Skip to main content

Regularized Deep Convolutional Neural Networks for Feature Extraction and Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

Abstract

Deep Convolutional Neural Networks (DCNNs) are the state-of-the-art in fields such as visual object recognition, handwriting and speech recognition. The DCNNs include a large number of layers, a huge number of units, and connections. Therefore, with the huge number of parameters, overfitting can occur. In order to prevent the network against this problem, regularization techniques have been applied in different positions. In this paper, we show that with the right combination of applied regularization techniques such as fully connected dropout, max pooling dropout, L2 regularization and He initialization, it is possible to achieve good results in object recognition with small networks and without data augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, S.: Growing random forest on deep convolutional neural networks for scene categorization. Expert Syst. Appl. 71, 279–287 (2017)

    Article  Google Scholar 

  2. Zhao, W., Xiong, L., Ding, H.: Automatic recognition of loess landforms using Random Forest method. J. Mt. Sci. 14(5), 885–897 (2017)

    Article  Google Scholar 

  3. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  4. Gecer, B., Azzopardi, G., Petkov, N.: Color-blob-based COSFIRE filters for object recognition. Image Vis. Comput. 57, 165–174 (2017)

    Article  Google Scholar 

  5. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3367–3375 (2015)

    Google Scholar 

  6. Dicarlo, J., Cox, D.: Untangling invariant object recognition. Trends Cogn. Sci. 11(8), 333–341 (2007)

    Article  Google Scholar 

  7. Zhang, L., He, Z., Liu, Y.: Deep object recognition across domains based on adaptive extreme learning machine. Neurocomputing 239, 194–203 (2017)

    Article  Google Scholar 

  8. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  9. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing convolutional neural networks. arXiv preprint arXiv:1506.04449 (2015)

  10. Tobias, L., Ducournau, A., Rousseau, F.: Convolutional neural networks for object recognition on mobile devices: a case study. In: IEEE 23rd International Conference on Pattern Recognition (ICPR), pp. 3530–3535 (2016)

    Google Scholar 

  11. Li, H., Xu, B., Wang, N., Liu, J.: Deep convolutional neural networks for classifying body constitution. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 128–135. Springer, Cham (2016). doi:10.1007/978-3-319-44781-0_16

    Chapter  Google Scholar 

  12. Madai-Tahy, L., Otte, S., Hanten, R., Zell, A.: Revisiting deep convolutional neural networks for RGB-D based object recognition. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 29–37. Springer, Cham (2016). doi:10.1007/978-3-319-44781-0_4

    Chapter  Google Scholar 

  13. Krizhevsky, I., Sutskever, A., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  14. Calderon, A., Roa, S., Victorino, J.: Handwritten digit recognition using convolutional neural networks and gabor filters. In: Proceedings of the International Congress on Computational Intelligence (2003)

    Google Scholar 

  15. Alwzwazy, H.A., Albehadili, H.M., Alwan, Y.S.: Handwritten digit recognition using convolutional neural networks (2016)

    Google Scholar 

  16. Peris, Á., Bolanos, M., Radeva, P.: Video description using bidirectional recurrent neural networks. arXiv preprint arXiv:1604.03390 (2016)

  17. Peyrard, C., Baccouche, M., Garcia, C.: Blind super-resolution with deep convolutional neural networks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 161–169. Springer, Cham (2016). doi:10.1007/978-3-319-44781-0_20

    Chapter  Google Scholar 

  18. Sholomon, D., David, Omid E., Netanyahu, Nathan S.: DNN-Buddies: a deep neural network-based estimation metric for the jigsaw puzzle problem. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 170–178. Springer, Cham (2016). doi:10.1007/978-3-319-44781-0_21

    Chapter  Google Scholar 

  19. Ruiz-Garcia, A., Elshaw, M., Altahhan, A., Palade, V.: Deep learning for emotion recognition in faces. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 38–46. Springer, Cham (2016). doi:10.1007/978-3-319-44781-0_5

    Chapter  Google Scholar 

  20. Wu, H., Gu, X.: Towards dropout training for convolutional neural networks. Neural Netw. 71, 1–10 (2015)

    Article  Google Scholar 

  21. Hara, K., Saitoh, D., Shouno, H.: Analysis of dropout learning regarded as ensemble learning. arXiv preprint arXiv:1706.06859 (2017)

  22. Miclut, B.: Committees of deep feedforward networks trained with few data. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 736–742. Springer, Cham (2014). doi:10.1007/978-3-319-11752-2_62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaoula Jayech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jayech, K. (2017). Regularized Deep Convolutional Neural Networks for Feature Extraction and Classification. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics