
Patterns versus Characters
in Subword-aware Neural Language Modeling

Rustem Takhanov and Zhenisbek Assylbekov

Nazarbayev University, Astana, Kazakhstan,
{rustem.takhanov, zhassylbekov}@nu.edu.kz

Abstract. Words in some natural languages can have a composite struc-
ture. Elements of this structure include the root (that could also be com-
posite), prefixes and suffixes with which various nuances and relations
to other words can be expressed. Thus, in order to build a proper word
representation one must take into account its internal structure. From a
corpus of texts we extract a set of frequent subwords and from the latter
set we select patterns, i.e. subwords which encapsulate information on
character n-gram regularities. The selection is made using the pattern-
based Conditional Random Field model [23,19] with l1 regularization.
Further, for every word we construct a new sequence over an alphabet of
patterns. The new alphabet’s symbols confine a local statistical context
stronger than the characters, therefore they allow better representations
in Rn and are better building blocks for word representation. In the task
of subword-aware language modeling, pattern-based models outperform
character-based analogues by 2-20 perplexity points. Also, a recurrent
neural network in which a word is represented as a sum of embeddings
of its patterns is on par with a competitive and significantly more so-
phisticated character-based convolutional architecture.

Keywords: subword-aware language modeling, pattern-based conditional
random field, word representation, deep learning

1 Introduction

The goal of natural language modeling is, given a corpus of texts from a cer-
tain language, to build a probabilistic distribution over all possible sequences of
words/sentences. Historically, first approaches to the problem [16,4] were highly
interpretable, involving syntax and morphology, i.e. the internal structure of
such models was of interest even to linguists. Nowadays the best performance is
achieved by the so called recurrent neural network language models (RNNLM),
which unfortunately lack the desired properties of interpretability.

For rich-resource languages the amount of training data, i.e. a corpus of
texts, is bounded only by the computational power of the language modeling
method. Due to this, most of RNNLM methods treat text as a sequence of
token identifiers, where a token corresponds to either a word, or punctuation
mark. Indeed, if any word appears in a text in various different contexts, a
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method can learn high quality word representation without taking into account
its morphology. This logics fails when a corpus of texts is not large enough, and
the problem is aggravated for morphology-rich languages, such as, e.g., turkic
or finno-ugric languages. Thus, the problem of word representation that would
take into account an internal structure of a word becomes very actual — recent
advances in language modeling are connected with treating words as sequences
of characters or other subword units.

Much research has been done on character-level neural language modeling
[15,6,11,9,10,20]. However, not much work exploits character n-grams that oc-
cur in a word. In [17] a word is represented using a character n-gram count vector,
followed by a single nonlinear transformation to yield a low-dimensional embed-
ding; the word embeddings are then fed into neural machine translation models.
In [22] a very similar technique is used and an evaluation on three other tasks
(word similarity, sentence similarity, and part-of-speech tagging) is performed;
they demonstrate that their method outperforms more complex architectures
based on character-level recurrent and convolutional neural networks. Probably
closest to ours is an approach from [2] where a word representation is a sum of
terms, each term corresponding to a certain n-gram that occurs in that word.
One weekness of the mentioned approaches is that all possible n-grams that
occur in a corpus of texts are present there in an a priori equal way, and a
difference in their value for word representation is calculated in the process of
learning. Whereas we in advance select a subset of n-grams that could poten-
tially enrich word vectors by subword information. For this purpose we use the
pattern-based Conditional Random Field with l1 regularization.

Our approach also differs in the following aspects: we (i) replace each charac-
ter by a new symbol which in some way concentrates an information on previous
characters, (ii) experiment with several ways of combining subword embeddings
to produce word embeddings, and (iii) evaluate our methods on a ubiquitous
language modeling task.

2 A new alphabet for words

Throughout the paper, we will use the following notation: if X is an alphabet,
then X ∗ denotes a set of words over X ; for α, β ∈ X ∗, αβ denotes the concate-
nation of α and β; by ∗ we denote an arbitrary word.

The key trick that we use in this paper is replacing a word a1a2 · · · ak (that
occurs in some context) over the initial alphabet A with a word s1s2 · · · sk over
a new alphabet of states S. Let us describe this substitution. We first define
a finite state machine (A,S, δ, s0), where s0 is an initial state and δ : S ×
A → S is a state-transition function. If we are given a sentence α = b1b2 · · · bK
such that every bi is a character symbol from A (it could be a punctuation
mark, i.e. a symbol that marks a boundary between words) our state machine
reads this sentence and produces a sequence of states: s0s1 · · · sK . In the latter
sequence, every si corresponds to a state of our machine after reading a symbol
bi. Thus, every subsequence bibi+1 · · · bj of the initial sentence α corresponds
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Fig. 1. Finite-State Machine.

to a subsequence sisi+1 · · · sj where 1 ≤ i ≤ j ≤ K. Therefore, if bibi+1 · · · bj
corresponds to a word in a sentence α, then we will substitute it with sisi+1 · · · sj .

Thus, given such a finite state machine, every word of a sentence can be
rewritten over another alphabet S. Let us describe now our finite state machine.

Suppose that after an analysis of a training set, i.e. of a corpus of texts from
our language L, we extract a certain finite set of sequences Π0 ⊆ A∗ that we
assume not only to be frequent, but in some way statistically characterising our
language. A specific way of choosing Π0 will be given in the following subsection.
Any element π ∈ Π0 we call a pattern. Any such set defines a set of states
S = {β| ∃

π∈Π0

π = β∗}, which is, in fact, a set of all prefixes of patterns. We

assume that an empty word ε is also in S and define s0 = ε.
Now we have to define a state-transition function δ. Our idea is to construct

it in such a way that after reading the first l symbols of the sentence b1b2 · · · bl
the machine should be in a state sl ∈ S where sl is the longest word from S
for which b1b2 · · · bl = ∗sl (Figure 1). The latter decription induces the following
definition: for any α ∈ S and a ∈ A, δ(α, a) is the longest word β ∈ S for which
αa = ∗β.

Patterns

In this subsection we will describe how we extract a set of patterns Π0 from a
corpus of texts (Figure 2). By a corpus of texts we understand a training set
T = {α1, · · · , αL} ⊆ A∗ where αi is a sentence from our language L.

First we extract from our training set T a set of patterns Π ′ based on the
following simple procedure: we fix in advance a threshold f and put to T only
those words α ∈ A∗ that occur in T in more than f places. Then we apply a
reduction procedure, i.e. if a) α is a subword of β, b) α and β always occur
together in T , then we delete α from Π ′. A pattern-based conditional random
field model for our language is the following probability distribution over A∗
[23,19]:

Pr(b1 · · · bK) = A · e−E(b1···bK),
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Fig. 2. Pattern mining.

where E(b1 · · · bK) =
∑
α∈Π′

∑
i<j:bi···bj=α c

α, and cα, α ∈ Π ′, are parameters
to be learned from T .

The learning is done by the minimization of the negative log-likelihood with
L1-regularization:

−
∑L
i=1 log Pr(αi) + C

∑
α∈Π′ |cα|. (1)

The latter function is convex, an efficient computation of its value and gradient
is described in [19]. For the optimization we used the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal. Via the
parameter C one can manage the number of patterns α ∈ Π ′ for which cα 6= 0.
Finally, we define Π0 = {α ∈ Π ′|cα 6= 0}.

3 Subword-aware neural language model

In what follows, both regular characters and patterns are referred to as subwords.
The overall architecture of the subword-aware neural language model is displayed
in Figure 3.

It consists of three main parts: (i) subword-based word embedding model,
(ii) word-level recurrent neural network language model (RNNLM), and (iii)
softmax layer. Below we describe each part in more detail.
Subword-based word embeddings: A word w ∈ W (in a sentence) is defined
by the sequence of its subwords s1 . . . snw

∈ X ∗ (X = A in the case of character-
based representation, and X = S in our pattern-based approach), and each state
is embedded into dX -dimensional space via an embedding matrix Ein

X ∈ R|X|×dX
to obtain a sequence of state vectors:

s1, . . . , snw . (2)

Then we try three different methods to get an embedding of the word w:

– Concat: A simple concatenation of state vectors (2) into a single word vector:

w = [s1; s2; . . . ; snw ;0;0; . . . ;0︸ ︷︷ ︸
n−nw

].



Patterns versus Characters 5

Fig. 3. Subword-aware language model.

We either truncate (if w consists of more than n symbols) or zero-pad w so
that all word vectors have the same length n · dX to allow batch processing.
This approach is motivated by a desire to keep all the information regarding
subwords, including the order in which they appear in the word.

– Sum: A summation of subword vectors:

w =
∑nw

t=1 st. (3)

This approach was used by [3] to combine a word and its morpheme embed-
dings into a single word vector.

– CNN: A convolutional model of [9]:

w = CNN(s1, . . . , snw).

This method has already demonstrated excellent performance for character-
level inputs, therefore we decided to apply it to patterns as well.

To model interactions between subwords, we feed the resulting word embed-
ding w into a stack of two highway layers [18] with dimensionality dHW per layer.
In cases when dimensionality of w does not match dHW, we project it into RdHW .
Word-level RNNLM: Once we have embeddings w1:k for a sequence of words
w1:k, we can use a word-level RNN language model to produce a sequence of
states h1:k ∈ RdLM according to

ht = RNNCell(wt,ht−1), h0 = 0.
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There is a big variety of RNN cells to choose from. The most advanced recurrent
neural architectures, at the time of this writing, are RHN [25] and NAS [26].
However, to make our results directly comparable to the previous work of [9] on
character-level language modeling we select a more conventional architecture –
a stack of two LSTM cells [8].

Softmax: The last state hk from (4) is further used to predict the next word
wk+1 according to the probability distribution

Pr(wk+1|w1:k) = softmax(hkW + b), (4)

where W ∈ RdLM×|W|, b ∈ R|W|, and dLM is a hidden layer size of the RNN.

4 Experimental Setup

Data sets: All models are trained and evaluated on the English PTB data set
[12] utilizing the standard training (0-20), validation (21-22), and test (23-24)
splits along with pre-processing by [14]. Since the PTB is criticized for being
small nowadays, we also provide an evaluation on the WikiText-2 data set [13],
which is approximately two times larger than PTB in size and three times larger
in vocabulary. We do not append any additional symbols at the end of each line
in WikiText-2, but remove spaces between equality signs in the sequences “=
=” and “= = =”, which occur in section titles.

Hyperparameters: The regularization parameter C from (1) is set to 1600,
which results in 883 unique patterns (|Π0| = 883, |S| = 890) for the PTB data
set (cf. 48 plain characters) and 1440 unique patterns (|Π0| = 1440, |S| = 1471)
for the WikiText-2 data set (cf. 281 plain characters). We set the threshold
value f to 300 on the PTB and to 700 on the WikiText-2. We experiment with
two configurations for the state size dLM of the word-level RNNLM: 300 (small
models) and 650 (medium-sized models). Specification of other hyperparameters
is given below.

Concat: dA = 15 (for characters), and dS = 30 (for patterns). We give higher
dimensionality to patterns as their amount significantly exceeds the amount of
characters. n is set to the 95th percentile of word lengths, i.e. 95% of all words
have not more than n characters1. We do not set n = maxw∈W nw, as this would
result in excessive zero-padding. dHW = dLM.

Sum: dX = dHW = dLM ∈ {300, 650} for both characters and patterns. We
give higher dimensionality to subword vectors here (compared to other models)
since the resulting word vector will have the same size as subword vectors (see
(3)).

CNN: In character-based models we choose the same values for hyperparam-
eters as in the work of [9]. For pattern-based models we choose: dS = 50 and
dS = 100 for small and medium-sized models; filter widths are [1, 2, 3, 4, 5, 6]
and [1, 2, 3, 4, 5, 6, 7] for small and medium-sized models; the corresponding

1 word length in characters and in patterns is the same.
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depths (number of features per width) are [100, 50, 75, 100, 100, 100] and [100,
100, 150, 200, 200, 200, 200]. dHW =

∑
depths ∈ {525, 1150}.

Optimization is done similarly to [24,9,5]. Training the models involves mini-
mizing the negative log-likelihood over the corpus w1:K :

−
∑K
k=1 log Pr(wk|w1:k−1) −→ min,

which is typically done by truncated BPTT [21,6]. We backpropagate for 35 time
steps using stochastic gradient descent where the learning rate is initially set to
0.7 and halved if the perplexity does not decrease on the validation set after
an epoch. We use a batch size of 20. We train for 65 epochs, picking the best
performing model on the validation set. Parameters of the models are randomly
initialized uniformly in [−0.05, 0.05], except the forget bias of the word-level
LSTM, which is initialized to 1, and the transform bias of the highway, which
is initialized to values near −2. For regularization we use variational dropout
[5] with dropout rates for small/medium Concat, Sum/medium CNN models
as follows: 0.1/0.15/0.2 for the embedding layer, 0.2/0.3/0.35 for the input to
the gates, 0.1/0.15/0.2 for the hidden units, and 0.2/0.3/0.35 for the output
activations. We clip the norm of the gradients (normalized by minibatch size) at
5.

5 Results

The results of evaluation on PTB and WikiText-2 are reported in Tables 1 and
2 correspondingly. As one can see, models which process patterns consistently
outperform those which use characters under small parameter budgets. However,
the difference in performance is less pronounced when we allow more parameters.

Table 1. Results on the PTB for small (left) and medium-sized models.

Model
Characters Patterns
Size PPL Size PPL

Concat 5M 119.2 5M 99.6
Sum 5M 108.2 5M 87.4
CNN 6M 87.3 6M 84.8

Model
Characters Patterns
Size PPL Size PPL

Concat 15M 91.5 15.8M 83.6
Sum 15M 91.5 15.5M 82.1
CNN 20M 79.6 20.5M 77.2

Table 2. Results on WikiText-2 for small (left) and medium-sized models.

Model
Characters Patterns
Size PPL Size PPL

Concat 11.9M 138.2 12.1M 114.2
Sum 11.9M 124.0 12.3M 101.9
CNN 12.9M 105.2 13.0M 102.8

Model
Characters Patterns
Size PPL Size PPL

Concat 30.2M 115.9 30.8M 99.0
Sum 30.3M 106.7 31.1M 94.9
CNN 34.5M 97.38 35.7M 94.2

Also, it is clearly seen that patterns are more beneficial for simple models,
such as Concat and Sum, but have less effect on the CNN model, which shrinks
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the gap between characters and patterns. This is quite natural as patterns carry
some information on character n-grams and, hence, can be considered as “dis-
crete convolutions”, which makes CNN over patterns not as efficient as CNN over
regular characters. However, we notice that in all cases a simple sum of pattern
embeddings (Pat-Sum) is on par with a more sophisticated convolution over
character embeddings (Char-CNN). Faster2 training of the Pat-Sum compared
to the Char-CNN makes the patterns even more advantageous.
Why does Pat-Sum perform equally well as Char-CNN? As was de-
scribed in Section 3 word embeddings are processed by the two highway layers
before they are fed into the RNNLM. Highway is a weighted average between
nonlinear and identity transformations of the incoming word embedding:

w 7→ t� σ(wA + b) + (1− t)�w,

where t, A and b are trainable parameters, σ(·) is a non-linear activation, 1 is
a vector whose all components are 1 and � is an operation of component-wise
multiplication. The ideal input for the highway is the one that does not need
to undergo a nonlinear transformation, i.e the highway will then be close to an
identity operator, and hence in the ideal case we shall have t = 0. But if w
is rather “raw”, then the highway should prepare it for the RNN (resulting in
t 6= 0). Such extra nonlinearity can measured by the closeness of t to 1. We
hypothesize that the reason why Pat-Sum performs well is that the sum of pat-
tern embeddings is already a good word representation. Hence the highway in
Pat-Sum does less nonlinear work than in Char-CNN: In Pat-Sum it is almost
an identical transformation, and such a simple highway is well-trained according
to [7]. To validate our hypothesis we compare the distributions of the transform

Fig. 4. Kernel density estimations of the transform gate values of the first (left) and
second highway layers in Char-CNN and Pat-Sum.

gate t values from both highway layers of Pat-Sum and Char-CNN. The den-

2 around 1.2x speedup on NVIDIA Titan X (Pascal)
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sity plots in Fig. 4 support our hypothesis: Pat-Sum does not utilize much of
nonlinearity in the highway layers, while Char-CNN heavily relies on it.
Source code: All models were implemented in TensorFlow [1] and the source
code for Pat-Sum is available at https://github.com/zh3nis/pat-sum.

6 Conclusion

Regular characters are rather uninformative when their embeddings are concate-
nated or summed to produce word vectors, but patterns, on the contrary, carry
enough information to make these methods work significantly better. Convolu-
tions over subword embeddings do capture n-gram regularities and, therefore,
make the difference between characters and patterns less noticeable. It is note-
worthy, that a simple and fast sum of pattern embeddings is on par with more
sophisticated and slower convolutions over characters embeddings.
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