
Handwritten digit string recognition by
combination of residual network and RNN-CTC

Hongjian Zhan, Qingqing Wang, Yue Lu

Shanghai Key Laboratory of Multidimensional Information Processing
Department of Computer Science and Technology

East China Normal University, Shanghai 200062, China
ylu@cs.ecnu.edu.cn

Abstract. Recurrent neural network (RNN) and connectionist tempo-
ral classification (CTC) have showed successes in many sequence label-
ing tasks with the strong ability of dealing with the problems where the
alignment between the inputs and the target labels is unknown. Residual
network is a new structure of convolutional neural network and works
well in various computer vision tasks. In this paper, we take advantage
of the architectures mentioned above to create a new network for hand-
written digit string recognition. First we design a residual network to
extract features from input images, then we employ a RNN to model
the contextual information within feature sequences and predict recog-
nition results. At the top of this network, a standard CTC is applied to
calculate the loss and yield the final results. These three parts compose
an end-to-end trainable network. The proposed new architecture achieves
the highest performances on ORAND-CAR-A and ORAND-CAR-B with
recognition rates 89.75% and 91.14%, respectively. In addition, the ex-
periments on a generated captcha dataset which has much longer string
length show the potential of the proposed network to handle long strings.

Keywords: digit string recognition, end to end, convolutional neural
network, recurrent neural network, connectionist temporal classification

1 Introduction

Recent years, with the advancement of deep learning, handwritten digit string
recognition (HDSR) has archived great improvements [1–3]. An intuitive ap-
proach to recognize these handwriting strings is to segment string images into
pieces which correspond to single characters or part of them, then combine the
recognition results of these pieces with path-search algorithms to get global op-
timal results. These methods are known as over-segmentation strategy. Wu et
al. [1] transformed the string image into a sequence of primitive image segments
after binarization, then combined these segments to generate candidate character
patterns, forming a segmentation candidate lattice. After that a beam search al-
gorithm was used to find an optimal path over the candidate lattice. This method
won the first place on the ICFHR2014 HDSR competition [1]. Saabni [3] used

ar
X

iv
:1

71
0.

03
11

2v
1 

 [
cs

.C
V

] 
 9

 O
ct

 2
01

7

ylu@cs.ecnu.edu.cn


2 Hongjian Zhan, Qingqing Wang, Yue Lu

sliding window and deep neural network to attain high recognition rates. Gattal
et al. [2] applied three segmentation methods to handle handwritten digit strings
by combining these segmentation methods depending on the configuration link
between digits. But this kind of methods faced many problems in practice, such
as various handwritten styles, connected characters or background noises.

An alternative to handle such sequence recognition task is segmentation-free
methods. Benefitting from the ability of modelling the alignment between inputs
and labels directly, connectionist temporal classification (CTC) [4] is specifically
suitable for temporal classification tasks, such as speech and string recognition.
CTC is often used as an output layer for recurrent neural network(RNN). In
practice such RNN-CTC framework usually combines with a deep neural net-
work, which generates the feature representation of inputs. Messina [5] firstly
applied a LSTM-RNN model to off-line Chinese handwritten text recognition.
Without well-designed architecture it achieved competitive performance with
the state-of-the-art of tradition method [6]. Shi et al. [7] proposed a network
with CNN and RNN named CRNN and applied it to scene text recognition.
The CRNN is built with Torch. We rebuild the experimental environment in our
machine and apply it to HDSR for comparison.

In this paper, we propose a new network based on RNN-CTC framework.
First we use the more efficient Residual network [8], which was the champion
of ILSVRC 2015 classification task, to extract more discriminative feature se-
quences. Then we modify the standard bi-direction LSTM by adding fully con-
nected layer before combining the two directions for convergence. At the top of
our model, a standard CTC is used to calculate the loss and yield the recognition
result. By taking the advantages of these models, this new model works well in
HDSR task. Compared with the submitted methods in ICFHR 2014 HDSR com-
petition, as well as CRNN, our approach makes significant improvements and
achieves the state-of-the-art performance. We conduct our experiments1 with
Caffe [9] toolkit.

The rest of this paper is organized as follows. In Section 2 we describe the
methods. Then, the details of our experiments are presented in Section 3. Section
4 concludes this paper and discusses the future work.

2 The Proposed Architecture

The main idea of our model is using a recurrent neural network to model con-
textual information, namely, the features extracted by a powerful convolutional
neural network from raw images and yield elementary results, then get the final
recognition results with the output layer connectionist temporary classification.

2.1 Feature extractor: Convolutional Neural Networks

Convolutional neural networks are successful in most computer vision tasks. It
remains the space structure of image then fully connected network and gener-

1 https://github.com/LPAIS/HDSR-with-RNN



HDSR with residual network and RNN-CTC 3

ates highly-efficient features that defeats traditional methods. CNN has great
improvements since it was put forward. Many fantastic CNN architectures were
proposed such as AlexNet [10], GoogleNet [11] and network in network(NIN) [12].

When the networks going deeper, a degradation problem has been exposed.
In order to address this issue, He et al. [8] introduced a deep residual learning
framework, i.e. the ResNet. The essential structure of ResNet is shortcut connec-
tion. Shortcut connections are those that skip one or more layers. With this kind
of connections, we can handle the vanishing gradient problem and build deeper
networks, which means that we can get more excellent feature representations.
In practice the way of shortcut connection is flexible according to specific tasks.

In our model, we design a 10 layers residual network without global pooling
layers. With the reason of connecting a deep RNN following, we don’t employee
much deep CNN to avoid divergence. We take the advantages of the residual
learning to enhance gradient propagation.

2.2 Sequence labelling: Recurrent Neural Network

A recurrent neural network is a class of neural network models where many
connections among its neurons form a directed cycle. With self-connections, it
has an important benefit to use contextual information when mapping between
input and output sequences. But for traditional RNN, the range of context that
can be in practice accessed is quite limited due to vanishing gradient problem.
One solution is to impose a memory structure into the RNN, resulting in the
so-called long-short time memory (LSTM) [13] cell. Such LSTM version of RNN
is shown to overcome some fundamental problems of traditional RNN and can
be able to efficiently learn to solve long time dependency problems. Nowadays,
LSTM becomes one of the most widely used RNN.

For sequence labelling task it is beneficial to have access to future as well as
past context. However, the standard LSTM only consider the past information
and ignore future context. An alternative solution is to add another LSTM to
handle data reversely, which is so-called bi-direction LSTM [14], short for BiL-
STM. BiLSTM presents each training sequence forwards and backwards to two
separate LSTM layers, both of which are connected to the same output layer.
This structure provides the output layer with complete past and future context
for every point in the input sequence.

2.3 Connectionist temporal classification

Connectionist temporal classification [4] is a kind of output layer. It has two
main functions. One is to calculate the loss, the other is to decode the output of
RNN.

For a sequence labelling task, the labels are drawn from a set A (in HDSR
task, A is the ten digits). With an extra label named blank, we get a new set
A
′

= A ∪ {blank}, which is used in reality. The input of CTC is a sequence
y = y1, ..., yT , where T is the sequence length. The corresponding label donates



4 Hongjian Zhan, Qingqing Wang, Yue Lu

as I over A. Each yi is a probability distribution on the set A
′
. We define a many-

to-one function F : A
′T 7→ A≤T to resume the repeated labels and blanks. For

example F (1−22−−333−−) = 123. Then, a conditional probability is defined
as the sum of probabilities of all π which are mapped by F onto I:

p(I|y) =
∑

π∈F−1(I)

p(π|y) (1)

where the conditional probability of π is defined as:

p(π|y) =

T∏
t=1

ytπt
(2)

ytπt
is the probability of having label πt at timestep t. Directly computing Eq.1 is

not feasible. In practice, Eq.1 is usually calculated using the forward-backward
algorithm.

Donate the training dataset by S = (X, I), where X is the training image
and I is the ground truth label sequence. The CTC object function O(S) is
defined as the negative log probability of ground truth all the training examples
in training set S,

O(S) = −
∑

(x,i)∈S

log p(I|y) (3)

where y is the sequence produced by the recurrent layers from x. Therefore, the
network can be end-to-end trained on pairs of images and sequences, without the
procedure of manually labelling all individual components in training images.

3 Experiments

To evaluate the effectiveness of proposed model, we designed two experiments.
One is to show the recognition performance on public datasets, the other is to
verify the potential of our model for long digit strings recognition.

The network configuration used in our experiments is described in Table 1.
The input images are resized to fixed size. The CNN part is derived from the
residual network with necessary modifies. We reduce the kernel size to better
suit for CTC decoding and remove the global pooling layer in ordinary ResNet.
After deep convolutional layers, there is a bidirectional LSTM, each direction
has two layers of LSTM.

For implementation, by using the fundamental LSTM layer in Caffe and a
custom reverse layer, we build the Bi-LSTM layer in C++ without combining
them into a single Bi-LSTM layer. This proposed architecture contains deep
convolutional layers and deep recurrent layers which are known to be hard to
train. In practice the network is trained with ADADELTA, setting the essential
parameter delta to 10−6.

Our experiments are performed on a DELL workstation. The CPU is Intel
Xeon E5-1650 with 3.5GHz and the GPU is NVIDIA TITAN X. The software is



HDSR with residual network and RNN-CTC 5

Table 1. Network configuration summary. The first row is the top layer. k, s, p
stand for kernel, stride and padding sizes respectively. The ‘reverse’ layer reverses the
input. For example, a input of ‘reverse’ layer is x1, ..., xn, the corresponding output is
xn, ..., x1.

Type Configuration

CTC Calculate the loss and decode

Elewise Sum

Reverse Reverse features -

InnerProduct #units:11 #units:11

InnerProduct #units:100 #hunits:100

LSTM #hidden units:100 #hidden units:100

LSTM #hidden units:100 #hidden units:100

Reverse Reverse features -

permuted permute the blob to fit lstm

Eltwise Sum

Convolution #maps:512, k3x3, s1x1, p1x1 #maps:512, k1x1, s2x2

Convolution #maps:512, k3x3, s2x2, p1x1 -

Eltwise sum

Convolution #maps:256, k3x3, s1x1, p1x1 #maps:256, k1x1, s2x2

Convolution #maps:256, k3x3, s2x2, p1x1 -

Eltwise Sum

Convolution #maps:128, k3x3, s1x1, p1x1 #maps:128, k1x1, s2x2

Convolution #maps:128, k3x3, s2x2, p1x1 -

Eltwise Sum

Convolution #maps:64, k3x3, s1x1, p1x1 -

Convolution #maps:64, k3x3, s1x1, p1x1 -

MaxPooling k3x3, s1x1

Convolution #maps:64, k5x5, s1x1, p1x1

Input Input raw image

the latest version of Caffe [9] with cuDNN V5 accelerated on Ubuntu 14.04 LTS
system. The average testing time is 3.5ms per image.

We use a hard metric to evaluate our methods. We calculate the recognition
rate, which is defined as the number of correctly recognized digit strings divided
by the total number of strings. Because there are more than one digit label in a
string, we consider one string being recognized correctly only if when all labels
are recognized correctly.

3.1 Datasets

There are two public datasets used in our experiments. The first dataset, named
as Computer Vision Lab Handwritten Digit String (CVL HDS), is collected from
about 300 writers. The variability of writers brings high variability with respect
to handwritten styles. The CVL HDS dataset has 7960 images, from which 1262



6 Hongjian Zhan, Qingqing Wang, Yue Lu

(a) CVL HDS

(b) CAR-A

(c) CAR-B

(d) G-Captcha

Fig. 1. Samples of the datasets used in our experiments.

images for training and the other 6698 images for testing. Some examples are
shown in Figure 1(a) with different written styles.

Table 2. Distribution of the databases with respect to string length.

training set testing set

len CVL CAR-A CAR-B G-Captcha CVL CAR-A CAR-B G-Captcha

below 7 883 1978 2862 0 4933 3686 2767 0

7 379 29 137 0 1765 87 157 0

8 0 2 1 1500 0 11 2 2000

9 0 0 0 1500 0 0 0 2000

10 0 0 0 1500 0 0 0 2000

11 0 0 0 1500 0 0 0 2000

The other dataset is ORAND-CAR, consisting of 11719 images obtained
from the Courtesy Amount Recognition (CAR) field of real bank checks. The
ORAND-CAR images come from two different sources with different charac-
teristics. Considering the two different sources, ORAND-CAR is divided into
two subsets, ORAND-CAR-A and ORAND-CAR-B, which are abbreviated to
CAR-A and CAR-B.



HDSR with residual network and RNN-CTC 7

The CAR-A database consists of 2009 images for training and 3784 images for
testing. The CAR-B database consists of 3000 training images and 2926 testing
images. Some samples are shown in Figure 1(b)-(c).

String lengths of samples in these two datasets are mostly not larger than 7.
For string recognition, the longer strings are the harder task is. So we create two
captcha datasets by using a Python package named ‘captcha’2. This package can
generate arbitrary length captcha images with dirty background, and the styles
of digits are varieties, which are similar to human handwriting.

The generated captcha dataset is named G-Captcha, in which string length
is extended to 11. The distribution of the four different datasets with respect to
string length are show in table. 2. With the Python package ‘captcha’, we can
create arbitrary lengths of captcha images. This dataset contains 14,000 images,
in which 6,000 for training and 8,000 for testing. The examples of G-Captcha
are shown in Figure.1(d).

3.2 Results and analysis

The experimental results are shown in table 3. We can see that the proposed
network achieves the state-of-the-art on both ORAND-CAR-A and ORAND-
CAR-B with a huge advance. But it performs very bad on CVL HDS dataset.
On the other side, traditional methods performed outstandingly. There are 300
writers that contribute to CVL HDS. For each writer, 26 different digit strings
were collected. Only 10 kinds of strings occur in training set. For segmentation
methods, this is not a problem because the total categories of numbers are ten.
But for methods based on RNN-CTC, it gets into trouble due to the lack of
sample diversity. The CRNN architecture [7] which is also derived from RNN-
CTC faces the same problem. The result on G-Captcha shows the strong ability
of handling very long strings.

The above experiments demonstrate that the proposed method can work well
on handwritten digit string recognition. Apart from the shorter length strings
in public datasets, it can recognize much longer strings. Although this method
fails to handle CVL HDS, it is also an efficient approach to deal with digit string
recognition, even if the string is long.

4 Conclusion and Future work

In this paper, we have presented a new model based on RNN-CTC architec-
ture. Combined with ResNet, we archive the new arts on the handwritten digit
string recognition benchmarks ORAND-CAR with a great improvement. The
experiments on G-Capthca dataset, which consists of much longer string im-
ages, indicate our model is very competitive of handling long sequence labelling.
But it gets into trouble when handling data like CVL HDS. It seems a common
failing for such kind of method. In future, we will refine our model based on

2 https://pypi.python.org/pypi/captcha/0.1.1



8 Hongjian Zhan, Qingqing Wang, Yue Lu

Table 3. Recognition rates of different models on the datasets described above. (The
top five methods are proposed on the HDSRC 2014 [1], the following two are proposed
in newest papers. Especially, last but one method uses the ORAND-CAR dataset as a
whole.)

Methods CAR-A CAR-B CVL HDS G-Captcha

Tebessa I [1] 0.3705 0.2662 0.5930 -

Tebessa II [1] 0.3972 0.2772 0.6123 -

Singapore [1] 0.5230 0.5930 0.5040 -

Pernambuco [1] 0.7830 0.7543 0.5860 -

BeiJing [1] 0.8073 0.7013 0.8529 -

CRNN [7] 0.8801 0.8979 0.2601 0.9312

Saabni [3] 0.8580 - -

Proposed 0.8975 0.9114 0.2707 0.9515

elaborate analysis the results in this paper, and exploit the potential on relative
areas.

References

1. M. Diem, S. Fiel, F. Kleber, R. Sablatnig, J. M. Saavedra, D. Contreras, J. M.
Barrios, and L. S. Oliveira, “Icfhr 2014 competition on handwritten digit string
recognition in challenging datasets (hdsrc 2014),” in 14th International Conference
on Frontiers in Handwriting Recognition (ICFHR), pp. 779–784, 2014.

2. A. Gattal, Y. Chibani, and B. Hadjadji, “Segmentation and recognition system
for unknown-length handwritten digit strings,” Pattern Analysis and Applications,
vol. 20, no. 2, pp. 307–323, 2017.

3. R. Saabni, “Recognizing handwritten single digits and digit strings using deep
architecture of neural networks,” in the 3th International Conference on Artificial
Intelligence and Pattern Recognition, pp. 1–6, 2016.

4. A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tempo-
ral classification: labelling unsegmented sequence data with recurrent neural net-
works,” in the 23rd International Conference on Machine learning, pp. 369–376,
2006.

5. R. Messina and J. Louradour, “Segmentation-free handwritten chinese text recog-
nition with lstm-rnn,” in 13th IAPR International Conference on Document Anal-
ysis and Recognition, pp. 171–175, 2015.

6. Q.-F. Wang, F. Yin, and C.-L. Liu, “Handwritten chinese text recognition by inte-
grating multiple contexts,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 8, pp. 1469–1481, 2012.

7. B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text recogni-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI
10.1109/TPAMI.2016.2646371, 2016.

8. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in the 29th IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.



HDSR with residual network and RNN-CTC 9

9. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” arXiv preprint arXiv:1408.5093, 2014.

10. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, pp. 1097–1105, 2012.

11. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in the 28th IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

12. M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2014.

13. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

14. A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirec-
tional lstm and other neural network architectures,” Neural Networks, vol. 18,
no. 5, pp. 602–610, 2005.

http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1312.4400

	Lecture Notes in Computer Science
	1 Introduction
	2 The Proposed Architecture
	2.1 Feature extractor: Convolutional Neural Networks
	2.2 Sequence labelling: Recurrent Neural Network
	2.3 Connectionist temporal classification

	3 Experiments
	3.1 Datasets
	3.2 Results and analysis

	4 Conclusion and Future work


