection and localization. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 474–490. Springer, Cham (2015). doi:10.1007/978-3-319-16178-5_33

    Chapter  Google Scholar 

  12. Pigou, L., van den Oord, A., Dieleman, S., Van Herreweghe, M., Dambre, J.: Beyond temporal pooling: recurrence and temporal convolutions for gesture recognition in Video. Int. J. Comput. Vis. 1–10 (2016)

    Google Scholar 

  13. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MATH  MathSciNet  Google Scholar 

  14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  15. Tóth, L., Kocsor, A.: Training HMM/ANN hybrid speech recognizers by probabilistic sampling. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 597–603. Springer, Heidelberg (2005). doi:10.1007/11550822_93

    Chapter  Google Scholar 

  16. Wu, D., Pigou, L., Kindermans, P.J., Nam, L.E., Shao, L., Dambre, J., Odobez, J.M.: Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1583–1597 (2016). doi:10.1109/TPAMI.2016.2537340

    Article  Google Scholar 

  17. Yang, H.D., Sclaroff, S., Lee, S.W.: Sign language spotting with a threshold model based on conditional random fields. IEEE Trans. Patt. Anal. Mach. Intell. 31(7), 1264–1277 (2009)

    Article  Google Scholar 

  18. Yin, Y., Davis, R.: Real-time continuous gesture recognition for natural human-computer interaction. In: 2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 113–120. IEEE (2014)

    Google Scholar 

  19. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Granger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Granger, N., el Yacoubi, M.A. (2017). Comparing Hybrid NN-HMM and RNN for Temporal Modeling in Gesture Recognition. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics