
Learning Inverse Mapping by AutoEncoder
based Generative Adversarial Nets

Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv

Machine Intelligence Laboratory, College of Computer Science, Sichuan University,
Chengdu 610065, P. R. China.
lvjiancheng@scu.edu.cn

Abstract. The inverse mapping of GANs’(Generative Adversarial Nets)
generator has a great potential value. Hence, some works have been de-
veloped to construct the inverse function of generator by directly learning
or adversarial learning. While the results are encouraging, the problem
is highly challenging and the existing ways of training inverse models
of GANs have many disadvantages, such as hard to train or poor per-
formance. Due to these reasons, we propose a new approach based on
using inverse generator (IG) model as encoder and pre-trained generator
(G) as decoder of an AutoEncoder network to train the IG model. In
the proposed model, the difference between the input and output, which
are both the generated image of pre-trained GAN’s generator, of Au-
toEncoder is directly minimized. The optimizing method can overcome
the difficulty in training and inverse model of an non one-to-one func-
tion. We also applied the inverse model of GANs’ generators to image
searching and translation. The experimental results prove that the pro-
posed approach works better than the traditional approaches in image
searching.

Keywords: Inverse model, GAN, AutoEncoder network

1 Introduction

Generative adversarial nets(GANs) [1], based on the minimax two-player game
theory, show a great power in generating high quality artificial data. And the
method of Deep convolutional generative adversarial nets [2] shows the great
potential on the mapping between image space X and latent space Z. Lots of
papers [2–4] have shown the huge power of inverse model of a generator on
semi-supervised learning and adjusting the outputs images of the generators. In
addition, finding the inverse mapping of generator can also provide us useful
insights to the generator and we may use this to improve the performance of
generator. Building on ideas from these many previous works, many works [4–7]
have been developed to learn the the inverse mapping of the generator. But, the
mapping from latent space Z to image space X is an uniderection mapping and
non-linear inverse problem. This brings a great challenge for finding the inverse
mapping of generator.

ar
X

iv
:1

70
3.

10
09

4v
2

 [
cs

.L
G

]
 1

2
Se

p
20

17

2 Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv

Dumoulin and Donahue [6,7] proposed a way of learning encoder network E
alongside the generator G and discriminator D. The approach successfully avoids
the problem of uniderection mapping brought by directly training the inverse
model. However, the reconstruction results are not satisfying enough. Creswell’s
idea [5] can get a good correlation between samples and reconstructions. The
approach takes the desired output z as optimization goal. It’ very simple but
slow, because we have to calculate the z by using multiple gradient descents
every step. In other words, the approach is trying to search the z instead of
calculating the z. Perarnau proposed a invertible conditional GANs(ICGAN) [4].
In the approach, the inverse model is trained through directly minimizing the
difference between (Ez, Ey) and (z, y), where y is the label information of x and
z is a noise vector. While the strategy mitigates the effect of the problem that
the function of generator is not a one-to-one function, the freedom of latent space
Z is restricted by the label information. Due to the approach requires abundant
label information, the requirement for data sets is very strict.

In this paper, we propose a new approach to learn the inverse mapping by
AutoEncoder based on GANs(AEGAN) as a complement of former works. We
use the AutoEncoder to train a inverse model. The pre-trained generator is
regarded as the decoder part of an AutoEncoder and the inverse generator is
regarded as the corresponding encoder part. This model does not directly mini-
mize the difference between the original noise vector and the reconstructed noise
vector, but try to minimize the difference between the generated samples of noise
vectors. This strategy not only avoids problems of directly training the inverse
model, but also avoids the poor correlation of adversarial training. In addition,
we also explore the application value of inverse model in image processing. The
corresponding vectors of images contain rich semantic information. Our experi-
ments prove that such semantic information is very helpful in image searching.
And by combing the generator model, the inverse model can also be used in
image-to-image translation.

2 Primary and Motivation

The existing ways of learning the inverse model of the GANs have made great
success, however there still remains many problems waiting for solving. The
idea of Dumoulin and Donahue [6,7] is to train encoder network E alongside the
generator G and discriminator D. The training objective is defined as a minimax
objective:

min
G,E

max
D

V (D,E,G) = Ex∼pdata(x)[logD(x,E(x))]+Ez∼p(z)[log(1−D(G(z), z))]

(1)
Where D,E,G are Discriminator, Encoder, Generator respectively. x is an input
sample and z is a noise vector. During the training, the G,E try to minimize
the value function and D tries to maximize the value function. This approach
successfully avoids the problem of directly training the inverse model. However,

Learning Inverse Mapping by AEGAN 3

this approach also results the poor correlation between samples and reconstruc-
tions, because the discriminator only focus on the difference between data sets
instead of the difference between two images. So the encoder part can’t catch
the unique features of one signal image. In addition, the approach needs to train
a third network with the generative net, which means that inversion cannot be
learned from a pre-trained generative network.

Creswell [5] proposes a different idea that can get a good correlation between
samples and reconstructions. The main idea is to directly minimize the difference
between generated image G(z) and sample image x through optimizing the value
of z, where G is a pre-trained generator. The z is updated by:

z = z − α∇z[−x ∗ log(G(z))− (1− x) ∗ log(1−G(z))] (2)

Where α stands for the learning rate. This approach takes the desired output
z as optimization goal. It’s easy to implement but poor in effectiveness because
it doesn’t provide a real inverse function and we have to use gradient descents
every time.

The invertible conditional GAN(ICGAN) [4], proposed by Perarnau, tries
to solve the problem through conditional GAN. In this model, ICGAN tries to
minimize the difference between (Ez, Ey) and (z, y), y is the label information
including the gender, age and so on. Ez is the noise vector Encoder and Ey is
the label information Encoder. The two training objectives are:

Lez = Ez∼pz,y
′∼py

∥∥∥z − Ez(G(z, y
′
))
∥∥∥2
2

Ley = Ex,y∼pdata
‖y − Ey(x)‖22

(3)

The label information limits the freedom of latent space Z. This strategy miti-
gates the effect of the uniderection mapping problem . But this approach requires
abundant label information, which results that it can not be used in unsupervised
approach.

3 AutoEncoder based Generative Adversarial Nets

The details of training and network structure can be found int he Appendix.

3.1 Basic Structure

Our idea of AEGAN is inspired from AutoEncoder. Here we take the generator
G(z; θg) as the decoder part of the AutoEncoder and the desired inverse genera-
tor IG(x; θig) as the encoder part. Fig. 1 shows the training process of AEGAN,
we try to minimize the difference between generated image x and reconstructed
image x′. IG compresses a generated image x into a latent space vector z′ and
G reconstructs the z′ into a new image x′. z′ is used as the extracted feature of
input sample x and our experiments prove that z′ is a very good image feature in
image translation and searching. Many previous methods regard the generator

4 Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv

as an encoder part instead of a decoder part in training and it’s against the na-
ture of AutoEncoder. And the mapping from z to x also brings difficulty to the
learning of the encoder part. So in AEGAN, we change our goal into minimizing
|x− x′|.
The innovation of AEGAN is that we focus on the reconstructed images instead
of the reconstructed noise vectors. This model does not directly minimize the
difference between z and z′, but try to minimize the difference between the x
and x′. This strategy not only avoids problems in directly training the inverse
model, but also avoids the poor correlation of adversarial training.

Fig. 1. The training process of AEGAN

3.2 Training Steps

Training the Generator First we train the GAN’s generator G using the
approach and the network structure of DCGAN [2]. G is a deconvlutional net-
work with one fully connected layer and four deconvlutional layers with strides
(1, 2, 2, 1). The activation function is relu for first four layers and sigmoid for the
last layer. The sigmoid layer is aimed at normalizing the generated images. And
prior z ∈ R ∼ U(−1, 1).
The optimization goal of generator is:

min
G

max
D

V (θd, θg) = Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (4)

Training the Inverse Generator Then we start to train the inverse gener-
ator IG by using the information from a pre-trained generator G. In details,
the structures of G and IG are symmetric. The deconvolutional layers of G are
replaced with the corresponding convolutional layers. The activation function of
output layer is tanh for limiting the range of reconstructed z′. The convolution

Learning Inverse Mapping by AEGAN 5

type in IG is strided convolution [2]. To avoid the difficulty of directly train-
ing the encoder we require the value function of IG to minimize the difference
between the fake image x generated by G and the reconstructed output x′. We
choose the cross-entropy function to define the difference between x adn x′. The
optimization objective can be defined as:

min
IG

Ex∼pgenerated(x){V (x; θig)}

V (x; θig) = −x ∗ log x′ − (1− x) ∗ log(1− x′)
= −x ∗ logG(IG(x; θig))− (1− x) ∗ log(1−G(IG(x; θig)))

(5)

Where θg, θd are the parameters of the generator G and discriminator D.
Algorithm 1 shows the detail of training IG.

Algorithm 1 Training the Inverse Generator

for number of training iterations do
1.Sample minibatch of m noise samples (z(1), ..., z(m)) from noise prior z∼pg(z)
and use them to generate the training images (x(1), ..., x(m;.;.))∼pgenerated(x)
through the pre-trained generator G.
2.Put the generated image x(x = G(z)) into the AutoEncoder part to get the
reconstructed image x′.

z′ = IG(x) = IG(G(x))

x′ = G(z′)
(6)

3. Compute the reconstruction loss V (x) according to Equation (4).

V (x) = −x ∗ logG(IG(x)) − (1 − x) ∗ log(1 −G(IG(x))) (7)

4. Perform a backpropagation to compute the gradients and only upgrade the
parameters of IG.

θig = θig − α

m

m∑
i=1

∂V (xi; θig)

θig
(8)

Where α is the learning rate.
end for

4 Experiment Results

We evaluate the ability of this inverse model on CelebFaces Attributes Dataset
(CelebA) [8]. CelebA is a large-scale face attributes dataset.

4.1 Reconstructing Samples

We take the outputs of generator as the samples and use the inverse mapping
from these samples to Z space to generate the reconstructed samples. Here, we

6 Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv

compare AEGAN with a directly trained inverse model based on ICGAN [4]
and the adversarial inverse model based on BiGAN [6]. The original BiGAN and
ICGAN both contain an addtional image label information vector. In here we
remove the label vectors because of the unsupervised condition. Fig. 2 shows the
reconstructed results of AEGAN, inverse model and BiGAN. For BiGAN we uses
the different original samples because BiGAN can’t use a pre-trained generator
as base. This is because that in BiGAN the generator and inverse generator are
trained in the same time as Equation (1) shows. So we compare BiGAN with the
generated samples from its own generator for fairness. In addition, we use the
dHash [9] as standard to evaluate the similarity of generated images. dHash will
give every image a special hash code and the difference between hash codes can
be used to describe the similarity between images. We take the average similarity
as final result. As we can see in Table 1, the result of AEGAN is also the best
in this experiment.

Fig. 2. The reconstructed results

Table 1. Similarity compared with original samples

AEGAN Directly training BiGAN

0.8266 0.7944 0.6594

4.2 Searching the Similar Images Using AEGAN

To illustrate the power of AEGAN, we will show its ability in searching the
similar images. We only compare with the general image searching algorithm,
because our approach is based on unsupervised learning. We compare AEGAN
with three general image searching algorithms: dHash, pHash [9] and color his-
togram [10]. In details, the similarity between two images are based on the Eu-
clidean Distance between the reconstructed z′ vectors of them, the smaller the
distance, the higher the similarity. We take an image from the original data set
celebA and add some other factors such as color transform, adding a sunglasses

Learning Inverse Mapping by AEGAN 7

to the person, to form the 3 test images. Then we implement 4 different algo-
rithms to find the closest images in the first 20,000 images of celebA.The Fig. 3
proves that AEGAN is very suitable for this task. To evaluate the comprehensive
performance, the second experiment is aiming at finding the similar images. We
compare our algorithm with dHash. We take the first 20,000 images of celebA as
the test set and take other 64 images from the celebA as base images. As we can
see from Fig. 4, AEGAN approach is much better than dHash. AEGAN catches
the important features of face images such as the face angle, face similarity, hair
style and facial expression. In addition, we use the label similarity to evaluate
the searching resluts. There are 40 labels for each image including gender, hair
color and so on. The result can be seen from Table 2. Although AEGAN is not
a patch on specialized face recognition algorithms in this task, we have to em-
phasize that this approach is unsupervised and universal. In other words, this
idea can easily be implemented in other fields.

Table 2. Label similarity compared with base samples

AEGAN dHash

0.7918 0.7483

Fig. 3. The searching results.

4.3 Super-Resolution Using the AEGAN

To prove our approach does learn the major features of face images, we propose
the third experiment. In this experiment we take the Gaussian Blur images as
inputs of inverse generator IG and then use the output of inverse generator to
reconstruct the original images. We choose the generated data as the original
examples. As Fig. 5 shows, we can see AEGAN also performs well in super-
resolution and we didn’t train the AEGAN specially for this task. AEGAN can

8 Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv

Fig. 4. The searched results for dHash and AEGAN. The first block contains the base
images. And the second one is the searching result of AEGAN. The last one is the
result of dHash.

automatically ignore the abnormal parts of input sample and add the missing
features to the reconstructed output. It is worth mentioning that the approach
is unsupervised. As we known, the labeled data are extremely rare in most of
application. Given the data limitations, the proposed method work surprisingly
well for Super-Resolution without label information.

Fig. 5. The results of super-resolution by AEGAN. The first block contains the base
image. And the second block contains the images after adding the Gaussian Blur. The
last one is the reconstructed result.

5 Conclusion And Further Works

AEGAN uses the idea of Auotoencoder to overcome the difficulty in training a
inverse model of generator. And the experiments show that the inverse mapping
of generator has a very similar function compared with Word Embedding [11].
Because the inverse out put of an image can be regarded as a vector presentation
of the image and this vector presentation can catches the important features of
images as Experiment 2 shows. This ability can be very helpful in fields of image
and video processing. It’s possible to get a universal vector representation of
image if we train the AEGAN at large image data sets. In addition, we can
use AEGAN to reform the Image-to-Image Translation approach based on GAN

Learning Inverse Mapping by AEGAN 9

[12]. With AEGAN, the training of generator part can be done in unsupervised
condition and we only need to train the encoder part in conditional situation. In
other words, it’s possible to train a Image-to-Image GAN net in semi-supervised
condition if we use the structure of AEGAN.

References

1. Goodfellow, I.J., Pougetabadie, J., Mirza, M., Xu, B., Wardefarley, D., Ozair, S.,
Courville, A., Bengio, Y., Ghahramani, Z., Welling, M.: Generative adversarial nets.
Advances in Neural Information Processing Systems 3, 2672–2680 (2014)

2. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

3. Dong, H., Neekhara, P., Wu, C., Guo, Y.: Unsupervised image-to-image translation
with generative adversarial networks. arXiv preprint arXiv:1701.02676 (2017)

4. Perarnau, G., van de Weijer, J., Raducanu, B., Alvarez, J.M.: Invertible conditional
gans for image editing. arXiv preprint arXiv:1611.06355 (2016)

5. Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial
network. arXiv preprint arXiv:1611.05644 (2016)

6. Donahue, J., Krahenbuhl, P., Darrell, T.: Adversarial feature learning. arXiv
preprint arXiv:1605.09782 (2016)

7. Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O.,
Courville, A.: Adversarially learned inference. arXiv preprint arXiv:1606.00704
(2016)

8. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of the IEEE International Conference on Computer Vision. pp. 3730–
3738 (2015)

9. Niu, X.M., Jiao, Y.H.: An overview of perceptual hashing. Acta Electronica Sinica
36(7), 1405–1411 (2008)

10. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer
Vision 7(1), 11–32 (1991)

11. Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings of
the eighth annual conference of the cognitive science society. vol. 1, p. 12. Amherst,
MA (1986)

12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

Appendix: Network Structures and Training Details

The Adam optimizer is used for all the experiments and the parameters are the
same. The learning rate is 0.0002 and beta1 is 0.5. The experiment is trained on
complete CelebA dataset. Batch size is 64.

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1701.02676
http://arxiv.org/abs/1611.06355
http://arxiv.org/abs/1611.05644
http://arxiv.org/abs/1605.09782
http://arxiv.org/abs/1606.00704
http://arxiv.org/abs/1611.07004

10 Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv

Table 3. Generator

Input Shape 100
Operation Kernel Stride Filter BN Activation

Dense 4*4*64*8 N
Reshape 4,4,64*8 Y Relu
Deconv 5*5 2*2 64*4 Y Relu
Deconv 5*5 2*2 64*2 Y Relu
Deconv 5*5 2*2 64*1 Y Relu
Deconv 5*5 2*2 3 N Sigmoid

Table 4. Discrimiator

Input Shape 64*64*3
Operation Kernel Stride Filter BN Activation

Conv 5*5 2*2 64*1 Y Lrelu
Conv 5*5 2*2 64*2 Y Lrelu
Conv 5*5 2*2 64*4 Y Lrelu
Conv 5*5 2*2 64*8 Y Lrelu
Reshape 4*4*64*8 N
Dense 1 N Sigmoid

Table 5. Inverse Generator

Input Shape 64*64*3
Operation Kernel Stride Filter BN Activation

Conv 5*5 2*2 64*1 Y Relu
Conv 5*5 2*2 64*2 Y Relu
Conv 5*5 2*2 64*4 Y Relu
Conv 5*5 2*2 64*8 Y Relu
Reshape 4*4*64*8 N
Dense 100 N Tanh

Table 6. Discrimiator(BiGAN)

Input Shape 64*64*3, 100
Operation Kernel Stride Filter BN Activation

Conv 5*5 2*2 64*1 Y Lrelu
Conv 5*5 2*2 64*2 Y Lrelu
Conv 5*5 2*2 64*4 Y Lrelu
Conv cond concat 64*4+100 N
Conv 5*5 2*2 64*8 Y Lrelu
Conv 5*5 2*2 64*8 Y Lrelu
Conv 5*5 2*2 64*8 Y Lrelu
Reshape 1*1*64*8 N
Dense 1 N Sigmoid

	Learning Inverse Mapping by AutoEncoder based Generative Adversarial Nets
	1 Introduction
	2 Primary and Motivation
	3 AutoEncoder based Generative Adversarial Nets
	3.1 Basic Structure
	3.2 Training Steps
	Training the Generator
	Training the Inverse Generator

	4 Experiment Results
	4.1 Reconstructing Samples
	4.2 Searching the Similar Images Using AEGAN
	4.3 Super-Resolution Using the AEGAN

	5 Conclusion And Further Works

